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Ordinary differential equations. — Homoclinic solutions to invariant tori in a center
manifold, by VITTORIO COTI ZELATI and MARTA MACRI, communicated on 14
December 2007.

ABSTRACT. — We consider the Lagrangian

Live S e S S XU PSS S B NSNS SNSRI
(>r1‘y1,yz,>z,q,q)—2(y1 w1y1)+2(y2 w2y2)+2q + 1 +38(y1, y2)V(9),

where V is non-negative, periodic in ¢ and such that V(0) = V/(0) = 0. We prove, using critical point theory,
the existence of infinitely many solutions of the corresponding Euler-Lagrange equations which are asymptotic,
as t — =00, to invariant tori in the center manifold of the origin, that is, to solutions of the form ¢(t) = 0,
y1(t) = Rcos(wit + ¢1), y2(t) = Rcos(waf + ¢2).
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1. INTRODUCTION

The study of solutions asymptotic to invariant manifolds is important in order to understand
the global dynamics of Hamiltonian systems. It is well known that they can indicate the
existence of a complicated—even chaotic—behavior for the system under consideration.

Global variational methods have been employed by many authors to prove existence
of solutions homoclinic or heteroclinic to hyperbolic stationary points (see [7} 9} |18} 21]),
and to prove chaotic behavior for time-dependent systems (always having a hyperbolic
stationary point); see [20] and [[12]. The same kind of techniques have also been employed
to study existence of solutions asymptotic to periodic orbits and to more general invariant
manifolds having some kind of minimizing property (see [19, [8]).

More recently Patrick Bernard [, 2] has considered a class of Hamiltonian systems
having a saddle-center stationary point and has proved existence of solutions homoclinic to
periodic orbits in the (global) center manifold. Motivated by such papers we have further
investigated the situation in [10} [11]. All these papers consider autonomous Lagrangian
systems of the form

. . 1 . 1.
L(x,%,q,4) = 5<x2 — w?’x?) + qu + V(x, q),

wherex e R,q € T, V(x, q) > V(x,0) = 0 for all x, g (actually, Bernard considers more
general Hamiltonian systems, and his results apply also to g € T). In this case the center
manifold of the stationary point is 2-dimensional and is foliated by periodic solutions.
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In this paper we extend some of the above results to cover a class of Lagrangian systems
having a 4-dimensional center manifold by considering Lagrangians of the form

. . U P S TN NS IIC S S NN
L(yl,yl,yz,yz,q,q)—z(yl w1y1)+2(y2 w2y2)+2q + A +6(y1,y2))V(g)

with y1, 2 € R, g € T = R/[0, 27]. We look for solutions of the corresponding Euler—
Lagrange equations

Gg=~04+80U1y2)V'(q),

d
.o 2
=—46(0y1, Vig),
(1.1) Y1+ oy oy 1, y2)Vig)

. 3
$2 4+ w3y2 = —8(y1, y2)V(q).
oy2

Note that the Lagrangian is autonomous and hence the total energy

L . I . I,
SOT+ iy + 03 + @3 + 24° = 1+ 801, 32)V(g) = E

is conserved along any solution.
Since we are assuming that V has a strict global minimum at ¢ = 0 and it is periodic
in g € R, such a system admits, for all Ry, Ry > 0 and ¢1, ¢ € R, the solutions

qt) =0,
y1(t) = Ry cos(wit + ¢1),
y2(t) = Ro cos(wat + ¢2),

having total energy E = (a)]2R12 + a)% R%) /2. The set
TRk, = {(y1 = Ry cos(¢1), y1 = —w1 Ry sin(gy),
Y2 = Rycos(¢), 2 = —waRysin(g2), ¢ =0, ¢ =0) | (¢1. ¢2) € T?}

is an invariant torus for the system (I.I).
We look for solutions asymptotic to such tori, that is, solutions y;(¢), y2(¢), ¢ (¢) such
that

dim dist((y(1), y(0), 4 (1), 4 (1)), TRy, Ryy) =0,
lim_dist((y(®), y(®), q(1), (1)), Tr,_,r,_) = 0.
t——00
By energy conservation,
(1.2) E = 0}R}, +03R3, = 0}R]_+ w3R3_.

This kind of problem has been studied using perturbative methods by many authors
mainly in the case of a 2-dimensional center manifold (see [16} [17, 15} |13]], and the more
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recent [4} 15 23] 22 [14} |6]). In these papers it is proved that there exist many solutions
homoclinic to invariant tori of energy £ > 0 and “not too small” (one does not expect to
find solutions homoclinic to the stationary point Py = (y; = 0,y = 0,y = 0,y =
0,¢g = 0, ¢ = 0), which has one-dimensional stable and unstable manifold).

In this paper we obtain existence of infinitely many solutions, homoclinic to the
invariant tori, under different kinds of assumptions on § and w;.

We remark that the condition that a solution is asymptotic to 7z, g, ast — £0o can
also be formulated by saying that (y; (z), y2(#), ¢ (¢)) is a solution of (I.I) which satisfies,
for some f1+, for € [0,27) and k € Z \ {0},

lim |yi(t) — Ri+cos(wit + fi+)| =0,
t—+o0

(1.3) lim 1y2(f) — Rox cos(nt + fo4)| = 0,
Jm g =0, lim g =2br

Throughout this paper, we will assume that V and § € C2(R) are such that

(V1) V(g+2rm)=V(g)forall g € R;
(V2) 0=V (0) < V(g)forallg € R\ 2nZ;
(V3) V"(0) = pu > 0;

(V4) V'(9)q > Oforallg € [-7, 7], q # 0

(1) —1 <8 <8(y1,y2) <éforall (y, ) € R
62) IV8(y1, »2)Il < C forall (y1, y2) € R? and for some positive constant C;
(83) V81, ¥2), (1, ¥2))| < 2o forall (y1, y2) € R? where 1 + 8 — o > 0.

We will often use the notation
(1.4) Vp=min{V(s):s €n,2nr —nl} >0, n>0.

REMARK 1.5. Let us point out, for future reference, that [(V3)| implies that there is an
no € (0, 77/2) such that

(1.6) n/2<V"(q) <2p forall |g| < no.

REMARK 1.7. The above assumptions on V and § are satisfied, for example, if
(1.8) V(g) =1—cosq, 81, y2) = 8o arctan A*(y; + y2)
provided 0 < 8o < 4/(27 + A2).

REMARK 1.9. If §(y1, y2) = & is a constant, then under assumptions [[VDH(V2)|there is
a solution go(¢) of § = (1+8¢p)V’(g) homoclinic to 0 (see, for example, [7,18]) and hence
(Ry cos(wit+ f1), Ry cos(wat + f2), qo(t)) is a solution of our problem for all Ry, Ry > 0,
f1, f2 €10, 27).

A first result is the existence of at least one solution asymptotic to an invariant torus
TR,_.R,_ ast — —oo and to TR, r,, ast — +o0.
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THEOREM 1.10. Assume V and § satisfy [VDH(VH)] [EDH(E3)| and
(84) 5 +2(a —38) < 1.

Then there is a solution of the system (I.1)) satisfying (I.3) with k = 1 for some R+, Ryx €
[0, +00) satisfying (L.2), and for some fi+, fo+ € [0, 27].

Note that we cannot prescribe, in the above theorem, the tori to which the solution we
find is asymptotic, and not even its energy. We also observe that the above system should
have a lot of solutions like the one we find.

In the next two theorems, we give, under different additional assumptions, a more
precise result: the existence of infinitely many homoclinic solutions, that is, of solutions
asymptotic as time goes to £00 to the same torus 7g, g, (different solutions will in general
be homoclinic to different tori). The different solutions are characterized, as in [10], by

different “phase shifts” between t = —oo and + = 400 (¢; in the statement of the
theorem).
THEOREM 1.11. Assume V and § satisfy[(NDHVE) [GDHE3) and
_ Fl+s—a)? [V
(54) R A
2724+ (1 +8)||[V]eo ¥ 2

Assume moreover that

(E) system (L.1) has no zero energy solutions satisfying lim,—_oq(t) = 0 and
lim;—, 400 g (1) = 27.

