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Ordinary differential equations. — Homoclinic solutions to invariant tori in a center
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ABSTRACT. — We consider the Lagrangian

L(y1, ẏ1, y2, ẏ2, q, q̇) =
1
2
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2
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2
1 )+
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(ẏ2

2 − ω
2
2y

2
2 )+

1
2
q̇2
+ (1+ δ(y1, y2))V (q),

where V is non-negative, periodic in q and such that V (0) = V ′(0) = 0. We prove, using critical point theory,
the existence of infinitely many solutions of the corresponding Euler–Lagrange equations which are asymptotic,
as t → ±∞, to invariant tori in the center manifold of the origin, that is, to solutions of the form q(t) = 0,
y1(t) = R cos(ω1t + ϕ1), y2(t) = R cos(ω2t + ϕ2).
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1. INTRODUCTION

The study of solutions asymptotic to invariant manifolds is important in order to understand
the global dynamics of Hamiltonian systems. It is well known that they can indicate the
existence of a complicated—even chaotic—behavior for the system under consideration.

Global variational methods have been employed by many authors to prove existence
of solutions homoclinic or heteroclinic to hyperbolic stationary points (see [7, 9, 18, 21]),
and to prove chaotic behavior for time-dependent systems (always having a hyperbolic
stationary point); see [20] and [12]. The same kind of techniques have also been employed
to study existence of solutions asymptotic to periodic orbits and to more general invariant
manifolds having some kind of minimizing property (see [19, 8]).

More recently Patrick Bernard [1, 2] has considered a class of Hamiltonian systems
having a saddle-center stationary point and has proved existence of solutions homoclinic to
periodic orbits in the (global) center manifold. Motivated by such papers we have further
investigated the situation in [10, 11]. All these papers consider autonomous Lagrangian
systems of the form

L(x, ẋ, q, q̇) =
1
2
(ẋ2
− ω2x2)+

1
2
q̇2
+ V (x, q),

where x ∈ R, q ∈ T, V (x, q) ≥ V (x, 0) = 0 for all x, q (actually, Bernard considers more
general Hamiltonian systems, and his results apply also to q ∈ Tk). In this case the center
manifold of the stationary point is 2-dimensional and is foliated by periodic solutions.
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In this paper we extend some of the above results to cover a class of Lagrangian systems
having a 4-dimensional center manifold by considering Lagrangians of the form

L(y1, ẏ1, y2, ẏ2, q, q̇) =
1
2
(ẏ2

1 − ω
2
1y

2
1)+

1
2
(ẏ2

2 − ω
2
2y

2
2)+

1
2
q̇2
+ (1+ δ(y1, y2))V (q)

with y1, y2 ∈ R, q ∈ T = R/[0, 2π ]. We look for solutions of the corresponding Euler–
Lagrange equations

(1.1)



q̈ = (1+ δ(y1, y2))V
′(q),

ÿ1 + ω
2
1y1 =

∂

∂y1
δ(y1, y2)V (q),

ÿ2 + ω
2
2y2 =

∂

∂y2
δ(y1, y2)V (q).

Note that the Lagrangian is autonomous and hence the total energy
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1 + ω
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1)+
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(ẏ2

2 + ω
2
2y

2
2)+

1
2
q̇2
− (1+ δ(y1, y2))V (q) = E

is conserved along any solution.
Since we are assuming that V has a strict global minimum at q = 0 and it is periodic

in q ∈ R, such a system admits, for all R1, R2 ≥ 0 and ϕ1, ϕ2 ∈ R, the solutions
q(t) ≡ 0,
y1(t) = R1 cos(ω1t + ϕ1),

y2(t) = R2 cos(ω2t + ϕ2),

having total energy E = (ω2
1R

2
1 + ω

2
2R

2
2)/2. The set

TR1,R2 = {(y1 = R1 cos(ϕ1), ẏ1 = −ω1R1 sin(ϕ1),

y2 = R2 cos(ϕ2), ẏ2 = −ω2R2 sin(ϕ2), q = 0, q̇ = 0) | (ϕ1, ϕ2) ∈ T2
}

is an invariant torus for the system (1.1).
We look for solutions asymptotic to such tori, that is, solutions y1(t), y2(t), q(t) such

that

lim
t→+∞

dist((y(t), ẏ(t), q(t), q̇(t)), TR1+,R2+) = 0,

lim
t→−∞

dist((y(t), ẏ(t), q(t), q̇(t)), TR1−,R2−) = 0.

By energy conservation,

(1.2) E = ω2
1R

2
1+ + ω

2
2R

2
2+ = ω

2
1R

2
1− + ω

2
2R

2
2−.

This kind of problem has been studied using perturbative methods by many authors
mainly in the case of a 2-dimensional center manifold (see [16, 17, 15, 13], and the more
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recent [4, 5, 23, 22, 14, 6]). In these papers it is proved that there exist many solutions
homoclinic to invariant tori of energy E > 0 and “not too small” (one does not expect to
find solutions homoclinic to the stationary point P0 = (y1 = 0, ẏ1 = 0, y2 = 0, ẏ2 =

0, q = 0, q̇ = 0), which has one-dimensional stable and unstable manifold).
In this paper we obtain existence of infinitely many solutions, homoclinic to the

invariant tori, under different kinds of assumptions on δ and ωi .
We remark that the condition that a solution is asymptotic to TR1±,R2± as t →±∞ can

also be formulated by saying that (y1(t), y2(t), q(t)) is a solution of (1.1) which satisfies,
for some f1±, f2± ∈ [0, 2π) and k ∈ Z \ {0},

lim
t→±∞

|y1(t)− R1± cos(ω1t + f1±)| = 0,

lim
t→±∞

|y2(t)− R2± cos(ω2t + f2±)| = 0,

lim
t→−∞

q(t) = 0, lim
t→+∞

q(t) = 2kπ.

(1.3)

Throughout this paper, we will assume that V and δ ∈ C2(R) are such that

(V1) V (q + 2π) = V (q) for all q ∈ R;
(V2) 0 = V (0) < V (q) for all q ∈ R \ 2πZ;
(V3) V ′′(0) = µ > 0;
(V4) V ′(q)q > 0 for all q ∈ [−η̄, η̄], q 6= 0;

(δ1) −1 < δ ≤ δ(y1, y2) ≤ δ̄ for all (y1, y2) ∈ R2;
(δ2) ‖∇δ(y1, y2)‖ ≤ C for all (y1, y2) ∈ R2 and for some positive constant C;
(δ3) |〈∇δ(y1, y2), (y1, y2)〉| ≤ 2α for all (y1, y2) ∈ R2 where 1+ δ − α > 0.

We will often use the notation

(1.4) Vη = min{V (s) : s ∈ [η, 2π − η]} > 0, η > 0.

REMARK 1.5. Let us point out, for future reference, that (V3) implies that there is an
η0 ∈ (0, η̄/2) such that

(1.6) µ/2 ≤ V ′′(q) ≤ 2µ for all |q| ≤ η0.

REMARK 1.7. The above assumptions on V and δ are satisfied, for example, if

(1.8) V (q) = 1− cos q, δ(y1, y2) = δ∞ arctan λ2(y1 + y2)

provided 0 < δ∞ < 4/(2π + λ2).

REMARK 1.9. If δ(y1, y2) ≡ δ0 is a constant, then under assumptions (V1)–(V2) there is
a solution q0(t) of q̈ = (1+δ0)V

′(q) homoclinic to 0 (see, for example, [7, 18]) and hence
(R1 cos(ω1t+f1), R2 cos(ω2t+f2), q0(t)) is a solution of our problem for all R1, R2 ≥ 0,
f1, f2 ∈ [0, 2π).

A first result is the existence of at least one solution asymptotic to an invariant torus
TR1−,R2− as t →−∞ and to TR1+,R2+ as t →+∞.
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THEOREM 1.10. Assume V and δ satisfy (V1)–(V4), (δ1)–(δ3) and

(δ4) δ̄ + 2(α − δ) < 1.

Then there is a solution of the system (1.1) satisfying (1.3) with k = 1 for someR1±, R2± ∈

[0,+∞) satisfying (1.2), and for some f1±, f2± ∈ [0, 2π ].

Note that we cannot prescribe, in the above theorem, the tori to which the solution we
find is asymptotic, and not even its energy. We also observe that the above system should
have a lot of solutions like the one we find.

In the next two theorems, we give, under different additional assumptions, a more
precise result: the existence of infinitely many homoclinic solutions, that is, of solutions
asymptotic as time goes to±∞ to the same torus TR1,R2 (different solutions will in general
be homoclinic to different tori). The different solutions are characterized, as in [10], by
different “phase shifts” between t = −∞ and t = +∞ (ϕi in the statement of the
theorem).

THEOREM 1.11. Assume V and δ satisfy (V1)–(V4), (δ1)–(δ3) and

(δ4′) δ̄ − δ + α ≤
η̄(1+ δ − α)3/2

2π2 + (1+ δ)‖V ‖∞

√
Vη̄/2

2

Assume moreover that

(E) system (1.1) has no zero energy solutions satisfying limt→−∞ q(t) = 0 and
limt→+∞ q(t) = 2π .

Then for any ϕ1 ∈ (0, 2π) and

(ω1) any ϕ2 ∈ (0, 2π) if ω2/ω1 /∈ Q,
(ω2) ϕ2 = jϕ1 if ω2/ω1 = j ∈ Q,

there exist R1 and R2 and a solution (y1(t), y2(t), q(t)) of (1.1), satisfying (1.3) with
k = 1, R1± = R1, R2± = R2, ω2

1R
2
1+ω

2
2R

2
2 > 0, ϕi ≡ fi−−fi+ mod 2π . Furthermore,

q(t) ∈ [0, 2π ] for all t .

REMARK 1.12. Assumption (δ4′) has already been used in [10] and it is satisfied if V
and δ are of the form (1.8) with δ∞ < 0.02 and λ = 1. We also remark that (δ4′) implies
(δ4).

Assumption (E) is used in order to prove the existence of infinitely many solutions. If
it is violated, we obtain a solution homoclinic to the stationary point P0 = (y1 = 0, ẏ1 =

0, y2 = 0, ẏ2 = 0, q = 0, q̇ = 0). As already remarked above, this should not be the case
in general (see [3]).

