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ABSTRACT. — We prove two inequalities for the direct and truncated correlation functions for the nearest-
neighbour one-dimensional Edwards–Anderson model with symmetric quenched disorder. The second inequality
has the opposite sign of the GKS inequality of type II. In the non-symmetric case with positive average we show
that while the direct correlation keeps its sign the truncated one changes sign when crossing a suitable line in the
parameter space. That line separates the regions satisfying the second GKS inequality and the one proved here.
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1. INTRODUCTION AND RESULTS

In a recent paper [CL] a correlation inequality was proved for spin systems with quenched
symmetric random interaction in arbitrary dimension, extending a previous result for
the Gaussian case [CG1]. That inequality yields results for spin glasses similar to those
obtained for ferromagnetic systems from the first GKS inequality [Gr1, Gr2, KS], e.g.
it gives monotonicity of the pressure in the volume and bounds on the surface pressure.
Other inequalities have been considered: in particular the extension to non-symmetric
interactions and possible versions of a second type GKS inequality. Within ferromagnetic
systems the GKS inequality of the second type has indeed many consequences among
which monotonicity in the volume of the correlation functions and relations in different
lattices between critical temperatures and exponents.

In this work we study the d = 1 case (the spin chain) with nearest neighbour
interaction. In the same spirit of the GKS systems no assumption of translation invariance
is made on the interaction distributions. Such mild hypotheses make our result non-trivial
because it does not rely on a general exact solution, which can be obtained only at the
thermodynamic limit and only for some specific distributions of the disorder. For d = 1
we prove that both the inequality of the first type does extend to the non-symmetric case
and an inequality of the second type indeed holds in the symmetric case. A similar result
with a complete proof of inequalities of type I and II has been obtained so far only along
the Nishimori line [CMN, MNC]. The theorem is obtained by exploiting the fact that for
d = 1 the partition function expressed as sum over loops contains at most two terms. This
fact does not generalise to higher dimensions.
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Let us consider a spin chain with periodic boundary condition

H(σ, J ) = −

N∑
i=1

Jiσiσi+1

with σN+1 = σ1. Here, as usual, σi = ±1, i = 1, . . . , N . The random variables Ji have
independent distributions p(i)(Ji). We consider three different hypotheses, which will be
called system I, II and III in the remaining part of the paper:

I.

(1.1) p(i)(|Ji |) ≥ p
(i)(−|Ji |), ∀i,∀|Ji | ∈ R+.

II. The Ji are symmetric around a positive mean µi > 0:

(1.2) p(i)(µi + |Ji |) = p
(i)(µi − |Ji |), ∀i,∀|Ji | ∈ R+.

In the case of discrete variables: Ji = µi±J (i), p(i)(µi+J (i)) = p(i)(µi−J (i)) = 1/2, we
assume that J (i) > µi (see below for further explanations) and we introduce the notations:

ai = µi + J
(i), −bi = µi − J

(i), ai, bi > 0.

III. The Ji are discrete variables taking on values ±J (i) with J (i) > 0 such that

α :=
∏
i

(pi − qi) ≥ 0 where pi = p
(i)(J (i)), qi = p

(i)(−J (i)).

Let ωh be the thermal average of σhσh+1, ωh,k that of σhσh+1σkσk+1, and Av[·] the average
over the quenched disorder.

Our main results are:

PROPOSITION 1.1. For all three systems,

(1.3) Av[Jhωh] > 0, ∀h = 1, . . . , N.

PROPOSITION 1.2. For systems I and III with α = 0,

(1.4) Av[JhJk(ωhk − ωhωk)] < 0, ∀h, k = 1, . . . , N, h 6= k.

PROPOSITION 1.3. For system III with α > 0, for every l there exists a curve α(J (l)) in
the (J (l), α) quadrant such that the quantity

(1.5) Av[JhJk(ωhk − ωhωk)]

changes its sign from negative to positive when crossing the curve α(J (l)) by increasing α
and such that on the curve α(J (l)),

(1.6) Av[JhJk(ωhk − ωhωk)] = 0, ∀h, k = 1, . . . , N, h 6= k.

Moreover Av[JhJk(ωhk − ωhωk)] is increasing in α along the J (l) = const lines.
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2. PROOFS

We start by proving the following lemmata.