Then for any ¢1 € (0, 27) and

(1) any g3 € (0,27) if vy /w1 ¢ Q,
(02) g2 = jorifwr/wr = j€Q

there exist Ry and Ry and a solution (yi(t), y2(t), q (1)) of (L), satisfying (1.3) with
k=1 R+ =Ry, Rox = Ry, w%R%+w%R% >0, ¢; = fi— — fi+ mod 2m. Furthermore,
q(t) € [0,27] forallt.

REMARK 1.12. Assumption has already been used in [10] and it is satisfied if V
and § are of the form (T.8) with §5c < 0.02 and > = 1. We also remark that implies
(54)

Assumption [(E)]is used in order to prove the existence of infinitely many solutions. If
it is violated, we obtain a solution homoclinic to the stationary point Py = (y; = 0, y; =
0,y2 =0,y =0,9 =0,g = 0). As already remarked above, this should not be the case
in general (see [3]]).

The next theorem shows the same result under a different set of assumptions. In order
to state this result, let us introduce the notation

c=21"4+1+8|Vle, K=1+8—0a, K =max{¢/K,c}> 1,

(1.13) 7 [148(0,0
VZ% %Vﬁ/z, Cyp =2+

cotﬁ‘
2
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THEOREM 1.14. Assume V and § satisfy[(VOHVA)] [EDHG3) [(E)] Fix any ¢1 € (0, 27)
and ¢y as in (w?2)|and assume that

IV8lloc K
i a)l
Then there exist Ry and R and a solution (y\ (1), y2(t), ¢ (1)) of (1) satisfying (1.3) with
k=1, Ri+ = R{, Ry+ = Ry, a)%Rlz—i-a)%R% >0, ¢; = fi— — fi+ mod 2m. Furthermore,
q(t) € [0,2r] forallt.

_ oy
(1.15) C, max{l, |V3looK} < = Vi=1.2.

REMARK 1.16. The above theorem states that one can find homoclinic solutions for all
“phase shifts” uniformly far from 0 and 27 (so that C, is uniformly bounded) provided
w; are large enough or § is small enough.

Solutions of our problem will be found using variational methods as limits as T —
+o00 of solutions of the following boundary value problem:

G=~1+38(1, )V (@),

) 3
1+ 0ty = —8(y1, y2)V(q),
0y

. 3
(PT) o + w3y = 8—y25(y1, )V (),

q(0) =0, ¢(T)=2m,
y1(0) = yi(T), y1(0) = y1(T),
200) = y2(T),  ¥2(0) = y2(T).

Existence of a solution for this boundary value problem will be proved using critical
point theory, in particular a min-max procedure similar to the one introduced by Bernard
in [2]] and then used in [10} [11]]. Some of the proofs in Sections [2]and [3|are closely related
to those of [I10} [11]].

2. PRELIMINARIES

We first remark that the limit conditions

lim |y;(t) — Ri— cos(w;t + fi—)| =0,

2.1) oo
lim |y;(#) — Rit cos(wit + fi+)| =0

t——+o0

fori = 1, 2 are satisfied by all solutions of
. R
2.2) Si+ iy = 3y, 1 V@
1

such that fR V(g(t)) dt < +o0. Indeed, all solutions of @ can be expressed, for suitable
Ri+, fix,i=1,2,as

t
(2.3) yi(t) = wi / %()’1» y2)V(g) sinw;(t —s)ds + R;— cos(wit + fi-)

i fooai
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or
1 [ 38 .

@4 yit)=-— a—y(y1, y2)V(q)sinw;(t —s)ds + Ri. cos(wit + fit),
1 Jt 1

and passing to the limit as # — o0 in these expressions we obtain (2.1).

Now we give some preliminary estimates on the solutions of the boundary value
problem (PT)). In the following we will often use the notation

T
2.5) 0i(y) = /0 (37 — wly?) ds.

LEMMA 2.6. Assume that T # 2n N /w; for all N andi = 1, 2 and that y; is a solution

of

. 3
§i + 0y = 780192V (@),
Yi

¥i(0) — yi(T) = ¥i(0) — :(T) = 0.

Q2.7)

Then fori =1, 2,

IA

1 a)iT r
llyilloo — 2+ COtT ||V8||w[) Vig®))dt,

W

A

w; T T
cotTDMWHOO/ V(g(t))d,
0

1Villoo < (2 +
2

. T
10:0)] < i(2+'cot£‘>nvan§o (f V<q(t>>dt> ,
wj 2 0

1

T
<o / V().
0

1 1
’5Q1(y1) + EQz(yz)

PROOF. An easy calculation shows that for all T # 27 N /w; the solution of (2.7) is given
by

1 /9
yi(t) = ;/ —3(y1, y2)V(q) sinw;(t —s)ds

i Jo 0
+ H,'+Li ta)l‘T t+ L,‘ Hi ta)l'T . ¢
— + — cot — ) cos w; — — —cot— | sinw;
2 2 2 ' 2 2 2 '
where
1 (T % .
Hi = — —38(y1, y2)V(g) sinw; (T — s)ds,
w;i Jo 9yi

1 (T 3
L, = —/ —3&(y1, »2)V(g)cosw; (T —s)ds.
;i Jo 0yi
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We first observe that

1 T 1 T
|Hi|s—||va||oo/ V), |L,-|s—||va||oo/ V().
wj 0 wj 0

T ECTA 70
2 2 2

1 r wiT\ 1 T

—IV8lloo | V(g)+ 1+ ]|cot —| ) —V8|loo Vi(g)

w; 0 2 wj 0

;T 1 r
24 |cot ——| | —IVslloo | V(g).
2 wj 0

Similarly we can estimate ||y;||oo- Finally, an integration by parts shows that

Then we have the following estimates:

1 t H;
[Yilloe = —IIVdlloo [ V(@) + |
wj 0 2

wiT‘
cot —
2

IA

T
0 .
0i(y) = /0 B0 N OVg@)di foralli = 1.2
1
so that

0

—&(y1, y2)

T
< Iyl /
B

(o oo ([ viaona)
— | 2+ |cot —| JIIVéll5 / Vig)dt) ,
wj 2 0

T
‘ / (G} — w?y?) dt V(g(t)dt
0

IA

and

1 1 T g
‘EQI()’I)+§Q2(}’2) = ‘/ —§<V6(y1,yz),(yl,yz)W(q(t))dt
0

T
§oz/ Vig())dt. O
0

Let us remark that Lemma [2.6]requires the condition T # 27 N /w; fori = 1, 2. The
following lemma shows that there exists a sequence Ty — -+oo such that w; Ty ¢ 27N
fori =1, 2.

LEMMA 2.8. Fix ¢1, 92 € (0, 27) and assume wy /w1 < 1 (otherwise exchange w1 with
w2). Then, choosing Ty = (2w N + ¢1) /w1, we have w1 Ty mod 2w = ¢ forall N € N.
Moreover;, we can extract a subsequence Ty, such that

w2 Ty, mod 2w — ¢ ask - +ooifwy/wy ¢ Q,
2Ty, mod 2w = (wa/w1)@1  forallk if wa/wi € Q.