The next theorem shows the same result under a different set of assumptions. In order
to state this result, let us introduce the notation

c̄ = 2π2
+ (1+ δ̄)‖V ‖∞, K = 1+ δ − α, K̄ = max{c̄/K, c̄} > 1,

V =
η̄

12

√
1+ δ(0, 0)

2
Vη̄/2, Cϕi = 2+

∣∣∣∣cot
ϕi

2

∣∣∣∣(1.13)
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THEOREM 1.14. Assume V and δ satisfy (V1)–(V4), (δ1)–(δ3), (E). Fix any ϕ1 ∈ (0, 2π)
and ϕ2 as in (ω1)–(ω2) and assume that

(1.15) Cϕi
‖∇δ‖∞K̄

ωi
max{1, ‖∇δ‖∞K̄} <

V
2K̄

∀i = 1, 2.

Then there exist R1 and R2 and a solution (y1(t), y2(t), q(t)) of (1.1) satisfying (1.3) with
k = 1, R1± = R1, R2± = R2, ω2

1R
2
1+ω

2
2R

2
2 > 0, ϕi ≡ fi−−fi+ mod 2π . Furthermore,

q(t) ∈ [0, 2π ] for all t .

REMARK 1.16. The above theorem states that one can find homoclinic solutions for all
“phase shifts” uniformly far from 0 and 2π (so that Cϕi is uniformly bounded) provided
ωi are large enough or δ is small enough.

Solutions of our problem will be found using variational methods as limits as T →
+∞ of solutions of the following boundary value problem:

(PT)



q̈ = (1+ δ(y1, y2))V
′(q),

ÿ1 + ω
2
1y1 =

∂

∂y1
δ(y1, y2)V (q),

ÿ2 + ω
2
2y2 =

∂

∂y2
δ(y1, y2)V (q),

q(0) = 0, q(T ) = 2π,
y1(0) = y1(T ), ẏ1(0) = ẏ1(T ),

y2(0) = y2(T ), ẏ2(0) = ẏ2(T ).

Existence of a solution for this boundary value problem will be proved using critical
point theory, in particular a min-max procedure similar to the one introduced by Bernard
in [2] and then used in [10, 11]. Some of the proofs in Sections 2 and 3 are closely related
to those of [10, 11].

2. PRELIMINARIES

We first remark that the limit conditions

lim
t→−∞

|yi(t)− Ri− cos(ωi t + fi−)| = 0,

lim
t→+∞

|yi(t)− Ri+ cos(ωi t + fi+)| = 0
(2.1)

for i = 1, 2 are satisfied by all solutions of

(2.2) ÿi + ω
2
i yi =

∂δ

∂yi
(y1, y2)V (q)

such that
∫
R V (q(t)) dt < +∞. Indeed, all solutions of (2.2) can be expressed, for suitable

Ri±, fi±, i = 1, 2, as

(2.3) yi(t) =
1
ωi

∫ t

−∞

∂δ

∂yi
(y1, y2)V (q) sinωi(t − s) ds + Ri− cos(ωi t + fi−)
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or

(2.4) yi(t) = −
1
ωi

∫
∞

t

∂δ

∂yi
(y1, y2)V (q) sinωi(t − s) ds + Ri+ cos(ωi t + fi+),

and passing to the limit as t →±∞ in these expressions we obtain (2.1).
Now we give some preliminary estimates on the solutions of the boundary value

problem (PT). In the following we will often use the notation

(2.5) Qi(y) =

∫ T

0
(ẏ2
− ω2

i y
2) ds.

LEMMA 2.6. Assume that T 6= 2πN/ωi for all N and i = 1, 2 and that yi is a solution
of

(2.7)

ÿi + ω
2
i yi =

∂

∂yi
δ(y1, y2)V (q),

yi(0)− yi(T ) = ẏi(0)− ẏi(T ) = 0.

Then for i = 1, 2,

‖yi‖∞ ≤
1
ωi

(
2+

∣∣∣∣cot
ωiT

2

∣∣∣∣)‖∇δ‖∞ ∫ T

0
V (q(t)) dt,

‖ẏi‖∞ ≤

(
2+

∣∣∣∣cot
ωiT

2

∣∣∣∣)‖∇δ‖∞ ∫ T

0
V (q(t)) dt,

|Qi(yi)| ≤
1
ωi

(
2+

∣∣∣∣cot
ωiT

2

∣∣∣∣)‖∇δ‖2∞ (∫ T

0
V (q(t)) dt

)2

,∣∣∣∣12Q1(y1)+
1
2
Q2(y2)

∣∣∣∣ ≤ α ∫ T

0
V (q(t)) dt.

PROOF. An easy calculation shows that for all T 6= 2πN/ωi the solution of (2.7) is given
by

yi(t) =
1
ωi

∫ t

0

∂

∂yi
δ(y1, y2)V (q) sinωi(t − s) ds

+

(
Hi

2
+
Li

2
cot

ωiT

2

)
cosωi t +

(
Li

2
−
Hi

2
cot

ωiT

2

)
sinωi t

where

Hi =
1
ωi

∫ T

0

∂

∂yi
δ(y1, y2)V (q) sinωi(T − s) ds,

Li =
1
ωi

∫ T

0

∂

∂yi
δ(y1, y2)V (q) cosωi(T − s) ds.
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We first observe that

|Hi | ≤
1
ωi
‖∇δ‖∞

∫ T

0
V (q), |Li | ≤

1
ωi
‖∇δ‖∞

∫ T

0
V (q).

Then we have the following estimates:

‖yi‖∞ ≤
1
ωi
‖∇δ‖∞

∫ t

0
V (q)+

∣∣∣∣Hi2

∣∣∣∣+ ∣∣∣∣Li2
∣∣∣∣+ (∣∣∣∣Li2

∣∣∣∣+ ∣∣∣∣Hi2

∣∣∣∣)∣∣∣∣cot
ωiT

2

∣∣∣∣
≤

1
ωi
‖∇δ‖∞

∫ T

0
V (q)+

(
1+

∣∣∣∣cot
ωiT

2

∣∣∣∣) 1
ωi
‖∇δ‖∞

∫ T

0
V (q)

=

(
2+

∣∣∣∣cot
ωiT

2

∣∣∣∣) 1
ωi
‖∇δ‖∞

∫ T

0
V (q).

Similarly we can estimate ‖ẏi‖∞. Finally, an integration by parts shows that

Qi(yi) =

∫ T

0
−
∂

∂yi
δ(y1, y2)yi(t)V (q(t)) dt for all i = 1, 2,

so that ∣∣∣∣∫ T

0
(ẏ2
i − ω

2
i y

2
i ) dt

∣∣∣∣ ≤ ‖yi‖∞ ∫ T

0

∣∣∣∣ ∂∂yi δ(y1, y2)

∣∣∣∣V (q(t)) dt
≤

1
ωi

(
2+

∣∣∣∣cot
ωiT

2

∣∣∣∣)‖∇δ‖2∞(∫ T

0
V (q(t)) dt

)2

,

and ∣∣∣∣12Q1(y1)+
1
2
Q2(y2)

∣∣∣∣ = ∣∣∣∣∫ T

0
−

1
2
〈∇δ(y1, y2), (y1, y2)〉V (q(t)) dt

∣∣∣∣
≤ α

∫ T

0
V (q(t)) dt. 2

Let us remark that Lemma 2.6 requires the condition T 6= 2πN/ωi for i = 1, 2. The
following lemma shows that there exists a sequence TN → +∞ such that ωiTN /∈ 2πN
for i = 1, 2.

LEMMA 2.8. Fix ϕ1, ϕ2 ∈ (0, 2π) and assume ω2/ω1 ≤ 1 (otherwise exchange ω1 with
ω2). Then, choosing TN = (2πN + ϕ1)/ω1, we have ω1TN mod 2π = ϕ1 for all N ∈ N.
Moreover, we can extract a subsequence TNk such that

ω2TNk mod 2π → ϕ2 as k→+∞ if ω2/ω1 /∈ Q,
ω2TNk mod 2π = (ω2/ω1)ϕ1 for all k if ω2/ω1 ∈ Q.

PROOF. If ω2/ω1 /∈ Q, then the set {ω2TN mod 2π}N∈N is dense in (0, 2π). Therefore,
for any fixed ϕ2 ∈ (0, 2π), there is a sequence {Nk}k∈N such that ω2TNk = 2πlk + ϕ2k
with lk ∈ N and ϕ2k ∈ (ϕ2 − 1/k, ϕ2 + 1/k), so that ω2TNk mod 2π → ϕ2 as k→+∞.
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Let ω2/ω1 ∈ Q. If ω2/ω1 = 1 the statement is trivial. Otherwise we can assume
ω2 = (n/m)ω1 with n,m ∈ N coprime and m > n. Then, setting Nk = km for all k,
we have ω2TNk = (n/m)(2πkm + ϕ1) = 2πnk + (n/m)ϕ1, that is, ω2TNk mod 2π =
(n/m)ϕ1 = (ω2/ω1)ϕ1 for all k. 2

From now on we will denote by TN the subsequence as in Lemma 2.8 so that, for
ϕ1, ϕ2 chosen according to (ω1)–(ω2), we have

(2.9) ω1TN = 2πN + ϕ1, ω2TN = 2πlN + ϕ2N with ϕ2N → ϕ2,

and we will use the notation

(2.10) CNi = 2+
∣∣∣∣cot

ωiTN

2

∣∣∣∣ for i = 1, 2;

note that, for TN as in Lemma 2.8, we haveCN1 = Cϕ1 (see (1.13)) andCN2 = Cϕ2N → Cϕ2

as N →+∞.
The following lemma is a direct consequence of Lemma 2.6.

LEMMA 2.11. Let TN be as in Lemma 2.8 and let yNi be a solution of (2.7) for i = 1, 2.
Then for i = 1, 2,

‖yNi ‖∞ ≤
CNi

ωi
‖∇δ‖∞

∫ TN

0
V (q(t)) dt,

‖ẏNi ‖∞ ≤ C
N
i ‖∇δ‖∞

∫ TN

0
V (q(t)) dt,

|Qi(y
N
i )| ≤

CNi

ωi
‖∇δ‖2∞

(∫ TN

0
V (q(t)) dt

)2

,

where CN1 = Cϕ1 and CN2 = Cϕ2N → Cϕ2 as N →+∞.

