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ABSTRACT. — We discuss uniqueness and nondegeneracy of extremals for some weighted Sobolev
inequalities and give some applications to Grushin and scalar curvature type equations. The main
theme is hyperbolic symmetry.
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1. INTRODUCTION

In this note we announce some results (see [3] and [11] for details) concerning positive
extremals for optimal Hardy–Sobolev–Maz’ya inequalities (see [12])
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where (y, z) ∈ Rk
× Rh, k, h ∈ N, N = k + h, p > 2 and p ≤ 2N/(N − 2) if

N ≥ 3, t = N − (N − 2)p/2. Inequality (1.1) holds for all µ ≤ ((k − 2)/2)2 and
u ∈ C∞0 ((Rk

\ {0})×Rh). If k = 1, we mean R+ instead of R.
Existence of minimizers for (1.1) has been established in [2] in the special case

µ = 0, k ≥ 2 and subsequently in [14] and [15] in other cases.
In case k ≥ 2 and µ = 0, cylindrical symmetry, regularity and decay

properties of (positive) extremals have been established in [5]. Actually, in case
p = 2(N − 1)/(N − 2) extremals have been completely identified therein: they are
given, up to dilation and translation in z, by

(1.2) U(y, z) =

[
(N − 2)(k − 1)
(1+ |y|)2 + |z|2

](N−2)/2

.

Cylindrical symmetry has been established in case 0 ≤ µ ≤ ((k − 2)/2)2 in [8].
We address here uniqueness and nondegeneracy of positive extremals. We work

out this problem by studying the Euler–Lagrange equation for (1.1):

(1.3) −∆u = µ
u

|y|2
+
|u|p−2u

|y|t
in RN (in R+ ×Rh if k = 1).
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The starting point, to be discussed in Section 2, where a symmetry result is also
presented, is the connection we discovered between (1.3) and the following equation
on Hn, the n = h+ 1-dimensional hyperbolic space:

(1.4) ∆Hnv + λv + vp−1
= 0,

where ∆Hn is the Laplace–Beltrami operator in Hn. In Sections 3–4, we present
uniqueness results for (1.4), which apply to (1.3) and to critical Grushin equations
as well and then we prove nondegeneracy in some cases.

In Section 4 we apply these results to scalar curvature type equations.

2. HYPERBOLIC SYMMETRY

We deal with symmetric entire solutions of (1.3), i.e. solutions u ∈ Dµ, the closure,
with respect to the norm given by the r.h.s. in (1.1), of the space of cylindrically
symmetric C∞0 ((Rk

\ {0})×Rh) functions. Actually, Dµ is the class where solutions
of (1.3) have been found (see [14], [8], [15], [11]).

Ifµ < ((k − 2)/2)2 and k 6= 2 thenDµ = D1(RN ). However,D((k−2)/2)2 is larger
than D1(RN ). In fact, u ∈ D((k−2)/2)2 iff

∫
Rk×Rh |y|

2−k
|∇|y|(k−2)/2u|2 dy dz < +∞.

So, let u ∈ Dµ be a positive solution of (1.3). Set

u = u(|y|, z), (Hu)(r, z) := r(N−2)/2u(r, z).

The crucial observation is the following. Let n := h+ 1. Then Hu solves

(2.1) −∆Hnv := −(r2∆v − (n− 2)rvr) = λv + vp−1 in R+ ×Rh,

where λ = µ + ((n− 1)2 − (k − 2)2)/4 and ∆Hn denotes the Laplace–Beltrami
operator on (the half-space model for) Hn. In addition, the mapH is energy preserving,
in the sense we are going to specify. First, recall that in the half-space model for Hn

the Sobolev norm of v ∈ H 1(Hn) is

|||v|||2 :=
∫

Hn

[|∇Hnv|2 + v2] dVHn =

∫
R+×Rh

[r2
|∇v|2 + v2]

dr dz

rh+1 .

Now, given v ∈ C∞0 (R+ ×Rh), let

(Tkv)(y, z) := |y|−(N−2)/2v(|y|, z), y ∈ Rk, z ∈ Rn−1.