PROOF. If wy/w; ¢ Q, then the set {wy Ty mod 27} yen is dense in (0, 277). Therefore,
for any fixed o € (0, 27), there is a sequence {Ni}xen such that wy Ty, = 2wl + o
with [y € N and g € (¢ — 1/k, ¢ + 1/k), so that wr Ty, mod 2 — ¢, as k — +o0.
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Let wp/w1 € Q. If wp/w; = 1 the statement is trivial. Otherwise we can assume
wy = (n/m)w) with n,m € N coprime and m > n. Then, setting Ny = km for all k,
we have wy Ty, = (n/m)Q2nmkm 4 ¢1) = 2nwnk + (n/m)ey, that is, w Ty, mod 27 =
(n/m)p1 = (w2/w1)e; for all k. O

From now on we will denote by T the subsequence as in Lemma [2.8] so that, for

@1, @2 chosen according to (@ DH(@2)} we have
(2.9) w1Ty =20N +¢1, Ty =2nly + oy Wwith oy — @2,
and we will use the notation

a),-T

N‘ fori =1, 2;

(2.10) cN =2+

; cot

note that, for Ty as in Lemma we have C{¥ = C,, (see (T.I3)) and CY = C,, — C,
as N — +oo.
The following lemma is a direct consequence of Lemma 2.6]

LEMMA 2.11. Let Ty be as in Lemmaand let yiN be a solution of ll fori=1,2.
Then fori =1, 2,

N CN &
i lloo = w—’IIV(SIch;/O V(g (1) dt,

1

Tn
15 00 < cl-NuvsnoofO V(q(t) dr,

2

c T
10: (v < —‘||V8||§o(f V(q(t))dr) ,
wj 0

where CI¥ = Cy, and C5 = Cy,y — Cy, as N — +o0.
REMARK 2.12. If (y1n, y2n, gn) is a solution of (PT)) in the interval [0, Ty 1, then y;n (),

i = 1,2, can be expressed, for suitable constants A;y and u;y (such that the periodic
boundary conditions are satisfied), as

1

1 ) .
(2.13) yin(@) = ;f g(yw, yan)V(gn) sinw;(t — s)ds + Ay cos(w;t + pin),
o 9y

or

1 (v 38 _
(2.14) Yin({) = —— — 1N, y2n)Vign) sinw; (t — s) ds

wi J¢ 0y;

+ Ay cos(wit + pin — @iN),

with ;v = w; Ty mod 2.
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3. VARIATIONAL SETTING AND MIN-MAX PROCEDURE
From now on we assume that Ty satisfies (2.9). Let
Ey={x¢€ Hléc(R) | x is Tyy-periodic}
. TN . .
with scalar product (u, v) = [ (40 4 uv) and
I'y={g € H'(0,Ty) | q(0) =0, q(Ty) = 27},

and let, for all (y1, y2,9) € Exy x Exy x 'y,

2.,2 22

Tyre2 _ 2.2 2
Vi — iy ¥ — w3y
fN(yl,yz,q)=/0 [ L 5 171 22 5 272 +%+(1+8(y1,y2))V(q)]

In the following we will omit the subscript N when it is possible. It is straightforward to
show that

LEMMA 3.1. fe CHEXExT;R).IFVf(y1,y2,q) =O0then (y1, y2, q) solves (PT).

We recall (see for example [[10]]), that, for fixed N € N, to the quadratic form Q1(y) on
E (see (2.3)), there is associated a splitting E = E | ®F F, and to Q2(y) a splitting
E=E, & E2+ More precisely, fori = 1, 2 let
_ ; ; 2k i . 2mk
E; ={y(s)=aj+ a4 COs — s + by, sin -5
(k| 2nk<w;i Ty} N N

. 2wk . 2k
Ef = {y(s) = Z (a,’C cos ——s + by sin Ls) }
(k| 27k>w; Ty} Ty Ty

Then, forally € Eandi = 1,2,y :y;r—i—y;,y;r € Ef,yf € E andfOTyfyf =0,
T 4.
0 3 ¥ =0,
Note also that for suitable positive constants Aii(TN) andi =1, 2,

—Qi(y) = A (Ty)llyl* forally € E;,

(3.2)
Qi) = 4 MWIylII* forally € E'.

PROPOSITION 3.3. Assume (y1n, Yon, qn) € E X E x I' are such that

af .
S Oins Yan, qn) — ¢, a_y(yln» Yon, qn) — 0, i=1,2.
i

Then (Y1n, Yan, qn) is bounded in E x E x I' and, up to a subsequence, yi, — yio in E
fori = 1,2, g, — qoin L*®, g, — qo in H'. Moreover, (y10, y20, qo) is a solution of
@) fori =1,2.

Furthermore, if V f (Y1n, Yon, gn) — 0, then, up to a subsequence, (Y1, Yon, qn) —
(10, Y20, o) and f satisfies the PS condition.
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PROOF. Using (3.2), as in [10] we have the estimate

_ of _
enllyp, e = ‘<a_yl(y1na Y2ns qn), y1n>

T 12
> 1010 = 1V8llsollyy, Il 2 (/0 V(qn>2>
> 2T (D3 = V8ol V oo VT l1y1 1

and the boundedness of |y, |l g1 follows. In the same way we argue for yi‘;l, ¥,, and y;;
so that we obtain the boundedness of y, and y;, in E. Since

T T
fo Gr = 2f Otns Y2, Gn) — Q1(¥1n) — Q2(v2n) — 2/0 (I + 81, y2n))V(qn)
<2(c+ 1) + max{1, o} y1all7; + max{l, @3}[ly2nll3,, < const,
and since ¢, (0) = 0, we see that g, is bounded in H Lo, T). We then deduce that, up to

a subsequence, ¢, — ¢o in L?, uniformly and weakly in H', and also y;, — yjo in L2,
uniformly and weakly in H! for i = 1, 2. Since

T , T , T
/ [Yin — Yiol +/ |Yin — Yiol” = / Yin(Yin — Yio)
0 0 0

T T ,
- / Yio(Vin — Yio) +/ [Yin — Yiol®,
0 0

recalling that fOT |yin—yio|> = 0as well as (by weak convergence) fOT yio(Yin—yio) — 0,
to show that y;, — y;o in H Vit is enough to prove that
T
/ Yin(Yin — Yio) = 0.
0

Since
L . af 2 ("
/ YinYin — Yio) = <E(ylns Yons Gn)s Yin — }’i0> + w; / Yin(Yin — Yi0)
0 i 0

T

9

—/ 3 S(V1ns> Y20) V(qn) (Yin — Yio),
0 Yi

the result follows because y;, — y;o is bounded, %(yln, Yon, qn) — 0, Yin — yio in L?

and the sequences y;, and %S(yln, v2,)V (gn) are bounded in L*°. Then y;,, — yjo in H!
fori =1, 2.

Finally, if ¢ is any test function, we have

T T
of .. 2 a4
—V1ns Yo qn) @) = Yin® — Wy Yin®) + — O Y20 V(@)@
dyi 0 0o 9yi

T ) T BF)
—>/ (y'iﬂb—wiyw)-i-/ —0Ly2Vgoe, i=12,
0 o 0y
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so that y; is a weak solution of
.. 2 il ;
Vi +wiyi = a_y_()’h Vg, =12,
1

and, by standard arguments, also a classical solution. Therefore (y10, ¥20, qo) is a solution
of 2.7) fori = 1,2. If also %(yln, Yon, qn) — 0, using the same arguments, we have

gn — qoin H' and (y10, y20, qo) is a solution of (PT). O

We say that h € 'H if

(1) h: E x E;, — E x E x I is continuous,
(2) there are R > 0 and g5, € I" such that

h(y1, y2) = (1, y2,9n) VI, y2)Il = R.

Let us define

(3.4) c(Ty) = inf sup Iy, y2)).
€ (1.3)€E] xES

To estimate c(Ty) (see Lemma[3.6), we first prove the following inequality.

LEMMA 3.5. Forallq € I" we have

T 27
/ @2svls [ JVaveyds > o.
0 0

PROOF. Letg € I'no ={q € HILC(R) 1 q(—00) =0, g(+00) = 27} be such that

L@+ v =mnin [ 1224 v
R q R

By energy conservation Qz /2 —=V(q) =0, sothatforall ¢ € I', we have

T
[ @revanz [@eevar- | v
0 R R

From our assumptions on V' it follows that g(r) > 0 and using the change of variables
s = g(t) we have

/ZV( )dt—/2n&ds— 27T\/2V(s)ds
i VA TR ’

so that . )
JT
/ [G2/2+ V()] = 2V(s)ds >0 Vgel. O
0 0
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LEMMA 3.6. Let Ty satisfy 2.9) and c(Txn) be defined as in (34). Then

2
V20 +8)V(s)ds =:c <c(Ty) <c:= 272 + (A +0|Vle forall Ty.
0

PROOF. Let gr be such that

T T
/O 62/2+ (1 +5)V(@Gr)] = I,“JP/O [62/2+ (1L +5)V(@)] = &T).
Then
&(T) <e(l) <212 4+ (14 8)|| Voo =: €.
Letting /1 (y1, y2) = (y1. y2. 4r), we have

¢(T) = inf sup  f(h(y1,y2) < sup  f(h(y1,y2)
€ (v1.y2)€E] XES (y1,y2)€E] xE5

T
< /0 [62/2+ (14 5V @] = &T) < &.