REMARK 2.12. If (y1N , y2N , qN ) is a solution of (PT) in the interval [0, TN ], then yiN (t),
i = 1, 2, can be expressed, for suitable constants AiN and µiN (such that the periodic
boundary conditions are satisfied), as

(2.13) yiN (t) =
1
ωi

∫ t

0

∂δ

∂yi
(y1N , y2N )V (qN ) sinωi(t − s) ds + AiN cos(ωi t + µiN ),

or

yiN (t) = −
1
ωi

∫ TN

t

∂δ

∂yi
(y1N , y2N )V (qN ) sinωi(t − s) ds(2.14)

+AiN cos(ωi t + µiN − ϕiN ),

with ϕiN ≡ ωiTN mod 2π .
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3. VARIATIONAL SETTING AND MIN-MAX PROCEDURE

From now on we assume that TN satisfies (2.9). Let

EN = {x ∈ H
1
loc(R) | x is TN -periodic}

with scalar product (u, v) =
∫ TN

0 (u̇v̇ + uv) and

ΓN = {q ∈ H
1(0, TN ) | q(0) = 0, q(TN ) = 2π},

and let, for all (y1, y2, q) ∈ EN × EN × ΓN ,

fN (y1, y2, q) =

∫ TN

0

[
ẏ2

1 − ω
2
1y

2
1

2
+
ẏ2

2 − ω
2
2y

2
2

2
+
q̇2

2
+ (1+ δ(y1, y2))V (q)

]
.

In the following we will omit the subscript N when it is possible. It is straightforward to
show that

LEMMA 3.1. f ∈ C1(E×E×Γ ;R). If ∇f (y1, y2, q) = 0 then (y1, y2, q) solves (PT).

We recall (see for example [10]), that, for fixed N ∈ N, to the quadratic form Q1(y) on
E (see (2.5)), there is associated a splitting E = E−1 ⊕ E

+

1 , and to Q2(y) a splitting
E = E−2 ⊕ E

+

2 . More precisely, for i = 1, 2 let

E−i =

{
y(s) = ai0 +

∑
{k | 2πk<ωiTN }

(
aik cos

2πk
TN

s + bik sin
2πk
TN

s

)}
,

E+i =

{
y(s) =

∑
{k | 2πk>ωiTN }

(
aik cos

2πk
TN

s + bik sin
2πk
TN

s

)}
.

Then, for all y ∈ E and i = 1, 2, y = y+i + y
−

i , y+i ∈ E
+

i , y−i ∈ E
−

i and
∫ T

0 y+i y
−

i = 0,∫ T
0 ẏ+i ẏ

−

i = 0.
Note also that for suitable positive constants λ±i (TN ) and i = 1, 2,

−Qi(y) ≥ λ
−

i (TN )‖y‖
2 for all y ∈ E−i ,

Qi(y) ≥ λ
+

i (TN )‖y‖
2 for all y ∈ E+i .

(3.2)

PROPOSITION 3.3. Assume (y1n, y2n, qn) ∈ E × E × Γ are such that

f (y1n, y2n, qn)→ c,
∂f

∂yi
(y1n, y2n, qn)→ 0, i = 1, 2.

Then (y1n, y2n, qn) is bounded in E × E × Γ and, up to a subsequence, yin → yi0 in E
for i = 1, 2, qn → q0 in L∞, qn ⇀ q0 in H 1. Moreover, (y10, y20, q0) is a solution of
(2.7) for i = 1, 2.

Furthermore, if ∇f (y1n, y2n, qn) → 0, then, up to a subsequence, (y1n, y2n, qn) →

(y10, y20, q0) and f satisfies the PS condition.
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PROOF. Using (3.2), as in [10] we have the estimate

εn‖y
−

1n‖H 1 ≥

∣∣∣∣〈 ∂f∂y1
(y1n, y2n, qn), y

−

1n

〉∣∣∣∣
≥ |Q1(y

−

1n)| − ‖∇δ‖∞‖y
−

1n‖L2

(∫ T

0
V (qn)

2
)1/2

≥ λ−1 (T )‖y
−

1n‖
2
H 1 − ‖∇δ‖∞‖V ‖∞

√
T ‖y−1n‖H 1

and the boundedness of ‖y−1n‖H 1 follows. In the same way we argue for y+1n, y−2n and y+2n
so that we obtain the boundedness of y1n and y2n in E. Since∫ T

0
q̇2
n = 2f (y1n, y2n, qn)−Q1(y1n)−Q2(y2n)− 2

∫ T

0
(1+ δ(y1n, y2n))V (qn)

≤ 2(c + 1)+max{1, ω2
1}‖y1n‖

2
H 1 +max{1, ω2

2}‖y2n‖
2
H 1 ≤ const,

and since qn(0) = 0, we see that qn is bounded in H 1(0, T ). We then deduce that, up to
a subsequence, qn → q0 in L2, uniformly and weakly in H 1, and also yin → yi0 in L2,
uniformly and weakly in H 1 for i = 1, 2. Since∫ T

0
|ẏin − ẏi0|

2
+

∫ T

0
|yin − yi0|

2
=

∫ T

0
ẏin(ẏin − ẏi0)

−

∫ T

0
ẏi0(ẏin − ẏi0)+

∫ T

0
|yin − yi0|

2,

recalling that
∫ T

0 |yin−yi0|
2
→ 0 as well as (by weak convergence)

∫ T
0 ẏi0(ẏin−ẏi0)→ 0,

to show that yin→ yi0 in H 1 it is enough to prove that∫ T

0
ẏin(ẏin − ẏi0)→ 0.

Since ∫ T

0
ẏin(ẏin − ẏi0) =

〈
∂f

∂yi
(y1n, y2n, qn), yin − yi0

〉
+ ω2

i

∫ T

0
yin(yin − yi0)

−

∫ T

0

∂

∂yi
δ(y1n, y2n)V (qn)(yin − yi0),

the result follows because yin − yi0 is bounded, ∂f
∂yi
(y1n, y2n, qn) → 0, yin → yi0 in L2

and the sequences yin and ∂
∂yi
δ(y1n, y2n)V (qn) are bounded in L∞. Then yin→ yi0 inH 1

for i = 1, 2.
Finally, if ϕ is any test function, we have〈
∂f

∂yi
(y1n, y2n, qn), ϕ

〉
=

∫ T

0
(ẏinϕ̇ − ω

2
i yinϕ)+

∫ T

0

∂δ

∂yi
(y1n, y2n)V (qn)ϕ

→

∫ T

0
(ẏi ϕ̇ − ω

2
i yiϕ)+

∫ T

0

∂δ

∂yi
(y1, y2)V (q0)ϕ, i = 1, 2,
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so that yi is a weak solution of

ÿi + ω
2
i yi =

∂δ

∂yi
(y1, y2)V (q0), i = 1, 2,

and, by standard arguments, also a classical solution. Therefore (y10, y20, q0) is a solution
of (2.7) for i = 1, 2. If also ∂f

∂q
(y1n, y2n, qn) → 0, using the same arguments, we have

qn→ q0 in H 1 and (y10, y20, q0) is a solution of (PT). 2

We say that h ∈ H if

(1) h : E−1 × E
−

2 → E × E × Γ is continuous,
(2) there are R > 0 and qh ∈ Γ such that

h(y1, y2) = (y1, y2, qh) ∀‖(y1, y2)‖ ≥ R.

Let us define

(3.4) c(TN ) = inf
h∈H

sup
(y1,y2)∈E

−

1 ×E
−

2

fN (h(y1, y2)).

To estimate c(TN ) (see Lemma 3.6), we first prove the following inequality.

LEMMA 3.5. For all q ∈ Γ we have∫ T

0
[q̇2/2+ V (q)] ≥

∫ 2π

0

√
2V (s) ds > 0.

PROOF. Let q ∈ Γ∞ = {q ∈ H 1
loc(R) : q(−∞) = 0, q(+∞) = 2π} be such that∫

R
[q̇2/2+ V (q)] = min

q

∫
R

[q̇2/2+ V (q)].

By energy conservation q̇2/2− V (q) = 0, so that for all q ∈ Γ , we have∫ T

0
[q̇2/2+ V (q)] ≥

∫
R

[q̇2/2+ V (q)] =
∫

R
2V (q).

From our assumptions on V it follows that q̇(t) > 0 and using the change of variables
s = q(t) we have ∫

R
2V (q) dt =

∫ 2π

0

2V (s)
√

2V (s)
ds =

∫ 2π

0

√
2V (s) ds,

so that ∫ T

0
[q̇2/2+ V (q)] ≥

∫ 2π

0

√
2V (s) ds > 0 ∀q ∈ Γ. 2
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LEMMA 3.6. Let TN satisfy (2.9) and c(TN ) be defined as in (3.4). Then∫ 2π

0

√
2(1+ δ)V (s) ds =: c ≤ c(TN ) ≤ c̄ := 2π2

+ (1+ δ̄)‖V ‖∞ for all TN .

PROOF. Let q̄T be such that∫ T

0
[ ˙̄q2
T /2+ (1+ δ̄)V (q̄T )] = min

q∈Γ

∫ T

0
[q̇2/2+ (1+ δ̄)V (q)] = c̄(T ).

Then
c̄(T ) ≤ c̄(1) ≤ 2π2

+ (1+ δ̄)‖V ‖∞ =: c̄.

Letting h̄(y1, y2) = (y1, y2, q̄T ), we have

c(T ) = inf
h∈H

sup
(y1,y2)∈E

−

1 ×E
−

2

f (h(y1, y2)) ≤ sup
(y1,y2)∈E

−

1 ×E
−

2

f (h̄(y1, y2))

≤

∫ T

0
[ ˙̄q2
T /2+ (1+ δ̄)V (q̄T )] = c̄(T ) ≤ c̄.

On the other hand, for any h ∈ H, h(y1, y2) = (h1(y1, y2), h2(y1, y2), h3(y1, y2)),
consider the function h̄ : E−1 × E−2 → E−1 × E−2 defined by h̄(y1, y2) =

(πE−1
h1(y1, y2), πE−2

h2(y1, y2)). Since h̄|∂B(0,R) = Id for all R large enough, there is

(ȳ1, ȳ2) ∈ E
−

1 × E
−

2 such that h̄(ȳ1, ȳ2) = (0, 0), i.e.

h1(ȳ1, ȳ2) ∈ E
+

1 , h2(ȳ1, ȳ2) ∈ E
+

2 .