Then

(2.2) ωk

∫
Hn

[|∇Hnv|2 − λv2] dVHn =

∫
Rk×Rh

[
|∇Tkv|

2
− µ

(Tkv)
2

|y|2

]
dy dz,
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where λ = µ + ((n− 1)2 − (k − 2)2)/4. From (2.2) and (1.1) we get the (sharp)
Poincaré and Sobolev inequalities∫

Hn

|∇Hnv|2 dVHn ≥
(n− 1)2

4

∫
Hn

v2 dVHn ∀v ∈ H 1(Hn),(2.3)

S̃n,p

(∫
Hn

vp dVHn

)2/p

≤

∫
Hn

[
|∇Hnv|2 −

(n− 1)2

4
v2
]
dVHn,(2.4)

where, in (2.4), 2 < p ≤ 2n/(n− 2) if n ≥ 3 and p > 2 if n = 2.
In particular, (

∫
Hn[|∇Hnv|2 − λv2] dVHn)1/2 is a norm on C∞0 (Hn) if λ ≤

(n− 1)2/4. We let Hλ be the closure of C∞0 (Hn) with respect to this norm. From
(2.2) we see that Tk extends to an isometry betweenHλ and Dµ.

THEOREM 2.1. Let p > 2 if n = 2, and 2 < p ≤ 2n/(n− 2) if n ≥ 3. Let v ∈ Hλ

be a positive solution of (2.1). Then v has hyperbolic symmetry, i.e., for some x0 ∈ H,
v(x) depends only on the distance between x0 and x in Hn.

The proof of Theorem 2.1 is based on a hyperbolic version of the moving plane
method (cf. [1]) in connection with (2.4).

3. HYPERBOLIC SYMMETRY AND UNIQUENESS

THEOREM 3.1. Let λ ≤ 2p/(p + 2)2 if n = 2, and λ ≤ (n− 1)2/4 if n ≥ 3. Then
(2.1) has at most one positive solution inHλ.

COROLLARY 3.2. Positive symmetric extremals of (1.1) are unique if µ ≤

(k − 2)2/4 and h ≥ 2, k ≥ 1. If h = 1, we have to assume µ ≤ (k − 2)2/4− 1
4 (
p−2
p+2 )

2.

To prove Theorem 3.1 we can assume, by Theorem 2.1 and in the ball model for
Hn, that v ∈ Hλ is a positive radial solution in {ξ ∈ Rn : |ξ | < 1} of

(3.1)
[

1− |ξ |2

2

]2

∆v + (n− 2)
[

1− |ξ |2

2

]
〈∇v, ξ〉 + λv + vp−1

= 0.

In hyperbolic polar coordinates t = log 1+|ξ |
1−|ξ | , w(t) := v(tanh t

2 ), (3.1) reads

(3.2) w′′ + (n− 1)(coth t)w′ + λw + wp−1
= 0, w′(0) = 0.

By means of an auxiliary energy, inspired by Kwong’s work (see [9]), and Sturm
comparison arguments we first prove

PROPOSITION 3.3. Let λ ≤ (n− 1)2/4 and p ≤ 2∗ if n ≥ 3. If n = 2 assume
λ ≤ 2p/(p + 2)2. Then the Dirichlet problem

ψ ′′ + (n− 1)(coth t)ψ ′ + λψ + ψp−1
= 0,

ψ ′(0) = 0, ψ(T ) = 0, ψ(t) > 0 ∀t ∈ [0, T ),
(3.3)

has at most one solution, and no solution if n ≥ 3, p = 2∗, λ = n(n− 2)/4.
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The next step is to establish precise asymptotic decay.

LEMMA 3.4. Let n ≥ 2, p > 2, λ ≤ (n− 1)2/4. Let v ∈ Hλ be a positive radial
solution of (3.1) and w(t) := v(tanh t

2 ). Then

lim
t→+∞

logw2

t
= lim
t→+∞

logw′2

t
= −[n− 1+

√
(n− 1)2 − 4λ].

Using Proposition 3.3 and Lemma 3.4 we can prove Theorem 3.1.
We now derive from Theorem 3.1 uniqueness of cylindrically symmetric positive

extremals of the weighted Sobolev inequality (see [13])

‖u‖2α :=
∫

RN
(|∇yu|

2
+ (α + 1)2|y|2α|∇zu|2) dy dz(3.4)

≥ S̃

(∫
RN
|u|2Q/Q−2 dy dz

)(Q−2)/Q

∀u ∈ C∞0 (R
N ),

where N := k + h, k, h ≥ 1, (y, z) ∈ Rk
× Rh, α > 0, Q := k + h(1 + α). The

associated Euler–Lagrange equation is the critical Grushin-type equation

(3.5) −∆yu− (α + 1)2|y|2α∆zu = |u|4/(Q−2)u, u ∈ Dα(RN ),

where Dα(RN ) is the closure of C∞0 (RN ) with respect to ‖u‖α (see [13] and [7]). A
cylindrically symmetric positive solution u of (3.5) gives, via the change of variables

v(r, z) := (α + 1)−(Q−2)/2r(Q−2)/2(1+α)u(r1/(1+α), z),

a solution of

−∆Hnv −
1
4

[
h2
−

(
k − 2
α + 1

)2]
v = v(Q+2)/(Q−2).