LEMMA 2.1. System III can be rewritten as

(2.7) H(τ,K) = −KNτNτN−1 −

N−1∑
i=1

J (i)τiτi+1

with

KN = J
(N)

N∏
i=1

sgn(Ji) = ±J (N).(2.8)

Setting P = prob(KN = J (N)) and Q = prob(KN = −J (N)) we have

P =
1+

∏
i(pi − qi)

2
,(2.9)

Q =
1−

∏
i(pi − qi)

2
.(2.10)

LEMMA 2.2. Consider system II with discrete variables and assume that µh = 0 for at
least one h. Such a system can be rewritten as

H(τ,K) = −

N∑
i=1

Kiτiτi+1,

where

Kh = Jh = ±ah, ah > 0,(2.11)

Ki =

{
ai > 0,
bi > 0,(2.12)

the two cases having probability 1/2.

PROOF OF LEMMA 2.1. The proof is based on the gauge transformation αj =∏
1≤i<j sgn(Ji) for 2 ≤ j ≤ N , α1 = 1. Set τi = αiσi . H is given by (2.7) with

KN = J (N)
∏N
i=1 sgn(Ji). We now have to compute the new probability measure for∏N

i=1 sgn(Ji). We obtain

Av
[ N∏
i=1

sgn(Ji)
]
=

N∏
i=1

Av[sgn(Ji)] =
N∏
i=1

(pi − qi) = P −Q.

PROOF OF LEMMA 2.2. Group the bond configurations in pairs that only differ by the
sign of Jh and gauge transform them using the same transformation of Lemma 2.1. What
we obtain is

Ki = |Ji | > 0, Kh = Jh = ±J
(h),
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Moreover, since p(K(h)) = p(J (h)) or p(K(h)) = p(−J (h)), p(K(l)) = 1/2 for all l.

Introduce, for system III, the following shorthand notations:

Ci := cosh(K(i)) = cosh(J (i)), Si := sinh(K(i)) = sinh(J (i)).

PROOF OF PROPOSITION 1.1. The partition function and the correlation of an N -spin
chain with periodic boundary conditions can be written as

Z =
∏
i

Ci +
∏
i

Si,(2.13)

ωh =
1
Z

[
Sh
∏
i 6=h

Ci + Ch
∏
i 6=h

Si

]
.(2.14)

SYSTEM III: Using Lemma 2.1 one has

Av{J }[Jhωh] = Av(Kh)[Khωh] = K(h)
{Pω|kh=k(h) −Qω|kh=−k(h)}(2.15)

= K(h)
{Q[ω|kh=k(h) − ω|kh=−k(h) ]+ (P −Q)ω|kh=k(h)} ≥ 0

due to the first Griffiths inequality for ferromagnetic systems.

SYSTEM I: The discrete distribution is a special case of system III. The continuous case
can be obtained by writing the full probability distribution as a product of a discrete part
with symmetric values with respect to zero, and a continuos one from 0 and ∞. More
explicitly, considering a function f ,

AvJ [f (J )] =
∫
+∞

0
(f (J )p(J )+ f (−J )p(−J )) dJ,

and writting av{J }[·] for the discrete average one has

Av{J }[Jhωh] =
∫
+∞

0
· · ·

∫
+∞

0
av{J }[Jhωh] dJ1 · · · dJN .

By (1.1) and (2.15) the quantity av{J }[·] is positive, and the positivity of the whole average
follows immediately.

SYSTEM II: Since the pressure is a convex function of the µi’s (the second derivative is
a variance) we can prove our theorem for µh = 0. In the discrete case, using Lemma 2.2
we observe that the average over the Ki for i 6= h is on positive values and does not affect
the sign. From µh = 0 it follows that P = Q = 1/2 and we obtain the conclusion from
(2.15).

The result for the continuous case is obtained from the discrete one as for system I.

PROOF OF PROPOSITION 1.2. For discrete variables (system III), using the standard
hyperbolic expansion

ωhk =
1
Z

[
ShSk

∏
i 6=h,k

Ci + ChCk
∏
i 6=h,k

Si

]
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we obtain

ωhk − ωhωk =
1
Z2

{(
ShSk

∏
i 6=h,k

Ci + ChCk
∏
i 6=h,k

Si

)(∏
i

Ci +
∏
i

Si

)
−

(
Sh
∏
i 6=h

Ci + Ch
∏
i 6=h

Si

)(
Sk
∏
i 6=k

Ci + Ck
∏
i 6=k

Si

)}
=

1
Z2

{ ∏
i 6=h,k

CiSi · (C
2
hC

2
k + S

2
hS

2
k − C

2
hS

2
k − S

2
hC

2
k )
}

=

∏
i 6=h,k CiSi

(
∏
i Ci +

∏
i Si)

2 .