Then, letting q = h3(ȳ1, ȳ2), we have, for all h ∈ H,

sup
(y1,y2)∈E

−

1 ×E
−

2

f (h(y1, y2)) ≥ f (h(ȳ1, ȳ2)) ≥

∫ T

0
[q̇2/2+ (1+ δ)V (q)] dt

≥ min
q∈Γ

∫ T

0
[q̇2/2+ (1+ δ)V (q)] dt = c(T ),

and Lemma 3.5 yields

c(T ) ≥

∫ 2π

0

√
2(1+ δ)V (s) ds =: c > 0. 2

PROPOSITION 3.7. Let TN satisfy (2.9) and c(TN ) be defined as in (3.4). Then there is
a critical point (y1N , y2N , qN ) for fN at level c(TN ) that solves problem (PT). Moreover,
qN has the following properties:

qN (t) ∈ [0, 2π ] ∀t ∈ [0, TN ],(3.8)
q̇N (0) = q̇N (TN ),(3.9) ∫ TN

0
V (qN ) ≤

c̄

1+ δ − α
=
c̄

K
,

∫ TN

0
q̇2
N ≤ 2c̄.(3.10)
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PROOF. The existence of the critical point (y1N , y2N , qN ) at level c(TN ) follows via
the min-max principle, since f satisfies (PS) by Proposition 3.3 and by the estimates of
Lemma 3.6.

To prove (3.8) let us introduce, for all TN ,

Γ ∗N = {q ∈ ΓN | q(s) ∈ [0, 2π ] ∀s ∈ [0, TN ]}

H∗ = {h ∈ H | h(y1, y2) ∈ E × E × Γ
∗

N ∀(y1, y2) ∈ E
−

1 × E
−

2 },

c∗(TN ) = inf
h∈H∗

sup
(y1,y2)∈E

−

1 ×E
−

2

fN (h(y1, y2)).

It is easy to show that
c∗(TN ) = c(TN ).

Indeed, H∗ ⊂ H implies that c∗(TN ) ≥ c(TN ). To prove the other inequality pick h ∈ H
and let h∗ ∈ H∗ be defined as h∗(y1, y2) = h(y1, y2)

∗, where (y1, y2, q)
∗
= (y1, y2, q

∗)

and

q∗(t) =


q(t) if 0 ≤ q(t) ≤ 2π,
2π if q(t) > 2π,
0 if q(t) < 0.

Then, since

(1+ δ(y1(t), y2(t)))V (q
∗(t)) ≤ (1+ δ(y1(t), y2(t)))V (q(t)) ∀t ∈ [0, T ],

we immediately see that

fT (h
∗(y1, y2)) ≤ fT (h(y1, y2)) ∀(y1, y2) ∈ E

−

1 × E
−

2 ,∀h ∈ H

and
c∗(T ) ≤ c(T )

and also (3.8) follows.
Now let us show that (3.9) holds. Since (y1N , y2N , qN ) is a solution of (PT), by energy

conservation, we have

ẏ2
1N (0)+ ω

2
1y

2
1N (0)

2
+
ẏ2

2N (0)+ ω
2
2y

2
2N (0)

2
+
q̇2
N (0)
2

− (1+ δ(y1N (0), y2N (0)))V (qN (0))

=
ẏ2

1N (TN )+ ω
2
1y

2
1N (TN )

2
+
ẏ2

2N (TN )+ ω
2
2y

2
2N (TN )

2
+
q̇2
N (TN )

2
− (1+ δ(y1N (TN ), y2N (TN )))V (q(TN )).

Since qN (0) = 0, qN (TN ) = 2π , V (0) = V (2π) = 0 and by periodicity of y1N and y2N ,
we have

q̇2
N (0) = q̇

2
N (TN ).

Since qN (t) ∈ [0, 2π ] for all t ∈ [0, TN ] we have q̇N (0) ≥ 0, q̇N (T ) ≥ 0 and so

q̇N (0) = q̇N (TN ).
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Finally, using the last estimate of Lemma 2.6, we have

c(TN ) =
1
2
Q1(y1N )+

1
2
Q2(y2N )+

∫ TN

0
[q̇2
N/2+ (1+ δ(y1N , y2N ))V (qN )]

≥

∫ TN

0
q̇2
N/2+ (1+ δ − α)

∫ TN

0
V (qN ),

and, by the estimate on c(TN ) in Lemma 3.6, (3.10) holds. 2

4. PROOF OF THEOREM 1.10

We say that q(t) jumps from η to 2π−η in an interval [α, β] if q(α) = η, q(t) ∈ ]η, 2π−η[
for all t ∈]α, β[, q(β) = 2π − η. Note that if q(t) jumps in [α, β] from η to 2π − η, then
defining

q̄(t) =



0, 0 ≤ t ≤ α − 1,
η(t − α + 1), α − 1 ≤ t ≤ α,
q(t), α ≤ t ≤ β,

2π + η(t − β − 1), β ≤ t ≤ β + 1,
2π, β + 1 ≤ t ≤ T ,

and arguing as in Lemma 3.5, for any B > 0 and η ≤ η0 (η0 given by (1.6)), η sufficiently
small, we have∫ β

α

[q̇2/2+ BV (q)] ≥
∫ T

0
[ ˙̄q2/2+ BV (q̄)]− η2

− BV (η)− BV (2π − η)(4.1)

≥

∫ 2π

0

√
2BV (s) ds − η2

− 2Bµη2 > 0.

LEMMA 4.2. Let (y1, y2, q) ∈ E×E×Γ
∗ be a critical point for fN at level c(TN ) as in

Proposition 3.7 and assume (δ4) holds. Then there exists 0 < η1 ≤ η0 (η0 given by (1.6))
such that for all 0 < η ≤ η1, q(t) jumps only once from η to 2π − η. Moreover, if [α, β]
is the interval where q(t) jumps from η to 2π − η, then |β − α| ≤ c̄/KVη with Vη as in
(1.4), and K as in (1.13).

PROOF. Arguing by contradiction, let us assume that q(t) jumps from η to 2π − η in two
intervals, [α1, β1] and [α2, β2] with β1 < α2. Without loss of generality we can assume
that

(4.3)
∫ β1

0
V (q) ≤

∫ T

α2

V (q).

Define

q̄(t) =


q(t) if t ∈ [0, β1],
2π + η(t − β1 − 1) if t ∈ [β1, β1 + 1],
2π if t ∈ [β1 + 1, T ],
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and let h̄ : E−1 × E
−

2 → E1 × E2 × Γ be defined by h̄(y−1 , y
−

2 ) = (y−1 , y
−

2 , q̄) for all
(y−1 , y

−

2 ) ∈ E
−

1 × E
−

2 .
For all (y−1 , y

−

2 ) ∈ E
−

1 × E
−

2 , using the last estimate of Lemma 2.6, we have

f (y1, y2, q)− f (y
−

1 , y
−

2 , q̄) ≥
1
2
Q(y1)+

1
2
Q(y2)

+

∫ T

0
[q̇2/2+ (1+ δ(y1, y2))V (q)]−

∫ T

0
[ ˙̄q2/2+ (1+ δ(y−1 , y

−

2 ))V (q̄)]

≥

∫ T

0
−αV (q)+

∫ β1

0
[δ(y1, y2)− δ(y

−

1 , y
−

2 )]V (q)

+

∫ T

β1

[q̇2/2+ (1+ δ(y1, y2))V (q)]−
∫ β1+1

β1

[ ˙̄q2/2+ (1+ δ(y−1 , y
−

2 ))V (q̄)]

≥

∫ β1

0
(δ − α − δ̄)V (q)+

∫ T

β1

[q̇2/2+ (1+ δ − α)V (q)]− η2/2− (1+ δ̄)µη2.

From assumption (δ4) it follows that δ − α − δ̄ > −(1 + δ − α); and thanks to (4.3) we
have ∫ β1

0
(δ − α − δ̄)V (q) > −(1+ δ − α)

∫ β1

0
V (q) ≥ −(1+ δ − α)

∫ T

α2

V (q).

Therefore, using also (4.1) we have

f (y1, y2, q)− f (y
−

1 , y
−

2 , q̄) ≥

∫ α2

β1

[q̇2/2+ (1+ δ − α)V (q)]− η2[1+ µ(1+ δ̄)]

≥

∫ 2π

0

√
2(1+ δ − α)V (s) ds

− η2
− 2(1+ δ − α)µη2

− η2[1+ µ(1+ δ̄)].

Then, choosing η1 sufficiently small, we have

f (y1, y2, q)− f (y
−

1 , y
−

2 , q̄) > 0, ∀η ≤ η1,∀(y
−

1 , y
−

2 ) ∈ E
−

1 × E
−

2 ,

which is a contradiction, because (y1, y2, q) is a critical point at level c(T ). Finally, by
(3.10) we have

c̄

K
≥

∫ TN

0
V (qN ) ≥

∫ β

α

V (qN ) ≥ Vη|β − α|. 2

PROOF OF THEOREM 1.10. Let (y1N , y2N , qN ) be a critical point at level c(TN ) which
is a solution of (PT), given by Proposition 3.7. Fix any η ≤ η1 and let [αN , βN ] denote the
unique (by Lemma 4.2) interval where qN jumps from η to 2π − η. Let τN ∈ [αN , βN ]
be such that qN (τN ) = π and qN (t) ≤ π for all t ≤ τN . Since |βN − αN | ≤ c̄/KVη and
TN → +∞, we have either τN → +∞ or TN − τN → +∞. Let us first analyze the case
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where both τN → +∞ and TN − τN → +∞. We define the function q̃N in the interval
[−τN , TN − τN ] as

q̃N (t) = qN (t + τN ) ∀N ∈ N.

By definition q̃N (t) ∈ [0, 2π ] for all t ∈ [−τN , TN − τN ] and q̃N (0) = π for all N ∈ N.
Moreover, by Proposition 3.7 we have∫ TN−τN

−τN

˙̃q2
N =

∫ TN

0
q̇2
N ≤ 2c̄.

Then, for any fixed a < b ∈ R, since both τN → +∞ and TN − τN → +∞, we have
q̃N ∈ H

1(a, b) for all N large enough and

‖q̃N‖
2
H 1(a,b)

≤ 2c̄ + (b − a)4π2.