In addition, a direct computation gives for every u ∈ C∞0 ((Rk
\ {0}) × Rh), u =

u(|y|, z) and n = h+ 1,

ωk(α+1)
∫

Hn

[
|∇Hnv|2−

h2

4
v2
]
dVHn = (α+1)−(Q−2)

[
‖u‖2α−

(k − 2)2

4

∫
RN

u2

|y|2

]
.

This gives a Hardy inequality (see also [4]), which in turn implies, when k ≥ 3, that
v ∈ H 1(Hn) iff ‖u‖α <∞ ((3.4) can be similarly derived from (2.4)).

So, as another application of Theorem 3.1, we get the following improvement (in
case k ≥ 2) of a uniqueness result in [13]:

PROPOSITION 3.5. Let k 6= 2 and h ≥ 1, or k = 2 and h ≥ 2. Then there is at most
one cylindrically symmetric positive entire solution of (3.5).



HARDY–SOBOLEV INEQUALITIES AND HYPERBOLIC SYMMETRY 193

4. HYPERBOLIC SYMMETRY AND NONDEGENERACY

We now show how to prove nondegeneracy of positive solutions for

(4.1) −∆u =
uN/(N−2)

|y|
, u ∈ D1(RN ).

Positive solutions of (4.1) are given by Uλ,ζ (y, z) := λ(N−2)/2U(λy, λz + ζ ), λ > 0,
ζ ∈ Rh, U as in (1.2). Taking derivatives in λ and ζ , we see that

(4.2) Ψ0 :=
1− |y|2 − |z|2

[(1+ |y|)2 + |z|2]N/2
and Ψj :=

zj

[(1+ |y|)2 + |z|2]N/2

for j = 1, . . . , h are solutions for the linearization of (4.1) at U :

(4.3) −∆Ψ =
N(k − 1)

(1+ |y|)2 + |z|2
Ψ, Ψ ∈ D1(RN ).

Nondegeneracy is the content of the following:

THEOREM 4.1. Let Ψ be a solution of (4.3) and Ψj be as in (4.2). Then

∃c0, . . . , ch ∈ R : Ψ =

h∑
j=0

cjΨj .

Qualitative properties of solutions of (4.3) are first required.

PROPOSITION 4.2. Let Ψ be a solution of (4.3). Then Ψ is smooth in {y 6= 0} and
Hölder continuous up to {y = 0}. Furthermore,

(i) |Ψ (x)| ≤ c/(1+ |x|N−2) for some c > 0,
(ii) Ψ is radially symmetric in y.

Thanks to (ii), we can rewrite (4.3) as an equation for the hyperbolic laplacian
on the ball model. Let M denote the Möbius map (the standard hyperbolic isometry
between the half-space and the ball model)

M(r, z) :=
(

1− r2
− |z|2

(1+ r)2 + |z|2
,

2z
(1+ r)2 + |z|2

)
.

Then Φ(ξ) := (HΨ )(Mξ), ξ ∈ Rn, |ξ | < 1, is in H 1(Hn) and solves

−∆HnΦ := −
[

1− |ξ |2

2

]2

∆Φ − (n− 2)
[

1− |ξ |2

2

]
〈∇Φ, ξ〉(4.4)

=
h2
− (k − 2)2

4
Φ +

N(k − 1)
4

(1− |ξ |2)Φ.
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In particular, (4.4) has the solutions

Φj (ξ) =

(
1− |ξ |2

4

)(N−2)/2

ξj , j = 0, . . . , h.

Now the proof of Theorem 4.1 ends in two steps. If Φ solves (4.3), then

STEP 1. ∃c0, . . . , ch ∈ R such that Φr := Φ −
∑h
j=0 cjΦj is radial.

STEP 2. (4.4) has no nontrivial radial solution in H 1(Hn).

We sketch the proof of Step 2. Let z(ρ) := Φr(
√
ρ)(

1−ρ
2 )−(N−2)/2 for ρ ∈ (0, 1).

Proposition 4.2(ii) implies z is bounded in (0, 1), while, easily,

(4.5) ρ(1− ρ)z′′ +
[
h+ 1

2
−

(
h+ 2k − 3

2
+ 1

)
ρ

]
z′ +

k − 1
2

z = 0

in (0, 1). Now, (4.5) is Gauss’s hypergeometric equation. Its solutions are given
explicitly by hypergeometric functions and one can deduce that z 6= 0 implies z
unbounded on (0, 1). Thus z ≡ 0.