On the other hand, for any & € H, h(y1,y2) = (hi(y1,y2), ha(y1. ¥2), h3(y1, ¥2)),
consider the function 2 : E[ x E; — E| x E; defined by h(y;,y) =

(”thl(yl’ ), nE;hz(yl, y2)). Since ﬁ‘aB(O,R) = Id for all R large enough, there is
(1. 32) € E{ x E; such that i(¥1, 32) = (0, 0), i.e.

hi(G1, ) € EY,  ha(31, ) € ES.
Then, letting ¢ = h3(y1, y2), we have, forall h € H,

T
sup Sy, y2)) = f(h(y1, ¥2)) 2/ [G%/2 + (1 + &) V(g)]dt
O1.y2)€E] XE5 0

T
> min / [62/2+ (1 +8)V(@)]dt = e(T),
qel’ Jo

and Lemma 3.3] yields

2w
o(T) > 21 +8)V(s)ds =:c > 0. O
0

PROPOSITION 3.7. Let Ty satisfy 2.9) and c(Ty) be defined as in (34). Then there is
a critical point (yi1n, Yan, gn) for fn at level c(Tn) that solves problem (]F_TI) Moreover,
gn has the following properties:

(3.8) gn() €10,2x] Vvt e [0, Ty,
(3.9) gn(0) = gn(Tn),

TN c c Ty )
3.10 %4 <—=—, 1y < 2c.
(3.10) fo @) = T —a = % /0 iy <2



HOMOCLINIC SOLUTIONS TO INVARIANT TORI 115

PROOF. The existence of the critical point (yin, y2n,gn) at level ¢(Ty) follows via
the min-max principle, since f satisfies (PS) by Proposition [3.3] and by the estimates of
Lemmal[3.6l

To prove (3.8) let us introduce, for all Ty,

I'v=1{q €I'nlq(s)€[0,2n]Vs €[0, Tyl}
H*={heH|h(y1,y2) € EXExTyVY(y,y) €E xE}

¢*(Ty) = inf sup Inh(yr, y2)).
€ (y1y)€E] XE5

It is easy to show that
c*(Tn) = c(Tn).

Indeed, H* C 'H implies that ¢*(Ty) > c¢(Tx). To prove the other inequality pick h € ‘H
and let 2* € ‘H* be defined as h*(y1, y2) = h(y1, y2)*, where (y1, y2, ¢)* = (y1, ¥2,9%)
and

qt) if0=<gq(t) <2m,

g @) =12n ifq@t) > 2m,
0 ifq() <O0.

Then, since

L+ @), 2NV (@™ (1) < L+ @), 2(H)V(g®) VYt el0,T],

we immediately see that

Jr(W* (1, y2) < fr(h(y1,y2)) YO, y2) € E| x E; ,YVhe H
and
c*(T) < e(T)

and also (3:8) follows.
Now let us show that (3.9) holds. Since (yin, y2n, gn) is a solution of (PT), by energy
conservation, we have

32, (0) + @?y?y(0)  §3,(0) + @3y3y(0)  G%(0)
2 + 2 + 2
— (148N (0), y2n (0))V (gn (0))
Vin(Tn) + 0yl (Ty)  $3y(Tn) + 0393 (Tn)  ¢%(Tw)
- 2 * 2 T3
— (I +3nmnTN), yan(TN))V(g(Tn)).

Since gy (0) = 0, gy (Tn) = 27, V(0) = V(2r) = 0 and by periodicity of y;y and yan,
we have

G5 (0) = Gy (Tw).
Since gy (¢) € [0, 2] for all ¢ € [0, Ty] we have gy (0) > 0, gy (T) > 0 and so

gn(0) = gn(Tn).
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Finally, using the last estimate of Lemma[2.6] we have
1 1 v,
c(Iy) = 5Q10wv) + 5Q2008) + lgn/2+ (A +5(in, y2n)V(gn)]
0
N Ty
= [Tanrats-o [ vaw.
and, by the estimate on ¢(7y) in Lemma[3.6] (3.10) holds. ~ O

4. PROOF OF THEOREM (1. 10

We say that ¢ (¢) jumps from 7 to 2w —n in an interval [¢, Bl if g(o) = 1, q(t) € In, 2r—n[
for all ¢t €]a, B[, g(B) = 2w — n. Note that if g (¢) jumps in [o, 8] from 5 to 2w — n, then
defining

0, O0<t<a-—1,
nt—oa+1), a—1<t<a,
q() =149, a<t=p,
Zr+nt—p-1, p=<t=p+1,
2, B+1<t<T,

and arguing as in Lemma[3.3] for any B > 0 and n < 19 (19 given by (I.6)), n sufficiently
small, we have

B T
@.1) /[42/2+Bv<q>]z/0 [6%/2+ BV(@)] — > — BV(j) — BV (27 — 1)

2
> V2BV (s)ds — 172 — ZB/JLn2 > 0.

0

LEMMA 4.2. Let (y1, y2,q) € E X E X I'* be a critical point for fn at level c(Ty) as in

Proposition 3.7 and assume [(34)| holds. Then there exists 0 < n1 < no (1o given by (L.6))
such that for all 0 < n < n1, q(t) jumps only once from n to 2w — n. Moreover, if [«, 8]
is the interval where q(t) jumps from n to 2w — 0, then |B — a| < ¢/KV, with V;, as in

(T4), and K as in (T.13).

PROOF. Arguing by contradiction, let us assume that g () jumps from n to 27 — 5 in two
intervals, [o1, B1] and [o2, B2] with 81 < ap. Without loss of generality we can assume
that

B T
43) /0 Vig) < / V().

2

Define
q(@) ifr € [0, Bil,
qt) =27 +nt—p1—1) iftelp, B+ 1],
2 ift e [B1+1,T],
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and let /1 : E[ x E; — E1 x E; x I' be defined by l_z(yl_,yz_) = (¥, ¥, »q) for all
(1) €El XE;.
Forall (y,,y,) € E| x E,, using the last estimate of Lemma we have

1 1
FO1y2:9) = fO1.2.9) 2 50061 + 50(2)

T T
+/0 [q'2/2+(1+5(y1,y2))V(CJ)]—/O 6272+ (148G vy NV (@]
T B
zfo —aVig) + [ 10139 =807 V@)

T Bi+1
+/ﬂ [42/2+ (L + 81, y2) V()] — /ﬂ [¢%/2+ (1 +8(y NV
1 1

Bi

T
> @—a—S)V<q>+/ [G2/2+ (1 +8—a)V(] —n*/2 — (1 +Sun*.
0 Bi

From assumption it follows that § — o —§ > —(1 + 8 — «); and thanks to [@3) we
have

A1 _ A1 T
/ (§—0—5)V(61)>—(1+§—01)_/ V(Q)E—(l‘FQ—Ol)/ Vig).
0 0 a
Therefore, using also (@.1)) we have

o _
JOLY2 ) = fO .4 = /}; [G%/2+ (1 +8 —a)V(@)] — °[1 + (1 4 5)]

2
> / V2048 - )V (s) ds
0
—n? =201 48 —aun® — n*[1 + pn(1 + 5)].
Then, choosing n; sufficiently small, we have

fOLY2Le) = fOy.y,,49) >0, Yn<n,Y(Q;.y,) € E] xE;,

which is a contradiction, because (y1, y2, ¢) is a critical point at level ¢(T'). Finally, by

(3-10) we have

c Tn B
= [ vz [ vawzvip-a. o
K 0 o

PROOF OF THEOREM[I.10} Let (yin, y2n, gn) be a critical point at level ¢(Ty) which
is a solution of (]P_T[), given by Proposition@ Fix any n < 1y and let [ay, By ] denote the
unique (by Lemma @) interval where gy jumps from 7 to 27 — n. Let iy € [ay, Bn]
be such that gy (ty) = w and gy (¢) < 7 forall t < ty. Since |By — ay| < ¢/KV, and
Ty — 400, we have either Ty — +o0o or Ty — Ty — +00. Let us first analyze the case
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where both ty — 400 and Ty — vy — +00. We define the function gy in the interval
[—tv, Ty — tv] as
gn(t) =gqn(t+17v) VN €N.