Therefore, up to a subsequence, q̃N ⇀ q in H 1(a, b), q̃N → q uniformly in [a, b] and∫
R
q̇2
= sup
a<b

∫ b

a

q̇2
≤ sup
a<b

lim inf
N→+∞

∫ b

a

˙̃q2
N ≤ 2c̄,∫

R
V (q) = sup

a<b

∫ b

a

V (q) ≤ sup
a<b

lim inf
N→+∞

∫ b

a

V (q̃N ) ≤
c̄

1+ δ − α
=
c̄

K
.

Since V (q) = 0 only for q = 2kπ , k ∈ Z, and since qN jumps only once from η to 2π −η
for all N ∈ N, we have

lim
t→−∞

q(t) = 0, lim
t→+∞

(q(t)− 2π) = 0, lim
t→±∞

q̇(t) = 0.

Now let us analyze the case where only one of τN and TN − τN diverges. We can
assume that, up to a subsequence, TN − τN diverges and τN < TN/2. Define the function
q̃N in [−(TN + τN )/2, (TN − τN )/2] by

q̃N (t) =

{
qN (t + TN + τN )− 2π if t ∈ [−(TN + τN )/2,−τN ],
qN (t + τN ) if t ∈ [−τN , (TN − τN )/2].

Then for all N , q̃N (0) = π , q̃N (t) ∈ [−2π + η, π] for all t ∈ [−(TN + τN )/2, 0], and
q̃N (t) ∈ [η, 2π ] for all t ∈ [0, (TN − τN )/2]. Then, arguing as in the first case, for a < b

in R we have, up to a subsequence, q̃N ⇀ q in H 1(a, b), q̃N → q uniformly in [a, b],
‖q‖∞ ≤ 2π and

(4.4)
∫

R
q̇2
≤ 2c̄,

∫
R
V (q) ≤

c̄

K
.

Since V (q) = 0 only for q = 2kπ and since for all N ∈ N, q̃N ∈ [−2π + η, π] for all
t ∈ [−(TN + τN )/2, 0], and q̃N ∈ [η, 2π ] for all t ∈ [0, (TN − τN )/2], we deduce also in
this case that

lim
t→−∞

q(t) = 0, lim
t→+∞

(q(t)− 2π) = 0, lim
t→±∞

q̇(t) = 0.
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Now define, for i = 1, 2,

ỹiN (t) =

{
yiN (t + TN + τN ) if t ∈ [−(TN + τN )/2,−τN ],
yiN (t + τN ) if t ∈ [−τN , (TN − τN )/2].

In view of Lemma 2.11 and (4.4) we know that ỹiN (t) is bounded in H 1(a, b), so that,
up to a subsequence, ỹiN ⇀ yi in H 1(a, b) and ỹiN → yi uniformly in L∞(a, b) for
i = 1, 2. We can now pass to the limit in the equations

¨̃qN = (1+ δ(ỹ1N , ỹ2N ))V
′(q̃N ),

¨̃y1N + ω
2
1ỹ1N =

∂

∂y1
δ(ỹ1N , ỹ2N )V (q̃N ),

¨̃y2N + ω
2
2ỹ2N =

∂

∂y2
δ(ỹ1N , ỹ2N )V (q̃N ),

to deduce that (y1, y2, q) is a solution of

q̈ = (1+ δ(y1, y2))V
′(q),

ÿ1 + ω
2
1y1 =

∂

∂y1
δ(y1, y2)V (q),

ÿ2 + ω
2
2y2 =

∂

∂y2
δ(y1, y2)V (q),

in the interval [a, b] and hence also in R.
Thus, as observed at the beginning of Section 2, conditions (1.3) are satisfied. Finally,

by energy conservation, since q̇(±∞) = 0, also condition (1.2) holds. 2

5. PROOF OF THEOREM 1.11

LEMMA 5.1. Let (y1N , y2N , qN ) be a critical point for fN at level c(TN ) given by
Proposition 3.7 and assume that (δ4′) holds. Then for all 0 < η ≤ η0 (η0 given by (1.6))
there exist 0 < τ1 < τ2 < TN such that

0 ≤ qN (t) ≤ η ∀t ∈ [0, τ1],
qN (t) ∈ [η, 2π − η] ∀t ∈ [τ1, τ2],
2π − η ≤ qN (t) ≤ 2π ∀t ∈ [τ2, TN ].

PROOF. Let η ≤ η0, let τ1 = inf{s ∈ [0, T ] | q(s) > η} and τ2 = sup{s ∈ [0, T ] | q(s) <
2π − η}. If the lemma does not hold, then there is τ ′1 ∈ (τ1, T ] such that q(τ ′1) = η (or
there is τ ′2 ∈ [0, τ2) such that q(τ ′2) = 2π − η; we will only discuss the first case). Then
q(t) reaches a maximum at τ ′′1 ∈ (τ1, τ

′

1), hence q̈(τ ′′1 ) ≤ 0. But

q̈(τ ′′1 ) = (1+ δ(y1(τ
′′

1 ), y2(τ
′′

1 )))V
′(q(τ ′′1 ))

implies, by (V4), that q(τ ′′1 ) ≥ η̄. Then there exists an interval where q jumps from η̄/2 to
η̄ and an interval where q jumps from η̄ to η̄/2. In each of these intervals, say [a, b],

η̄

2
=

∫ b

a

q̇ ≤

(∫ b

a

q̇2
)1/2√

b − a
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so that for Vη̄/2 as in (1.4) we obtain∫ b

a

[q̇2/2+ (1+ δ − α)V (q)] ≥
η̄2

8(b − a)
+ (1+ δ − α)Vη̄/2(b − a)

≥ η̄

√
1+ δ − α

2
Vη̄/2.

Therefore

(5.2)
∫ τ ′1

τ1

[q̇2/2+ (1+ δ(y1, y2)− α)V (q)] ≥ 2η̄

√
1+ δ − α

2
Vη̄/2.

Now we define a new function q̄ ∈ Γ ∗ by setting

q̄(t) =


0, 0 ≤ t ≤ τ ′1 − τ1,

q(t − τ ′1 + τ1), τ ′1 − τ1 ≤ t ≤ τ
′

1,

q(t), τ ′1 ≤ t ≤ T .

We also introduce h̄ defined as h̄(y−1 , y
−

2 ) = (y−1 , y
−

2 , q̄) for all (y−1 , y
−

2 ) ∈ E
−

1 × E
−

2 .
Clearly h̄ ∈ H∗, so that, since fT (y1, y2, q) = c(T ),

0 ≤ sup
(y−1 ,y

−

2 )∈E
−

1 ×E
−

2

fT (h̄(y
−

1 , y
−

2 ))− fT (y1, y2, q).

On the other hand, using (5.2) and arguing as in the proof of Lemma 4.2 (see also [10,
Lemma 11]) we have, for all (y−1 , y

−

2 ) ∈ E
−

1 × E
−

2 ,

fT (y1, y2, q)− fT (y
−

1 , y
−

2 , q̄)

≥

∫ τ1

0
[q̇2/2+ (1+ δ − α)V (q)]+

∫ τ ′1

τ1

[q̇2/2+ (1+ δ − α)V (q)]

+

∫ T

τ ′1

(δ − δ̄ − α)V (q)−

∫ τ ′1

τ ′1−τ1

[ ˙̄q2/2+ (1+ δ(y−1 , y
−

2 ))V (q̄)]

≥ −(δ̄ − δ + α)

∫ T

0
V (q)+ 2η̄

√
1+ δ − α

2
Vη̄/2.

Then, using the estimate (3.10) and by definition of c̄ (see Lemma 3.6), we have, for all
(y−1 , y

−

2 ) ∈ E
−

1 × E
−

2 ,

fT (y1, y2, q)− fT (y
−

1 , y
−

2 , q̄)

≥ −(δ̄ − δ + α)
c̄

1+ δ − α
+ 2η̄

√
1+ δ − α

2
Vη̄/2

≥ −
δ̄ − δ + α

1+ δ − α
[2π2
+ (1+ δ̄)‖V ‖∞]+ 2η̄

√
1+ δ − α

2
Vη̄/2.
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Then, thanks to (δ4′), for all (y−1 , y
−

2 ) ∈ E
−

1 × E
−

2 we have

fT (y
−

1 , y
−

2 , q̄)− fT (y1, y2, q) ≤ −η̄

√
1+ δ − α

2
Vη̄/2,

contradiction. 2

LEMMA 5.3. Let (y1N , y2N , qN ) be a critical point for fN at level c(TN ) given by
Proposition 3.7 and assume (δ4′) holds. For 0 < η ≤ η0, let τ 1

N and τ 2
N be given by

Lemma 5.1. Then

(5.4) τ 2
N − τ

1
N ≤

c̄

(1+ δ − α)Vη
,

with Vη as in (1.4);

w(t) ≡ η
sinh
√
āt

sinh
√
āτ 1
N

≤ qN (t) ≤ η
sinh
√
at

sinh
√
aτ 1
N

≡ z(t)

for all t ∈ [0, τ 1
N ] and

(5.5) w̃(t) ≡ η
sinh
√
ā(TN − t)

sinh
√
ā(TN − τ

2
N )
≤ 2π − qN (t) ≤ η

sinh
√
a(TN − t)

sinh
√
a(TN − τ

2
N )
≡ z̃(t)

for all t ∈ [τ 2
N , TN ], where ā = 2µ(1+ δ̄) and a = (µ/2)(1+ δ). Moreover, τ 1

N → +∞

and TN − τ 2
N →+∞ as N →+∞.

PROOF. We give only a sketch of the proof, more details can be found in [10, Lemmas 13–
15 and Remark 14]. Estimate (5.4) is an easy consequence of (3.10). Thanks to Lemma 5.1
we can use a maximum principle argument to obtain exponential estimates on qN . Then,
using the estimates on qN and (3.9), we conclude that both τ 1

N and TN −τ 2
N diverge. 2

In the following proposition we prove the first part of Theorem 1.11.

PROPOSITION 5.6. Let (y1N , y2N , qN ) be as in Proposition 3.7 and assume (δ4′) holds.
Then for all N ∈ N there is τN ∈ [τ 1

N , τ
2
N ] such that, up to a subsequence,

qN (· − τN )→ q, y1N (· − τN )→ y1, y2N (· − τN )→ y2,

where (y1, y2, q) is a solution of problem (1.1) satisfying (1.3). Furthermore, q(t) ∈
[0, 2π ] for all t .