If at least one of the random variables is symmetric we have P = Q = 1/2; using Lemma
2.1 one has

(2.16) Av[KhKk(ωhk − ωhωk)]

= J (k) · Av(KN )

[
Kh ·

∏
i 6=h,k CiSi

(
∏
i Ci +

∏
i Si)

2

]
= J (k)J (h)

∏
i 6=h,k

CiSi ·
1
2

{
1

(
∏
i Ci +

∏
i Si)

2 −
1

(
∏
i Ci −

∏
i Si)

2

}

= −2 J (k)J (h)
∏
i 6=h,k

CiSi ·

∏
i CiSi

(
∏
i C

2
i −

∏
i S

2
i )

2
< 0.

The extension to the continuous case is as above.

PROOF OF PROPOSITION 1.3. Let α > 0 or equivalently P = (1+ α)/2 > 1/2 > Q =

(1− α)/2. As in (2.16), we obtain

Av[KhKk(ωhk − ωhωk)]

= J (k)J (h)
∏
i 6=h,k

CiSi ·
P(
∏
Ci −

∏
Si)

2
−Q(

∏
Ci +

∏
Si)

2

(
∏
C2
i −

∏
S2
i )

2

=
J (k)J (h)

∏
i 6=h,k CiSi

(
∏
i C

2
i −

∏
i S

2
i )

2
·

{
(P −Q)

(∏
i

C2
i +

∏
i

S2
i

)
− 2

∏
i

CiSi

}
.

The sign of the above expression is, by inspection, the same as that of the curly parentheses.
Set

g(α; {J }) := α
(∏
i

C2
i +

∏
i

S2
i

)
− 2

∏
i

CiSi .

One obtains:

• α = 0 (zero mean spin glass)⇒ g(α; {J }) < 0;
• α = 1 (ferromagnetic)⇒ g(α; {J }) = (

∏
i Ci −

∏
i Si)

2 > 0;
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• for all J (l), g(α; {J }) is an increasing function of α;
• Av(Kh)[KhKk(ωhk − ωhωk)] = 0 on the (J (l), α) plane curve with J (l) > 0 and 0 ≤
α ≤ 1 defined by

(2.17) α(J (l)) =
2ClSl

∏
i 6=l CiSi

C2
l

∏
i 6=l C

2
i + S

2
l

∏
i 6=l S

2
i

.

The proof of the inequalities for one-dimensional systems with free boundary
conditions or for tree-like lattices is trivial since, due to the absence of loops, the partition
function factorizes as

Z = 2N
∏
i

cosh(λiJi),

and consequently the first inequality is satisfied even without taking the average and the
second inequality reduces obviously to the equality to zero.

3. COMMENTS

We have proved that a one-dimensional spin glass system satisfies a family of
correlation inequalities without the assumption of translation invariance for the interaction
distribution. The first inequality extends a similar one proved in [CL] for any lattice and any
interaction with zero mean value. Here we have shown that the inequality is stable under
suitable deformations of the zero mean hypotheses. The inequality of type II proved here
shows that in the zero mean case the truncated correlation function has the opposite sign
of the standard GKS inequality, i.e. the case of interactions with zero variance and positive
mean. We have moreover identified the line crossing at which the truncated correlation
changes its sign. It would be interesting to establish if an inequality of type (1.4) is also
satisfied in higher dimensions (see [KNA]). In fact, as a straightforward computation shows
in the Gaussian case, if such an inequality holds then the overlap expectation would be
monotonic in the volume and several regularity properties would follow (see [CG2]). We
also mention that the inequality (1.4) does not hold in general topologies as was shown to
us by Hal Tasaki for a Bernoulli spin chain with an extra bond connecting two non-adjacent
sites. Moreover, a similar violation of (1.4) can be obtained in the case where the disorder,
still having zero average, is non-symmetric.
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