By definition gy (t) € [0, 27] forallt € [—ty, Ty — ty] and gy (0) = 7 forall N € N.
Moreover, by Proposition[3.7] we have

Tn—1N ” Tn )
/ an Z/ gy <2c.
—TN 0

Then, for any fixed a < b € R, since both Ty — 400 and Ty — v — +00, we have
Gn € H'(a, b) for all N large enough and

1GN 131 gy < 26+ (b — )4,

Therefore, up to a subsequence, gy — ¢ in H'(a, b), y — ¢ uniformly in [a, b] and

b b
/ qZ = sup/ 6}2 < sup liminf/ 6512\/ <2c,
R a<bJa a<b N—>+00 /g4

b b = c
/v<q>=sup/ V(g) < sup limin / Vi < — =&
R a a

C
a<b a<bN—>+00 I+8—a K

Since V (g) = 0 only for ¢ = 2km, k € Z, and since g jumps only once from 7 to 2w —n
forall N € N, we have

tilrfnooq([) =0, tilgrnoo(q(t) —2m) =0, zllg:nooqa) =0

Now let us analyze the case where only one of ty and Ty — Ty diverges. We can
assume that, up to a subsequence, Ty — ty diverges and Ty < Ty /2. Define the function

gy in[—(Ty +tn)/2, (Tn — Tv)/2] by

gN(t+ Ty +ty) — 21 ift € [—(Ty + tN)/2, —TN],

gn () = {qN(t—i-TN) ift € [—tn, (Tny — Tv) /2]

Then for all N, gy(0) = 7, gn(t) € [—2n + n, ] for all t € [—(Ty + tv)/2, 0], and
gn (@) € [n,2rx] forall t € [0, (Ty — tnv)/2]. Then, arguing as in the first case, fora < b
in R we have, up to a subsequence, gy — ¢ in Hl(a, b), gn — ¢ uniformly in [a, b],
lgllo <27 and

(4.4) /q’zsza qu)s ‘.
R R K

Since V(q) = 0 only for ¢ = 2k and since for all N € N, gy € [—27 + n, ] for all
t € [—(Ty + t™v)/2,0],and gy € [n,2x] forall ¢ € [0, (Txy — tn)/2], we deduce also in
this case that

Jdim_g() =0, lim (q()~27) =0,  lim 4()=0.
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Now define, fori =1, 2,

Yin(t+ Ty +1y) ift € [-(Tn + Tv)/2, —TN],

Vin(t) = )
yin yin(t + ) ift € [—tn, Ty — v)/2].

In view of Lemma and @4) we know that J;y(¢) is bounded in H'(a, b), so that,
up to a subsequence, y;y — y; in H'(a,b) and y;5 — y; uniformly in L (a, b) for
i =1, 2. We can now pass to the limit in the equations

v = (L+8G1v. T2V @Gn).

= - . . -

Yiv +oidiv = 53@11\/, »n)Vgn),

= 2~ 9 . . -

Yon + w3 yaN = 8—y25(y1N, Y2n)V(gn),

to deduce that (y1, y2, ¢) is a solution of
G==0+801, )V (),

9
—3(y1, y2)V(g),

. 2
Y1 t+owiy =
! 0y1

. a
o+ @3yn = T80, )V (@),
y2

in the interval [a, b] and hence also in R.
Thus, as observed at the beginning of Section 2, conditions (T.3)) are satisfied. Finally,
by energy conservation, since g (£00) = 0, also condition (T.2) holds. a

5. PROOF OF THEOREM [[.11]

LEMMA 5.1. Let (yin, Yan,gnN) be a critical point for fn at level c(Ty) given by

Propositionand assume that (84) holds. Then for all 0 < n < no (no given by @)
there exist 0 < 11 < 10 < Ty such that

0<gn@® <7 vt € [0, 1],
gn (@) € [n, 21 —n] vt € [11, 12],
2r —n <gn(t) <27m Vit €[, Tyl

PROOF. Letn < ng,lett;y =inf{s € [0, T] | g(s) > n}and trp = sup{s € [0, T] | g(s) <
2w — n}. If the lemma does not hold, then there is rl’ € (71, T] such that q(rl’) =7 (or
there is ré € [0, 72) such that q(rz’) = 2w — n; we will only discuss the first case). Then
¢ (1) reaches a maximum at t;" € (t1, 7{), hence §(z{") < 0. But

Gy = 1+ 8], y2(r{ MV (g ()

implies, by (V4)|, that ¢ (z{") > 7. Then there exists an interval where ¢ jumps from 77/2 to
7n and an interval where ¢ jumps from 7 to /2. In each of these intervals, say [a, b],

i b b 172
i=[a=(f#) v
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so that for V;2 as in (T.4) we obtain

b =2
. n
/a [q2/2+ (I+8—-—a)Vig)] > m + (A +38—a)Vzp(b—a)
_ /146
>n %Vf)/z-

Therefore

: e
62 [ s - avenz 2] S v
71

Now we define a new function g € I'* by setting

0, 0<t=<rt -1,
gty =1qt -t +7), -1 <t =71,
q(1), 11 <t=<T.

We also introduce & defined as i_z(yf, ¥) =,y ,q foral (y,,y,) € E x E;.
Clearly h € H*, so that, since frn, y2,q) = c(T),

0< sup Frh(yy,v3)) — frOn, y2. ).
O7 v )EE] X E5

On the other hand, using (5.2) and arguing as in the proof of Lemma [.2] (see also [10.
Lemma 11]) we have, forall (y, ", y,) € E| x E;,

SO, y2.9) — fr(yy s ¥, 4)

v

fol[qz/z+<1+§—a>wq>]+f 1224 (18— V(g
4l

T 124
+ [ 6=d-ava- [ @r+assoronva@l
T T

s

_ T 145 —«
—(5—§+Ol)/(; Vg) + 2 %Vf,/z.

Then, using the estimate (3.10) and by definition of ¢ (see Lemma [3.6)), we have, for all
O -y») € E xXEy,

v

SO, y2.9) = fr(yy s ¥, 9)

> (G —bta)— oy /ATy,
G —bta / .
= ET e TN T

§—8+a
> =
T 148 -«

) _ [T+d6—a_
e+ A+ )Vl + 27 - Vi/2.
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Then, thanks to (54'), for all (yy»¥,) € E| x E, we have

o _|14+é—«
vy, @) — fr(y, y2,9) < =1y TVﬁ/z,

contradiction. O

LEMMA 5.3. Let (yin, Yan,gnN) be a critical point for fn at level c(Ty) given by
Proposition and assume (54') holds. For 0 < n < no, let r,{, and r]%, be given by
LemmaB.1l Then

(5.4) -t} < ;,
S (+8-a)V,

with Vy as in (T4);

sinh +/at sinh . /at
wt) =n——>=—+ <gn{t) < n.—\/zl = z(1)
sinh \/ErN sinh @rN
forallt € [0, II{,] and
. sinhva(Ty — ¢ sinh Ja(Ty — 1) _
55 @) =n AN =0 o gy < pVEIN =D

sinh Ja(Ty —12)

forallt € [r]%,, Twn), where a = 2uu(1 4+ 8) and a = (n/2)(1 + 8). Moreover, 111, — 400
andTN—r]%, — 4oo0as N - +o0.

sinhva(Ty —t3) ~

PROOF. We give only a sketch of the proof, more details can be found in [10, Lemmas 13—
15 and Remark 14]. Estimate (5.4) is an easy consequence of (3.10). Thanks to Lemmal[5.1]
we can use a maximum principle argument to obtain exponential estimates on gy. Then,
using the estimates on g and (3.9), we conclude that both tI{, and Ty — ‘L'I%, diverge. a

In the following proposition we prove the first part of Theorem[T.T1]

PROPOSITION 5.6. Let (yin, yan,qn) be as in Propositionand assume (84') holds.
Then for all N € N there is Ty € [tzlv, r]%,] such that, up to a subsequence,

gn(G—1t8) > ¢q, YINC—1TN) = Y1, yan(-—TN) = ¥,

where (y1,y2,q) is a solution of problem (I.1)) satisfying (1.3). Furthermore, q(t) €
[0, 2] forall t.