PROOF. Fix η ≤ η0. Then, by Lemmas 5.1 and 5.3 we can find τ 1
N , τ

2
N such that

qN (t) ∈ [0, η] ∀t ∈ [0, τ 1
N ],

qN (t) ∈ [η, 2π − η] ∀t ∈ [τ 1
N , τ

2
N ],

qN (t) ∈ [2π − η, 2π ] ∀t ∈ [τ 2
N , TN ],

|τ 2
N − τ

1
N | ≤

c̄

(1+ δ − α)Vη
.
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Let τN be the τ 1
N corresponding to η0, and

q̃N (t) = qN (t + τN ), t ∈ [−τN , TN − τN ],

so that q̃N (0) = η0 for all N . Also define

ỹ1N (t) = y1N (t + τN ), ỹ2N (t) = y2N (t + τN ) ∀t ∈ [−τN , TN − τN ].

Arguing as in the proof of Theorem 1.10 we find that q̃N → q in L∞loc, ỹiN → yi in L∞loc
(i = 1, 2), and (y1, y2, q) is solution of (1.1) satisfying (1.3); moreover, q(t) ∈ [0, 2π ] for
all t . 2

In the following proposition we conclude the proof of Theorem 1.11.

PROPOSITION 5.7. Assume (δ4′) holds. Take ϕ1 ∈ (0, 2π) and ϕ2 chosen according to
(ω1)–(ω2). Then there exist R1, R2 and a solution (y1(t), y2(t), q(t)) of (1.1) satisfying
(1.3) with

Ri± = Ri, fi+ − fi− = ϕi

for i = 1, 2. If (E) holds, then ω2
1R

2
1 + ω

2
2R

2
2 > 0.

PROOF. Let TN satisfy (2.9), let (y1N , y2N , qN ) be the solution of (PT) given by
Proposition 3.7 and let (y1, y2, q) be the solution of (1.1) satisfying (1.3) obtained in
Proposition 5.6 as the limit of (y1N , y2N , qN ) for N →+∞.

Fix ε > 0; let η ≤ η0 such that

1
ωi
‖∇δ‖

4µη2

√
a
<
ε

4
, ∀i = 1, 2,

and consider τN such that qN (τN ) = η and qN (t) ≥ η for all t ≥ τN .
As in Proposition 5.6, we define

q̃N (t) = qN (t + τN ), ỹiN (t) = yiN (t + τN ),

for all t ∈ [−τN , TN − τN ], i = 1, 2. By (2.13), (2.14), ỹiN has the following expression
for suitable constants AiN and µiN :

ỹiN (t) =
1
ωi

∫ t

−τN

∂δ

∂yi
(ỹ1N , ỹ2N )V (q̃N ) sinωi(t − s) ds(5.8)

+ AiN cos(ωi t + ωiτN + µiN ),

or

ỹiN (t) = −
1
ωi

∫ TN−τN

t

∂δ

∂yi
(ỹ1N , ỹ2N )V (q̃N ) sinωi(t − s) ds(5.9)

+ AiN cos(ωi t + ωiτN + µiN − ϕiN ).
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We claim that there exists N1 ∈ N such that for all N ≥ N1, all t ∈ [−τN , TN − τN ]
and i = 1, 2 we have (with the notation ỹN = (ỹ1N , ỹ2N ), y = (y1, y2))

1
ωi

∣∣∣∣∫ t

−τN

∂δ

∂yi
(ỹN )V (q̃N ) sinωi(t − s) ds −

∫ t

−∞

∂δ

∂yi
(y)V (q) sinωi(t − s) ds

∣∣∣∣ < ε

and

1
ωi

∣∣∣∣∫ TN−τN

t

∂δ

∂yi
(ỹN )V (q̃N ) sinωi(t − s) ds −

∫
+∞

t

∂δ

∂yi
(y)V (q) sinωi(t − s) ds

∣∣∣∣ < ε.

We give a proof only of the first inequality, the other can be proved in the same way. Since
q̃N (−τN ) = 0 and q̃N (TN − τN ) = 2π we extend q̃N by setting

q̃N (t) =

{
0 ∀t ≤ −τN ,

2π ∀t ≥ TN − τN ,

and in view of (5.8) and (5.9) we extend ỹiN by setting

ỹiN (t) =

{
AiN cos(ωi t + ωiτN + µiN ) ∀t ≤ −τN ,

AiN cos(ωi t + ωiτN + µiN − ϕiN ) ∀t ≥ TN − τN .

With these extensions the claim follows if we prove that

1
ωi

∣∣∣∣∫ t

−∞

[
∂δ

∂yi
(ỹ1N , ỹ2N )V (q̃N )−

∂δ

∂yi
(y1, y2)V (q)

]
sinωi(t − s) ds

∣∣∣∣ < ε

for all t ∈ R. Denote by [a, b] the unique interval where q jumps from η to 2π − η. Since
q̃N → q in L∞loc, there exists N0 ∈ N such that for all N ≥ N0 we have q̃N (t) ≤ η for all
t ≤ a − 1 and q̃N (t) ≥ 2π − η for all t ≥ b + 1. Then, using the exponential estimate
given by Lemma 5.3, we have∫ a−1

−∞

V (q̃N )+

∫
+∞

b+1
V (q̃N ) ≤

4µη2

√
a
,

∫ a−1

−∞

V (q)+

∫
+∞

b+1
V (q) ≤

4µη2

√
a
.

Let us consider the case t > b+ 1 (the other cases being simpler). In view of the previous
inequalities and by the choice of η we have, for all N ≥ N0,

1
ωi

∣∣∣∣∫ t

−∞

[
∂δ

∂yi
(ỹ1N , ỹ2N )V (q̃N )−

∂δ

∂yi
(y1, y2)V (q)

]
sinωi(t − s) ds

∣∣∣∣
≤

1
ωi
‖∇δ‖∞

∫ a−1

−∞

[V (q̃N )+ V (q)]+
1
ωi
‖∇δ‖∞

∫ t

b+1
[V (q̃N )+ V (q)]

+
1
ωi

∫ b+1

a−1

∣∣∣∣ ∂δ∂yi (ỹ1N , ỹ2N )V (q̃N )−
∂δ

∂yi
(y1, y2)V (q)

∣∣∣∣ ds
≤

1
ωi
‖∇δ‖∞

8µη2

√
a
+

1
ωi

∫ b+1

a−1

∣∣∣∣ ∂δ∂yi (ỹ1N , ỹ2N )V (q̃N )−
∂δ

∂yi
(y1, y2)V (q)

∣∣∣∣ ds
<
ε

2
+

1
ωi

∫ b+1

a−1

∣∣∣∣ ∂δ∂yi (ỹ1N , ỹ2N )V (q̃N )−
∂δ

∂yi
(y1, y2)V (q)

∣∣∣∣ ds.
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Since q̃N → q and ỹiN → yi in L∞(a − 1, b + 1), using the dominated convergence
theorem we find that∫ b+1

a−1

∣∣∣∣ ∂δ∂yi (ỹ1N , ỹ2N )V (q̃N )−
∂δ

∂yi
(y1, y2)V (q)

∣∣∣∣ ds → 0 as N →∞.

Thus, there exists N1 ≥ N0 such that for all N ≥ N1 we have

1
ωi

∫ b+1

a−1

∣∣∣∣ ∂δ∂yi (ỹ1N , ỹ2N )V (q̃N )−
∂δ

∂yi
(y1, y2)V (q)

∣∣∣∣ ds < ε

2
, i = 1, 2,

and the claim is proved.
Using (2.3) and (5.8) we deduce for all t ∈ [−2π/ωi, 4π/ωi] the estimate

|Ri− cos(ωi t + fi−)− AiN cos(ωi t + ωiτN + µiN )|

=

∣∣∣∣yi(t)− 1
ωi

∫ t

−∞

∂δ

∂yi
(y1, y2)V (q) sinωi(t − s) ds − ỹiN (t)

+
1
ωi

∫ t

−τN

∂δ

∂yi
(ỹ1N , ỹ2N )V (q̃N ) sinωi(t − s) ds

∣∣∣∣
≤

1
ωi

∣∣∣∣∫ t

−∞

∂δ

∂yi
(y1, y2)V (q) sinωi(t − s) ds

−

∫ t

−τN

∂δ

∂yi
(ỹ1N , ỹ2N )V (q̃N ) sinωi(t − s) ds

∣∣∣∣+ |yi(t)− ỹiN (t)|
< ε + |yi(t)− ỹiN (t)|.

Since ỹiN → yi in L∞loc, there exists N2 ≥ N1 such that for all N ≥ N2 we have

(5.10) |Ri− cos(ωi t + fi−)− AiN cos(ωi t + ωiτN + µiN )| < 2ε
∀t ∈ [−2π/ωi, 4π/ωi],

and, arguing in the same way, we also have

(5.11) |Ri+ cos(ωi t + fi+)− AiN cos(ωi t + ωiτN + µiN − ϕiN )| < 2ε
∀t ∈ [−2π/ωi, 4π/ωi].

Rewriting (5.10) for t = s − ϕiN/ωi we have, for all N ≥ N2,

|Ri− cos(ωis+fi−−ϕiN )−AiN cos(ωis+ωiτN +µiN −ϕiN )| < 2ε ∀s ∈ [0, 2π/ωi].

Putting together this estimate and (5.11) we obtain, for all N ≥ N2,

(5.12) |Ri− cos(ωis + fi− − ϕiN )− Ri+ cos(ωis + fi+)| < 4ε ∀s ∈ [0, 2π/ωi].

Therefore, recalling that ϕ1N ≡ ϕ1 for all N , (5.12) becomes

|R1− cos(ω1s + f1− − ϕ1)− R1+ cos(ω1s + f1+)| < 4ε ∀s ∈ [0, 2π/ω1] ∀N ≥ N2;
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since ε was arbitrarily chosen, this immediately implies that

R1− = R1+ and f1+ ≡ f1− − ϕ1 mod 2π.