5. SCALAR CURVATURE TYPE EQUATIONS

The Webster scalar curvature problem on the unit sphere in Cn, a CR analogue of the
Nirenberg problem, is to find positive solutions of

(5.1) −∆H nu(ξ) = R(ξ)u(ξ)(Q+2)/(Q−2) in H n,

whereQ := 2n+2,H n
= R2n

×R is the Heisenberg group and∆H n is the Heisenberg
sublaplacian.

In case R(ξ) = 1 + εK(ξ), (5.1) has been studied in [10], and in case R(ξ) =
R(|Z|, t), ξ = (Z, t) ∈ R2n

× R, it has been studied in [6]. In this regard, we recall
(see [13]) that the Heisenberg sublaplacian acts on cylindrically symmetric functions
as the Grushin operator:

if u(Z, t) = u(|Z|, t) then ∆H nu = ∆Zu+ 4|Z|2ut t ,

where ∆Z is the laplacian in R2n. More general critical Grushin equations appear in
[7], related to the Yamabe problem in groups of Heisenberg type:

(5.2) −∆yu− 4|y|2∆zu = u(Q+2)/(Q−2)

for (y, z) ∈ R2n
×Rh and h ≥ 1. Here Q = 2n+ 2h. So, (5.1) belongs to the class

(5.3) −∆yu− 4|y|2∆zu = K(y, z)u(Q+2)/(Q−2).

Under symmetry assumptions, (5.3) is related to equation (4.1), in the following sense.
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Let N = n+ 1+ h and consider the equation

(5.4) −∆u = φ(y, z)
uN/(N−2)

|y|
, (y, z) ∈ Rn+1

×Rh.

LEMMA 5.1. Let K(y, z) = K(|y|, z). Set φ(y, t) := 1
4K(
√
|y|, z) and assume u =

u(|y|, z) solves (5.4). Then v(y, t) := u(|y|2, t) solves (5.3).

On the base of Sections 3–4, several results can be proved for (5.4). We present
some of them, somehow global in nature, applied to (5.1).

THEOREM 5.1. LetR = R(|Z|, t), withR ≡ R(∞) = 1 on {Z = 0}. Suppose that
either infR(ξ) > 2−2−1/n, orR(Z, t) = 1+ ρ(Z, t) where ρ ∈ Cc (H n

\ {Z = 0}).
Then (5.1) has a solution.

We solve (5.4) by global variational methods. For u ∈ D1(RN ), let

(5.5) J (u) =
1
2

∫
RN
|∇u|2 dx −

N − 2
2(N − 1)

∫
RN
φ(x)
|u|2(N−1)/(N−2)

|y|
dx.

A blow-up analysis can be carried out for Palais–Smale sequences of J . Thanks to
the uniqueness result for (4.1), precise information on how blow-up can occur can be
obtained assuming φ(0, z) ≡ φ(∞) = 1. Denoting by S = S0

1 the best constant in
(1.1) with µ = 0 and t = 1, we can prove in this case

LEMMA 5.2. Either J has a positive critical point, or Palais–Smale sequences at
levels β ∈ (SN−1/2(N − 1), SN−1/(N − 1)) cannot blow up.

The nature of blow-up implies low sublevels are disconnected and this leads to a
min-max level β > SN−1/2(N − 1) while the assumptions in Theorems 5.1 allow
proving that β < SN−1/(N − 1), a rather surprising result under the second one.

Finally, nondegeneracy of the critical points of J established in Section 4 allows
one to perform a finite-dimensional reduction, in the spirit of [10]. Let

(∗)
N ≥ 4, φ = 1+ εϕ, ψ(z) := ϕ(0, z), z ∈ Rh,

the limits lim
x→0

φ

(
x

|x|2

)
and lim

x→0
∇zφ

(
x

|x|2

)
6= 0 exist.

THEOREM 5.2. Assume (∗). Let ψ(z) have a finite number of nondegenerate critical
points ζj , j = 1, . . . , m, of index mj = m(ψ; ζj ) such that

∆∗(ζj ) := (k − 1)∆yϕ(0, ζj )+ (2k + h− 3)∆zϕ(0, ζj ) 6= 0 ∀j.
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Then (5.4) has a solution for |ε| small provided∑
{j :∆∗(ζj )>0}

(−1)mj 6= 1.

As for (5.1), let K = K(|Z|, t) be smooth, such that lim|Z|2+t2→∞K exists and

∂ iK
∂r i

(0, t) ≡ 0 ∀i = 1, . . . , 4, ∃c 6= 0 : t2Kt (0, t) −→
|t |→∞

c.

COROLLARY 5.3. Let R := 1 + εK, K as above and such that K(0, t) has only a
finite number of, nondegenerate, critical points. Then (5.1) has a solution for ε small,
provided K(0, t) has at least two minima.
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