PROOF. Fix n < no. Then, by Lemmas andwe can find II{,, 1:1%, such that

gn () € [0, 7] vz € [0, 7],
gy @) €, 2 —n] Vi€ [ty, T3],
gn(t) € 27 —n, 2] Vi € [t3, Ty],

S
T+ -a)Vy,
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Let 7y be the t 1{, corresponding to 79, and
gn(t) =gqn(t+1N), tel—tn, Ty — Nl
so that gy (0) = ng for all N. Also define
VIN@G) =yin(E+ TN, Yan(@) =yan( +1y) Vi€ [—ty, Ty — TN].

loc

(i =1,2),and (y1, y2, g) is solution of (I.1) satisfying @); moreover, g (t) € [0, 2x] for
all z. O

Arguing as in the proof of Theorem [T.10] we find that gy — ¢ in Ly, Yin — yiin Ly

In the following proposition we conclude the proof of Theorem [I.TT]

PROPOSITION 5.7. Assume (84') holds. Take ¢1 € (0,2m) and ¢, chosen according to
Then there exist Ry, Ry and a solution (y1(1), y2(t), q (1)) of (I.) satisfying
(T3) with

Rix =Ri, fiy — fi-=
fori=1,2. Ifholds, then a)%Rl2 + w%R% > 0.

PROOF. Let Ty satisfy (2.9), let (yin,y2n,gn) be the solution of (PT) given by
Proposition [3.7] and let (yi, y2, ¢) be the solution of (T.I) satisfying (I.3) obtained in
Proposition [5.6]as the limit of (yix, y2n, gn) for N — +o0.

Fix ¢ > 0; let n < ng such that

dun?
—IIVb‘II— <

&

va 4

and consider ty such that gy (ty) = n and gy (t) > n forall t > ty.
As in Proposition[5.6] we define

Vi=1,2,

Gn®) =gn@+1Nn), Jin(@) =yin(E + TN),

forallt € [—tn, Ty — tn], i = 1,2. By 2.13), (2.14), j; v has the following expression
for suitable constants A;y and p;y:

1 t
(5.8) yin (1) = p / a—(yuv V)V (Gn) sinwi(t —s)ds

+ A;n cos(wjt + w; Ty + WiN),

or

TN —tN 98
(5.9) Vin({) = — —/ —(le V2NV (Gn) sinw;(t — s)ds

+ A;n cos(w;t + W;TN + WiN — @iN)-
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We claim that there exists Ni € N such that forall N > Ny, allt € [—ty, Ty — tN]
and i = 1, 2 we have (with the notation yy = (Ji1n, Yon), ¥ = (¥1, ¥2))

1

wj

t

98 - . 26 .
f —ONV(gn) sinw;(t —s)ds — / — V(@) sinw;(t —s)ds
—oy 0Yi —o0 0Yi

<é€

and

1

w;j

< E€.

TN=TN 5 o BRalE) .
/ —ONIV(Gn) sinw;(t — s)ds —/ — V(@) sinw;(t —s)ds
t dyi t dyi

We give a proof only of the first inequality, the other can be proved in the same way. Since
gn(—tny) = 0and gy (Ty — Tv) = 27 we extend gy by setting

- 0 Vvt —1TN,
1) =
gn (@) {27r Ve

=
zTN_TNs

and in view of (5.8) and (5.9) we extend J;x by setting

Ain cos(wit + @; TN + WiN) Vi
Ajn cos(wit + wiTn + pin — @in) Vit

—1IN,

IV IA

Ty — TN.

Vin() = !

With these extensions the claim follows if we prove that

1

wj

<é

"Toes . . . a8 .
/ [—(yuv, »nIVgn) — ——On, yz)V(q)] sinw; (1 — s)ds
—oo L9y yi

for all # € R. Denote by [a, b] the unique interval where g jumps from 7 to 27w — 7. Since
gn — q in L}, there exists No € N such that for all N > Ny we have gy (t) < 7 for all
t <a—1and gy(t) > 2w — nforall t > b + 1. Then, using the exponential estimate

given by Lemma[5.3] we have
a—1 +00 4 2 a—1 +00 4 2
- ~ un “n
Vign) +f Vgn) = —, / Vi) +/ Vig) = —.
/—oo bt1 Ja o0 b+1 Ja

Let us consider the case t > b + 1 (the other cases being simpler). In view of the previous
inequalities and by the choice of  we have, for all N > Nj,

1 ! 05 - - ) .
—'/ [—(le, »n)Vgn) — — O, yz)V(q)} sinw; (t — s)ds
Wi |J_oo| 0Yi dyi

t

1 a-l 1
s—wwg/ W@M+WM+—WWw/[W%HW@H
i wj b+1

—0o0
1 b+1
iy
Wi Ja—1
1 8[’“72 1 b+1
—wwm——+—/
w; Ja o o Jao

e N 1 /-b+l
2 Wi Ja—1

s . . 98
— N, 2V (@GN) — — 1. y2)V(g) | ds
dyi dyi

aé

. . 98
— N, 2n)Vgn) — — (O, yz)V(q)‘ ds
ay; dyi

IA

A

s . . 98
— N, 2V @Gn) — — 1, y2)V(g)| ds.
ay; 9y
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Since gy — ¢ and y;y — y; in L®®(a — 1, b + 1), using the dominated convergence
theorem we find that

b+1
I
Thus, there exists Ni > Ny such that for all N > N we have
1 b+1
ol
and the claim is proved.
Using (2.3) and (5:8) we deduce for all € [—27/w;, 47 /w;] the estimate

s . . 98
— N, 20V @GN) — — 1, y2)V(q)
ay; ayi

ds >0 asN — oo.

- - - 06
— N, 2NV (@Gn) — —

99 1, y) V( )‘d foi=1.2
1,)’2 q s < =, L=1,24,
ayi ayi 2

|R;— cos(wit + fi—) — Ajn cos(wit + w;Tn + (in)|

1 [t 36 . ~
yi(t) — —_/ — O, y2)V(g) sinwi(t —s)ds — yin (1)

w; J_oo 0V
1 [ a5 o
+— — 1N, Y2n)V(gn) sinw; (t — s) ds
Wi J_ty dyi
1| 98 ,
< — — O, y2)V(g) sinw; (t —s)ds
wj —00 8 i

38
—/ — N, Y2n)V(gn) sinw; (t — s)ds| + |yi(t) — Yin ()]

—TN 8)’1
<e+lyi@) = yin@®l.