Moreover, since ϕ2N → ϕ2, there exists N3 ≥ N2 such that for all N ≥ N3 we have

|R2− cos(ω2s + f2− − ϕ2)− R2+ cos(ω2s + f2+)|

≤ |R2− cos(ω2s + f2− − ϕ2)− R2− cos(ω2s + f2− − ϕ2N )|

+ |R2− cos(ω2s + f2− − ϕ2N )− R2+ cos(ω2s + f2+)|

< ε + 4ε ∀s ∈ [0, 2π/ω1] ∀N ≥ N3;

since ε was arbitrarily chosen, this implies that

R2− = R2+ and f2+ ≡ f2− − ϕ2 mod 2π. 2

6. PROOF OF THEOREM 1.14

In this section we will use the notation already introduced (see (1.13), (2.10)) and we will
consider a sequence TN satisfying (2.9).

Let us define

Γ̄N =

{
q ∈ ΓN :

∫ TN

0
V (q) ≤

c̄

K

}
;

we recall that for all N , c(TN ) ≤ c̄ := 2π2
+ (1+ δ̄)‖V ‖∞.

REMARK 6.1. By Lemma 2.11, if, for i = 1, 2, yi is a solution of

ÿi + ω
2
i yi =

∂δ

∂yi
(y1, y2)V (q),

yi(0)− yi(TN ) = ẏi(0)− ẏi(TN ) = 0,

with q ∈ Γ̄N , then

(6.2)
‖yi‖∞ ≤

CNi

ωi
‖∇δ‖∞K̄, i = 1, 2,

|Qi(yi)| ≤
CNi

ωi
‖∇δ‖2∞K̄

2, i = 1, 2.

Also Proposition 3.7 implies that any critical point (y1N , y2N , qN ) of the functional fTN at
level c(TN ) is such that qN ∈ Γ̄N , and thus estimates (6.2) hold for y1N and y2N .

LEMMA 6.3. Let (y1N , y2N , qN ) be a critical point at level c(TN ) as in Proposition 3.7.
Then ∣∣∣∣c(TN )− ∫ TN

0
[q̇2
N/2+ (1+ δ(0, 0))V (qN )]

∣∣∣∣ ≤ 3
2
‖∇δ‖2∞K̄

2
(
CN1
ω1
+
CN2
ω2

)
.
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PROOF. In view of Remark 6.1, the estimates (6.2) hold and we have∣∣∣∣c(TN )− ∫ TN

0
[q̇2
N/2+ (1+ δ(0, 0))V (qN )]

∣∣∣∣
=

∣∣∣∣12Q1(y1N )+
1
2
Q2(y2N )+

∫ TN

0
[δ(y1N , y2N )− δ(0, 0)]V (qN )

∣∣∣∣
≤

1
2
|Q1(y1N )| +

1
2
|Q2(y2N )| + ‖∇δ‖∞(‖y1N‖∞ + ‖y2N‖∞)

∫ TN

0
V (qN )

≤
1
2
‖∇δ‖2∞K̄

2
(
CN1
ω1
+
CN2
ω2

)
+ ‖∇δ‖2∞K̄

2
(
CN1
ω1
+
CN2
ω2

)
=

3
2
‖∇δ‖2∞K̄

2
(
CN1
ω1
+
CN2
ω2

)
. 2

Let us define γ0(TN ) and q0N such that
(6.4)

γ0(TN ) = min
q∈Γ

∫ TN

0
[q̇2/2+ (1+ δ(0, 0))V (q)] =

∫ TN

0
[q̇2

0N/2+ (1+ δ(0, 0))V (q0N )].

Arguing as in Lemma 3.6 it is easy to show that

γ0(TN ) ≤ 2π2
+ (1+ δ(0, 0))‖V ‖∞ ≤ c̄.

LEMMA 6.5. If (y1, y2) ∈ E × E is such that

‖yi‖∞ ≤ V
1+ δ(0, 0)
‖∇δ‖∞γ0(TN )

, i = 1, 2,

then ∫ TN

0
[q̇2

0N/2+ (1+ δ(y1, y2))V (q0N )] ≤ γ0(TN )+ 2V;

moreover, if also |Qi(yi)| ≤ 2V , i = 1, 2, then

|f (y1, y2, q0N )| ≤ γ0(TN )+ 4V.

PROOF. We have∫ TN

0
[q̇2

0N/2+ (1+ δ(y1, y2))V (q0N )]

= γ0(TN )+

∫ TN

0
[δ(y1, y2)− δ(0, 0)]V (q0N )

≤ γ0(TN )+ ‖∇δ‖∞(‖y1‖∞ + ‖y2‖∞)

∫ TN

0
V (q0N ).

Then, by definition of γ0(TN ) and using the assumptions we obtain∫ TN

0
[q̇2

0N/2+ (1+ δ(y1, y2))V (q0N )] ≤ γ0(TN )+ 2V
1+ δ(0, 0)
γ0(TN )

γ0(TN )

1+ δ(0, 0)
= γ0(TN )+ 2V,
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and the first inequality is proved. Next

|f (y1, y2, q0N )| ≤
1
2
|Q1(y1)| +

1
2
|Q2(y2)| +

∫ TN

0
[q̇2

0N/2+ (1+ δ(y1, y2))V (q0N )]

≤ 2V + γ0(TN )+ 2V = γ0(TN )+ 4V,

and the second inequality is also proved. 2

LEMMA 6.6. There exists χ > 0 such that

max
{∥∥∥∥ ∂f∂y1

(y1, y2, q)

∥∥∥∥
∞

,

∥∥∥∥ ∂f∂y2
(y1, y2, q)

∥∥∥∥
∞

}
≥ χ

for all (y1, y2, q) ∈ E × E × Γ̄ satisfying

|f (y1, y2, q)| ≤ C1 = 3c̄

and at least one of the following four inequalities:

‖y1‖∞ ≥
2CN1
ω1
‖∇δ‖∞K̄, |Q1(y1)| ≥

2CN1
ω1

(‖∇δ‖∞K̄)
2,

‖y2‖∞ ≥
2CN2
ω2
‖∇δ‖∞K̄, |Q2(y2)| ≥

2CN2
ω2

(‖∇δ‖∞K̄)
2.

(6.7)

PROOF. By contradiction, assume that there exists (y1n, y2n, qn) ∈ E ×E × Γ̄ satisfying

|f (y1n, y2n, qn)| ≤ C1,
∂f

∂yi
(y1n, y2n, qn)→ 0 for all i = 1, 2,

and at least one of the inequalities in (6.7). By Proposition 3.3, up to a subsequence, yin→
yi in E, qn → q in L∞, (y1, y2, q) is a solution of (2.7) and satisfies at least one of the
inequalities in (6.7). Moreover, q ∈ Γ̄N , since V (qn)→ V (q) almost everywhere and by
the Fatou lemma ∫ T

0
V (q) ≤ lim inf

n→+∞

∫ T

0
V (qn) ≤ K̄.

Thus we get a contradiction with Remark 6.1. 2

LEMMA 6.8. Assume

Cϕi

ωi
‖∇δ‖∞K̄ max{1, ‖∇δ‖∞K̄} <

V
2K̄

, i = 1, 2.

Then for N large enough,

γ0(TN )− 3V ≤ c(TN ) ≤ γ0(TN )+ 8V.
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PROOF. Let (y1N , y2N , qN ) be a critical point at level c(TN ). By Lemma 6.3 and by
definition of γ0(TN ) we have

c(TN ) ≥

∫ TN

0
[q̇N/2+ (1+ δ(0, 0))V (qN )]−

3
2

(
CN1
ω1
+
CN2
ω2

)
‖∇δ‖2∞K̄

2

≥ γ0(TN )−
3
2

(
CN1
ω1
+
CN2
ω2

)
‖∇δ‖2∞K̄

2.

Since CN1 = Cϕ1 and CN2 → Cϕ2 , for N large we have

c(TN ) ≥ γ0(TN )− 3V.

In order to prove the other inequality we will construct an admissible path h =

(h1, h2, q0N ) ∈ H along which the value of the functional f is less than γ0(TN ) + 8V .
To show the existence of such functions h1, h2 we will deform, using a suitable pseudo-
gradient vector field, the identity map Id : E−1 × E

−

2 → E−1 × E
−

2 .
Let ϕ : R→ [0, 1] and ψ : [0,+∞)→ [0, 1] be defined by

ϕ(s) =



0, s ≤ 0,
2s

γ0(TN )+ 4V
, 0 ≤ s ≤ (γ0(TN )+ 4V)/2,

1, (γ0(TN )+ 4V)/2 ≤ s ≤ C1 := 3c̄,
C1 + 1− s, C1 ≤ s ≤ C1 + 1,
0, s ≥ C1 + 1,

ψ(s) =


0, 0 ≤ s ≤ 1,
s − 1, 1 ≤ s ≤ 2,
1, s ≥ 2,

and define the vector field v : E × E→ E × E by

vi(y1, y2) = −

[
ψ

(
ω1‖y1‖∞

CN1 ‖∇δ‖∞K̄

)
+ ψ

(
ω2‖y2‖∞

CN2 ‖∇δ‖∞K̄

)
+ ψ

(
ω1|Q1(y1)|

CN1 ‖∇δ‖
2
∞K̄

2

)

+ ψ

(
ω2|Q2(y2)|

CN2 ‖∇δ‖
2
∞K̄

2

)]
ϕ(f (y1, y2, q0N ))

∂f
∂yi
(y1, y2, q0N )

1+
∥∥ ∂f
∂yi
(y1, y2, q0N )

∥∥ .

Since v is a bounded locally Lipschitz function of (y1, y2), the Cauchy problem
dη

ds
(s, y1, y2) = v(η(s, y1, y2)),

η(0, y1, y2) = (y1, y2),

has a unique solution for every (y1, y2) ∈ E × E, defined on [0,+∞).
We claim that, setting τ3 = (C1 − γ0(TN ))(1 + χ)/χ2 (χ given by Lemma 6.6), we

have
f (η1(τ3, y1, y2), η2(τ3, y1, y2), q0N ) ≤ γ0(TN )+ 8V
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for all (y1, y2) such that f (y1, y2, q0N ) ≤ C1. First of all,

df

ds
(η1(s, y1, y2), η2(s, y1, y2), q0N )

=

〈
∂f

∂y1
(η1, η2, q0N ),

dη1

ds
(s, y1, y2)

〉
+

〈
∂f

∂y2
(η1, η2, q0N ),

dη2

ds
(s, y1, y2)

〉

= − [ψ + ψ + ψ + ψ]ϕ

 ∥∥ ∂f
∂y1

∥∥2

1+
∥∥ ∂f
∂y1

∥∥ +
∥∥ ∂f
∂y2

∥∥2

1+
∥∥ ∂f
∂y2

∥∥
 ≤ 0,

and hence f (η(s, y1, y2), q0N ) is a nonincreasing function of s and the claim follows for
all (y1, y2) such that f (y1, y2, q0N ) ≤ γ0N + 8V .

Take now any (y1, y2) ∈ E × E such that

γ0(TN )+ 8V < f (y1, y2, q0N ) ≤ C1.

Assume, by contradiction, that

f (η1(s, y1, y2), η2(s, y1, y2), q0N ) > γ0(TN )+ 8V, ∀s ∈ [0, τ3].

Fix s ∈ [0, τ3]. If ‖ηi(s, y1, y2)‖∞ ≥ (2CNi /ωi)‖∇δ‖∞K̄ for i = 1 or 2 then by Lemma
6.6 we have

max
{∥∥∥∥ ∂f∂y1

(η1, η2, q0N )

∥∥∥∥
∞

,

∥∥∥∥ ∂f∂y2
(η1, η2, q0N )

∥∥∥∥
∞

}
≥ χ

and, by definition of ψ ,

ψ

(
ωi‖ηi(s, y1, y2)‖∞

CNi ‖∇δ‖∞K̄

)
= 1.

Otherwise ‖ηi(s, y1, y2)‖∞ < (2CNi /ωi)‖∇δ‖∞K̄ for i = 1, 2. Using the assumption and
the definition of K̄ , we obtain, for i = 1, 2 and N sufficiently large,

‖ηi‖∞ <
2CNi
ωi
‖∇δ‖2∞K̄

2 1
‖∇δ‖∞K̄

<
V
K̄

1
‖∇δ‖∞K̄

≤
V
c̄

1
‖∇δ‖∞

1+ δ − α
c̄

<
V

γ0(TN )

1
‖∇δ‖∞

(1+ δ(0, 0)),

so that the first conclusion of Lemma 6.5 holds for (η1(s, y1, y2), η2(s, y1, y2)). Then if

|Q1(η1(s, y1, y2))| <
2CN1
ω1
‖∇δ‖2∞K̄

2

(the same argument applies if |Q2(η2(s, y1, y2))| < (2CN2 /ω2)‖∇δ‖
2
∞K̄

2), for N
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sufficiently large we have

1
2
Q2(η2(s, y1, y2)) = f (η1(s, y1, y2), η2(s, y1, y2), q0N )

−
1
2
Q1(η1(s, y1, y2))−

∫ T

0
[q̇2

0N/2+ (1+ δ(η1, η2))V (q0N )]

> γ0(TN )+ 8V −
CN1
ω1
‖∇δ‖2∞K̄

2
− γ0(TN )− 2V

= 6V −
CN1
ω1
‖∇δ‖2∞K̄

2
≥ 6V −

V
2K̄
≥ 5V ≥ 5

CN2
ω2
‖∇δ‖2∞K̄

2,

that is,

Q2(η2(s, y1, y2)) ≥ 10
CN2
ω2
‖∇δ‖2∞K̄

2,

so that by Lemma 6.6 we have

max
{∥∥∥∥ ∂f∂y1

(η1, η2, q0N )

∥∥∥∥
∞

,

∥∥∥∥ ∂f∂y2
(η1, η2, q0N )

∥∥∥∥
∞

}
≥ χ

and, by definition of ψ ,

ψ

(
ω2|Q2(η2(s, y1, y2))|

CN2 ‖∇δ‖
2
∞K̄

2

)
= 1.

Therefore we always have

max
{∥∥∥∥ ∂f∂y1

(η1, η2, q0N )

∥∥∥∥
∞

,

∥∥∥∥ ∂f∂y2
(η1, η2, q0N )

∥∥∥∥
∞

}
≥ χ

and

ψ

(
ω1‖η1(s, y1, y2)‖∞

CN1 ‖∇δ‖∞K̄

)
+ ψ

(
ω2‖η2(s, y1, y2)‖∞

CN2 ‖∇δ‖∞K̄

)
+ ψ

(
ω1|Q1(η1(s, y1, y2))|

CN1 ‖∇δ‖
2
∞K̄

2

)
+ ψ

(
ω2|Q2(η2(s, y1, y2))|

CN2 ‖∇δ‖
2
∞K̄

2

)
≥ 1.

We also have, for all s ∈ [0, τ3],

ϕ(f (η1(s, y1, y2), η2(s, y1, y2), q0N )) = 1.

Then

C1 − γ0(TN )− 8V > f (y1, y2, q0N )− f (η1(τ3, y1, y2), η2(τ3, y1, y2), q0N )

= −

∫ τ3

0

df

ds
(η1(s, y1, y2), η2(s, y1, y2), q0N ) ds

≥
χ2

1+ χ
τ3 = C1 − γ0(TN ),

a contradiction which proves the claim.
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We now define

h : E−1 × E
−

2 → E × E × Γ̄ ,

(y1, y2) 7→ h(y1, y2) = (η1(τ3, y1, y2), η2(τ3, y1, y2), q0N ).
(6.9)

There exists L large such that

f (y1, y2, q0N ) < 0 ∀‖(y1, y2)‖ ≥ L,

and hence, by definition of (η1, η2),

h(y1, y2) = (y1, y2, q0N ) ∀‖(y1, y2)‖ ≥ L,

which shows that h ∈ H. Finally, since f (y1, y2, q0N ) ≤ C1 for all (y1, y2) ∈ E
−

1 × E
−

2 ,
we have

(6.10) f (h(y1, y2)) ≤ γ0(TN )+ 8V ∀(y1, y2) ∈ E
−

1 × E
−

2 ,

and
c(TN ) ≤ γ0(TN )+ 8V. 2

LEMMA 6.11. Let (y1N , y2N , qN ) ∈ E × E × Γ̄ be a critical point at level c(TN ) and
assume

Cϕi

ωi
‖∇δ‖∞K̄ max{1, ‖∇δ‖∞K̄} <

V
2K̄

, i = 1, 2.

Then, for N large, there exists η1 ≤ η0 such that for all 0 < η ≤ η1, there exist 0 < τN1 <

τN2 < TN such that

0 ≤ qN (t) ≤ η ∀t ∈ [0, τN1 ],

qN (t) ∈ [η, 2π − η] ∀t ∈ [τN1 , τ
N
2 ],

2π − η ≤ qN (t) ≤ 2π ∀t ∈ [τN2 , TN ].

PROOF. In the proof we will omit the superscripts and subscripts N for brevity. Let η ≤
η1, let τ1 = inf{s ∈ [0, T ] | q(s) > η} and τ2 = sup{s ∈ [0, T ] | q(s) < 2π − η}. If the
lemma does not hold, then arguing as in Lemma 5.1, we deduce that there is τ ′1 ∈ (τ1, T ]
such that q(τ ′1) = η and

(6.12)
∫ τ ′1

τ1

[q̇2/2+ (1+ δ(0, 0))V (q)] ≥ 2η̄

√
1+ δ(0, 0)

2
Vη̄/2.

Now we define a new function q̄ ∈ Γ̄ by setting

q̄(t) =


0, 0 ≤ t ≤ τ ′1 − 1,
ηt − ητ ′1 + η, τ ′1 − 1 ≤ t ≤ τ ′1,
q(t), τ ′1 ≤ t ≤ T .
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In view of Remark 6.1 we have, for N sufficiently large,

1
2
Q1(y1)+

1
2
Q2(y2) ≥ −

1
2

(
CN1
ω1
+
CN2
ω2

)
‖∇δ‖2∞K̄

2 > −V,

and ∫ T

0
[δ(y1, y2)− δ(0, 0)]V (q) ≥ −‖∇δ‖∞(‖y1‖∞ + ‖y2‖∞)

∫ T

0
V (q)

≥ −

(
CN1
ω1
+
CN2
ω2

)
‖∇δ‖2∞K̄

2 > −2V.

Then, by the previous two estimates, we have

c(T ) =
1
2
Q1(y1)+

1
2
Q2(y2)+

∫ T

0
[q̇2/2+ (1+ δ(y1, y2))V (q)](6.13)

> −V +
∫ T

0
[q̇2/2+ (1+ δ(0, 0))V (q)]+

∫ T

0
[δ(y1, y2)− δ(0, 0)]V (q)

>

∫ T

0
[q̇2/2+ (1+ δ(0, 0))V (q)]− 3V.

By (6.12) and by definition of V (see (1.13)), we have

(6.14)
∫ T

0
[q̇2/2+ (1+ δ(0, 0))V (q)]

≥ 2η̄

√
1+ δ(0, 0)

2
Vη̄/2 +

∫ T

τ ′1

[q̇2/2+ (1+ δ(0, 0))V (q)]

= 24V +
∫ T

0
[ ˙̄q2/2+ (1+ δ(0, 0))V (q̄)]−

∫ τ ′1

τ ′1−1
[ ˙̄q2/2+ (1+ δ(0, 0))V (q̄)]

≥ 24V + γ0(T )− η
2/2− (1+ δ(0, 0))V (η)

≥ 24V + γ0(T )− η
2[1/2+ µ(1+ δ(0, 0))].

Then, putting together (6.13) and (6.14) and using Lemma 6.8 we obtain

c(T ) > −3V + 24V + γ0(T )− η
2[1/2+ µ(1+ δ(0, 0))]

≥ −3V + 24V + c(T )− 8V − η2[1/2+ µ(1+ δ(0, 0))]

= 13V − η2[1/2+ µ(1+ δ(0, 0))]+ c(T )

> η̄

√
1+ δ(0, 0)

2
Vη̄/2 − η

2[1/2+ µ(1+ δ(0, 0))]+ c(T ).

Therefore, since η ≤ η1, choosing η1 small enough, we get the contradiction c(T ) >
c(T ). 2

PROOF OF THEOREM 1.14. Let (y1N , y2N , qN ) ∈ E×E× Γ̄ be a critical point at level
c(TN ). For 0 < η ≤ η1, let τN1 and τN2 be given by Lemma 6.11. Then, we can repeat
the same arguments of Lemma 5.3, Proposition 5.6 and Proposition 5.7, and the theorem
is proved. 2
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