Since yjy — y; in Lﬁfc, there exists N» > Nj such that for all N > N, we have

(5.10) |Ri_cos(wit + fi—) — Ajn cos(wit + witn + win)| < 2¢
Vi € [27/w;, 47 [ w;],

and, arguing in the same way, we also have

(5.11)  |Riy cos(wit + fit) — Ain cos(wit + w; Ty + in — @in)| < 2¢
Vi € [=27jwi, 47 i)

Rewriting (3.10) for 7 = s — ¢;n/w; we have, forall N > N,

|R;— cos(w;s+ fi— —@in) — Ain cos(wis +wi Ty +uin —@in)| < 2¢ Vs € [0, 21/ w;].
Putting together this estimate and (3.11)) we obtain, for all N > Ny,

(5.12) |Ri_cos(w;s + fi— — ¢in) — Ritcos(w;s + fi+)| <4e Vs €[0,27/w;].
Therefore, recalling that ¢y = ¢ for all N, becomes

|R1— cos(w1s + fi— — ¢1) — Ry cos(wis + fip)l <4de Vs €[0,2n/wi] VN = No;
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since ¢ was arbitrarily chosen, this immediately implies that
Ri_ =R+ and fi+ = fi— —¢1 mod 2.
Moreover, since goy — @2, there exists N3 > N; such that for all N > N3 we have
|R2— cos(was + fo— — ¢2) — Roy cos(was + fo4)]
< |Ra— cos(wzs + fo— — ¢2) — Ra— cos(wzs + fa— — ¢an)l

+ |Rz— cos(wzs + fo— — @an) — Roy cos(wzs + foy)l
<e+4+4e Vs el0,2n/wi]VN > N3;

since ¢ was arbitrarily chosen, this implies that

Rr_ =Ry and for = fo— — @2 mod 27. O

6. PROOF OF THEOREM[L.14]

In this section we will use the notation already introduced (see (I.13)), (Z.10)) and we will
consider a sequence Ty satisfying (2.9).

Let us define
_ Ty ¢
FN={61€FN:/ V(q)f—};
0 K

we recall that for all N, ¢(Tn) < ¢ := 272 + (1 + 8[|V |l o-

REMARK 6.1. By Lemma[2.11] if, fori = 1, 2, y; is a solution of

. 5 35
Vit wiyi = —O1,y2)V(g),
dy;
¥i(0) — yi(Ty) = yi(0) — yi(Tn) =0,
with ¢ € Iy, then

cN _
1yilloe < —1V8llooK, i=1,2,
(6.2) ch
10; ()| < w—invaniokz, i=1,2
1

Also Proposition[3.7)implies that any critical point (yin, y2n, gn) of the functional fr,, at
level ¢(Ty) is such that gy € I'y, and thus estimates (6.2) hold for y; and ysn.

LEMMA 6.3. Let (yin, Y2n, gn) be a critical point at level c(Ty) as in Proposition
Then

3 _/cN N
< 5||ws||%,ol<2(—1 + —2).

Tn
e(Ty) — f [G% /2 + (1 +8(0,0)V (gn)]
0 w1 )




126 V. COTI ZELATI - M. MACRI

PROOF. In view of Remark [6.1] the estimates (6.2) hold and we have

Tn
e(Ty) — fo [G3/2+ (14 8(0,0)V(gn)]

1 1 Ty
= 'EQI()’IN) + EQz(yzzv) +/0 8w, yan) — 8(0,0)1V (gn)

1 1 Ty
< §|Q1(Y1N)| + §|Q2()’2N)| + IVillooUlyinlloo + ||)’21v||oo)/0 Vign)

1 _(cN ¢V _(cN ¥
—|IV8|I2 K L + == V8|2 K —- + =2
5 1Vélc (wl + - + IV315 o + -

IA

3 _/cN N
= Z|VS|Z K3 —L + =2 ). O
2|| 5 (wl +w2

Let us define yo(7Ty) and gon such that
(6.4)

T~ Tn
70(Ty) = min /O [G%/2 + (14 8(0,0)V(g)] = /0 [Gay/2 + (14 8(0,0)V (gon)]-

Arguing as in Lemma 3.6]it is easy to show that
Yo(Ty) < 27% 4+ (1 +8(0,0)[[ Voo < C.
LEMMA 6.5. If (y1,y2) € E x E is such that
144(0,0)

—1 = 11 27
Vélloovo(Tn)

lyilloo =V

then ’
N
fo [y /2+ (14801, ¥V (@ow)] = w(Ty) +2V;
moreover, if also |Q; (y;)| <2V, i = 1,2, then

[ f (31, ¥2, gon)| < vo(Ty) +4V.
PROOF. We have

Tn
/0 2 /2 + (1 + 801, y2)V (qow)]
Ty
— (Ty) + /O [5(y1. y2) — 5(0, )1V (gow)

TN
< (IN) + IVélloollyilleo + IIY2|Ioo)fO V(qon)-

Then, by definition of yy(7x) and using the assumptions we obtain

14+8(0,0) yo(Tn)
yo(In) 1446(0,0)

In
/0 [62/2 + (1 + 501, y2)V (dow)] < 10(Tw) +2V

=y (Tn) +2V,
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and the first inequality is proved. Next

1 1 Ty
[f (1, ¥2, gon)| < §|Q1(y1)| + §|Q2(y2)| +/O [dan/2 + (1 +8(y1, y2))V(gon)]

<2V 4+ n(TN) +2V = p(In) +4V,
and the second inequality is also proved. a

LEMMA 6.6. There exists x > 0 such that

max {

forall (y1, y2,q) € E x E x I satisfying

af af
—OLYLP| |01 y2.9) > X
dy1 oo l10¥2 0o

| f 1, y2,9) < Cp =3¢

and at least one of the following four inequalities:

2cy _ 2cy _
Iyilloo > ——IIVélloK, Q1D > ——(IVillecK)*,
6.7) @1 @1

2cy . 2cy _
¥2Ml0 = —=IVéllooK, [Q2(y2)| = —=([IVillcK)".
[0)) (2]
PROOF. By contradiction, assume that there exists (y1,, Y21, qn) € E X E X r satisfying

of .
|f(y]}17 y2n, CIn)| S Cla g(ylna y2l‘l5 5]11) - O for alll = 17 29
12

and at least one of the inequalities in (6.7). By Proposition[3.3] up to a subsequence, yi, —
yiin E, g, = g in L®, (y1, y2, q) is a solution of (2.7) and satisfies at least one of the
inequalities in (6.7). Moreover, ¢ € 'y, since V(g,) — V(g) almost everywhere and by
the Fatou lemma

T T
/ V(q) §liminf/ Vgn) < K.
0 n—+00 Jg
Thus we get a contradiction with Remark [6.1] O

LEMMA 6.8. Assume

Cy - — %
VS|l K max{l, |V8|ouK} < —, i=1,2.
w; 2K

1

Then for N large enough,

Y (Ty) — 3V < c(Tn) < yo(Tn) + 8V.
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PROOF. Let (y1n, Y25, gn) be a critical point at level ¢(7Ty). By Lemma @ and by
definition of yo(Ty) we have

v 3y oy 2 52
C(TN)Z/ [C]N/2+(1+8(010))V(C]N)]—§ — + = |IVél5. K
0 w1 w?
3/cN N _
(—1+—2)||va||§01<2.

> y(Tn) — o T o

Since C) = C,, and C5' — C,,, for N large we have
c(Tn) = yo(Tn) — 3V.

In order to prove the other inequality we will construct an admissible path 7 =
(h1, ha, gon) € 'H along which the value of the functional f is less than yo(Ty) + 8V.
To show the existence of such functions %1, hy we will deform, using a suitable pseudo-
gradient vector field, the identity map Id: E| x E; — E| x E; .

Letg: R — [0, 1]and ¢ : [0, +00) — [0, 1] be defined by

0, s <0,
B << (nTy) +4V)2,
vo(Tn) + 4V - =
v =01, (o(T) +4V)/2 <5 < Cy = 3¢,
Ci+1-—s, Ci<s=C+1,
0, s>C;+1,
0, 0<s<l,
Y)=q1s—1, 1<s<2,
1, s> 2,

and define the vector field v: E x E — E x E by

@1 [1y1lloo 2 1y2ll0o 11Q1(y)|
T e e P e T
’ CV|IVS|lsK CYIIVS|lsK CclV|IVs|2 K2

1/f< 2| Q2(y2)| )]‘P(f()myz,QON))%(m,yz,fION)
CYIVsIZK? I F SIS e ]

Since v is a bounded locally Lipschitz function of (y, ¥2), the Cauchy problem

dn

d—(s, y1, ¥2) = v(n(s, y1, y2)),
S

n@, y1, y2) = (1, ¥2),

has a unique solution for every (y1, y2) € E x E, defined on [0, 4+-00).
We claim that, setting 73 = (C1 — yo(Twn))(1 + )/ x2 (x given by Lemma , we
have
f (3, y1, y2), 12(73, ¥1, ¥2), qon) < yo(Tn) + 8V
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for all (yi, y2) such that f(y1, ¥2, gon) < Cy. First of all,

d
d—];(m(s, Y1, ¥2), 1208, ¥1, ¥2), qon)
0 dn d dn
= —f(m,nz,qozv), — (s, ¥1,y2) ) + —f(m, n2,qoNn), —— (5, Y1, ¥2)
ay1 ds dy2 ds
Edk | 2L
9y ay2

i e

=-W+v+y+vle

and hence f(n(s, y1, y2), gon) is a nonincreasing function of s and the claim follows for

all (y1, y2) such that f(y1, 2. qon) < yon + 8V.
Take now any (y1, y2) € E x E such that

v(Ty) +8V < f(y1, y2,90n) < C1.
Assume, by contradiction, that
s, y1,¥2), m2(s, y1, ¥2), gon) > yo(Tn) +8V, Vs € [0, 73].

Fix s € [0, i3] If [[0i (s, Y1, y2) oo = (2C} /)| V8|loc K fori = 1 or 2 then by Lemma
[6.6l we have

af
v (M1, 12, qoN) > x
y2 00

max N

af
B—(m, 12, qoN)
Y1

and, by definition of ¥,

;i |Imi (s, ¥1, y2) lloo
4 N = =1
CM IVilleoK

Otherwise ||7; (s, y1, ¥2) oo < (2Cl.N/a),-)||V8||ooI€ fori = 1, 2. Using the assumption and
the definition of K, we obtain, fori = 1,2 and N sufficiently large,

2cy _ 1 Voo

Mille < —= V8|12, K> _ < = _
w; IVSllK K IV8llcoK
V 1 1+6—-«a %

(1+44(0,0)),

<= - <
¢ [Vélloo c Yo(Tn) [IVélloo

so that the first conclusion of Lemma [6.5]holds for (11 (s, y1, 2), n2(s, y1, y2)). Then if

2cy 2 B2
Q11 (s, y1. y2))| < w—]IIVrSIIOOK

(the same argument applies if |Q2(na(s, y1, )| < (RCY/w2) V8|2, K?), for N
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sufficiently large we have
1
EQz(nz(S, y1, ¥2)) = f(n1(s, y1, y2), n2(s, ¥1, ¥2), QoN)
1 r .,
—EQl(m(s,yl,yz))—/O [gon /2 + (1 4+ (1. n2))V (gon)]

cN _
> yo(Ty) + 8V — w—lluvanioK2 —0(Ty) =2V

cN _ % cy _
=6V — —L V8|3 K2 =6V — — =5V >5-2|V§|2 K2,
w1 2K w2
that is,
cy _
02(n2(s. y1,y2)) = 1ow—2‘2||va||?,01<2,
so that by Lemma[6.6] we have
af af
max{ —— (1, 12, qon) ,H—(m,nz,CION) }Z X
ay1 oo l19¥2 00

and, by definition of ¥,

I/f(wlez(ﬁz(S, Y1, yz))l) _1
cMIvs|2 K2

Therefore we always have

max {
and

1//<w1 71 (s, y1, y2)||oo) L I/I<w2||772(s, yi, y2)||oo)
CN V8K CY V8K

+w<w1|Q1(n1(S,Y1,)’2))I)+ (wlez(nz(s,w,yz))l) .-
CN|Vs|2 K2 cNIvs)2, K2 -

af
—— (11, 12, qon) > X
ay2 .

|

af
—— (1, 12, qon)
ay1

We also have, for all s € [0, 3],

o(f(m(s, y1, ¥2), 12(s, y1, ¥2), qon)) = 1.
Then

Ci —yo(Tn) =8V > f(y1, y2, qon) — f (1 (73, y1, ¥2), n2(73, y1, ¥2), qon)

:—/ d—(?’]](s, y],y2)5 7)2(5', y1,y2)yQON)dS
0 N
2
I+ x

a contradiction which proves the claim.

> 73 =C1 — yo(Tn),
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We now define
h: Ef xE; > ExXExT,

(6.9)
1, ¥2) = h(y1, y2) = 01 (T3, y1, ¥2), 12(73, Y1, ¥2)» GoN)-

There exists L large such that

FO1,y2,90n8) <0 VY1, y)ll = L,

and hence, by definition of (11, 12),

h(y1, y2) = 1, ¥2, 9on) VI, y2)Il = L,

which shows that # € H. Finally, since f(y1, y2, qon) < Cy forall (y1, y2) € E| X E,,
we have

(6.10) Fr(y1,y2)) < vo(Tn) + 8V Y(yi, ) € E[ x E;,

and
c(Ty) < yo(Ty) + 8V. O

LEMMA 6.11. Let (yin, Y2n,9qN) € E X E X T be a critical point at level c¢(Ty) and
assume

Co > Y
#||V5||meax{1, [VilleoK} < Y i=1,2.

wj

Then, for N large, there exists n1 < no such that for all 0 < n < n1, there exist 0 < rlN <
er < Ty such that

0<gn(® =7 Vi € [0, 7)"],

gy € 2m—n]  Vrelr), 4],

2 —n<gn(t) <27 Vteln, Tyl
PROOF. In the proof we will omit the superscripts and subscripts N for brevity. Let n <
N1, let 7y = inf{s € [0, T] | g(s) > n} and 1o = sup{s € [0, T] | g(s) < 2w — n}. If the

lemma does not hold, then arguing as in Lemma we deduce that there is rl’ € (n1, T]
such that ¢(t{) = n and

T _ [1+46(0,0)
(6.12) / [4%/2 4 (1 +8(0,0)V(g)] = 2i] — Vi
T
Now we define a new function § € I by setting
0, 0<r<rt -1,

gty =nt —nr{+n, 1 —-1=<t=<r1],
q(), 1 <t=<T.
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In view of Remark@ we have, for N sufficiently large,

1Q( )+1Q( ) > ! C1N+C5V IVSIZ K> > =V
— — —_—— | — _— > — .
2 1 2 2020 = 2\ w w) e

and

T T
/0[S(yl,m—a(o,oan)z—||va||oo<||y1||oo+||y2||oo)f0 V()

cN oV .
> —(—1 + —2>||v5||§01<2 > —2V.
w1 w?
Then, by the previous two estimates, we have

1 1 T
(6.13) (T) = 5Q1(y1)+§Qz(yz)+/0 [G%/2 + (14 8(y1, 2)) V()]
T T
> —V+f0 [6%/2 + (1 +8(0, 0))V(c1)]+/0 [8(y1, y2) — 8(0, )1V (gq)

T
> / [62/2 4 (1 4+ 8(0,0)V(q)] — 3V.
0

By (6.12) and by definition of V (see (I.13))), we have

T
(6.14) /0 [47/2 + (14 5(0,0))V(g)]

1468(0,0 r.
> 2ﬁ,/¥vm + / [47/2+ (1480, 0)V(9)]

— 24V + /OT[52/2+ (1+500,0) V(@] - f 147724 (1 +50.0)V(@)]
-
> 24V + y(T) — n*/2 — (14 8(0, 0) V()
> 24V + (1) — n°[1/2 4 (1 + 8(0, 0))].
Then, putting together (6.13) and (6.14) and using Lemma 6.8 we obtain
e(T) > =3V + 24V 4+ y(T) — n°[1/2 + (1 4 8(0, 0))]
> —3V 424V + ¢(T) — 8V — n*[1/2 + (1 + 8(0, 0))]
=13V — *[1/2 4 (1 4 8(0, 0)] + (T)

146(0,0
O R 2 1+ 50,001 4 (),

Therefore, since n < 7, choosing 1 small enough, we get the contradiction ¢(7) >
c(T). O

PROOF OF THEOREM Let (y1n, yan. gn) € E x E x I' be a critical point at level
c(Ty). For 0 < n < ny, let th and ‘L'2N be given by Lemma Then, we can repeat
the same arguments of Lemma [5.3] Proposition [5.6| and Proposition and the theorem
is proved. O
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