

Rend. Lincei Mat. Appl. 19 (2008), 189[–197](#page-8-0)

Mathematical analysis. — *Hardy–Sobolev inequalities and hyperbolic symmetry*, by DANIELE CASTORINA, ISABELLA FABBRI, GIANNI MANCINI and KUNNATH SANDEEP, communicated on 12 June 2008.

ABSTRACT. — We discuss uniqueness and nondegeneracy of extremals for some weighted Sobolev inequalities and give some applications to Grushin and scalar curvature type equations. The main theme is hyperbolic symmetry.

KEY WORDS: Nonlinear PDE; hyperbolic symmetry; Hardy–Sobolev inequalities.

MATHEMATICS SUBJECT CLASSIFICATION (2000): Primary 35J60; Secondary 35B05, 35A15.

1. INTRODUCTION

In this note we announce some results (see [\[3\]](#page-7-0) and [\[11\]](#page-7-1) for details) concerning positive extremals for optimal Hardy–Sobolev–Maz'ya inequalities (see [\[12\]](#page-7-2))

$$
(1.1) \qquad \sqrt{S_t^{\mu}} \biggl(\int_{\mathbb{R}^k \times \mathbb{R}^h} \frac{|u|^p}{|y|^t} \, dy \, dz \biggr)^{1/p} \le \biggl(\int_{\mathbb{R}^k \times \mathbb{R}^h} \biggl[|\nabla u|^2 - \mu \frac{u^2}{|y|^2} \biggr] \, dy \, dz \biggr)^{1/2},
$$

where $(y, z) \in \mathbb{R}^k \times \mathbb{R}^h$, $k, h \in \mathbb{N}$, $N = k + h$, $p > 2$ and $p \le 2N/(N-2)$ if $N \ge 3$, $t = N - (N - 2)p/2$. Inequality [\(1.1\)](#page-0-0) holds for all $\mu \le ((k - 2)/2)^2$ and $u \in C_0^{\infty}((\mathbb{R}^k \setminus \{0\}) \times \mathbb{R}^h)$. If $k = 1$, we mean \mathbb{R}^+ instead of \mathbb{R} .

Existence of minimizers for (1.1) has been established in [\[2\]](#page-7-3) in the special case $\mu = 0, k \ge 2$ and subsequently in [\[14\]](#page-8-1) and [\[15\]](#page-8-2) in other cases.

In case $k \ge 2$ and $\mu = 0$, cylindrical symmetry, regularity and decay properties of (positive) extremals have been established in [\[5\]](#page-7-4). Actually, in case $p = 2(N - 1)/(N - 2)$ extremals have been completely identified therein: they are given, up to dilation and translation in z , by

(1.2)
$$
U(y, z) = \left[\frac{(N-2)(k-1)}{(1+|y|)^2+|z|^2}\right]^{(N-2)/2}.
$$

Cylindrical symmetry has been established in case $0 \le \mu \le ((k-2)/2)^2$ in [\[8\]](#page-7-5).

We address here uniqueness and nondegeneracy of positive extremals. We work out this problem by studying the Euler–Lagrange equation for [\(1.1\)](#page-0-0):

(1.3)
$$
-\Delta u = \mu \frac{u}{|y|^2} + \frac{|u|^{p-2}u}{|y|^t} \quad \text{in } \mathbb{R}^N \quad (\text{in } \mathbb{R}^+ \times \mathbb{R}^h \text{ if } k = 1).
$$

The starting point, to be discussed in Section 2, where a symmetry result is also presented, is the connection we discovered between [\(1.3\)](#page-0-1) and the following equation on \mathbb{H}^n , the $n = h + 1$ -dimensional hyperbolic space:

$$
(1.4) \qquad \qquad \Delta_{\mathbb{H}^n} v + \lambda v + v^{p-1} = 0,
$$

where $\Delta_{\mathbb{H}^n}$ is the Laplace–Beltrami operator in \mathbb{H}^n . In Sections 3–4, we present uniqueness results for (1.4) , which apply to (1.3) and to critical Grushin equations as well and then we prove nondegeneracy in some cases.

In Section 4 we apply these results to scalar curvature type equations.

2. HYPERBOLIC SYMMETRY

We deal with symmetric entire solutions of [\(1.3\)](#page-0-1), i.e. solutions $u \in \mathcal{D}_{\mu}$, the closure, with respect to the norm given by the r.h.s. in [\(1.1\)](#page-0-0), of the space of cylindrically symmetric $C_0^{\infty}((\mathbb{R}^k \setminus \{0\}) \times \mathbb{R}^h)$ functions. Actually, \mathcal{D}_{μ} is the class where solutions of [\(1.3\)](#page-0-1) have been found (see [\[14\]](#page-8-1), [\[8\]](#page-7-5), [\[15\]](#page-8-2), [\[11\]](#page-7-1)).

If $\mu < ((k-2)/2)^2$ and $k \neq 2$ then $\mathcal{D}_{\mu} = D^1(\mathbb{R}^N)$. However, $\mathcal{D}_{((k-2)/2)^2}$ is larger than $D^1(\mathbb{R}^N)$. In fact, $u \in \mathcal{D}_{((k-2)/2)^2}$ iff $\int_{\mathbb{R}^k \times \mathbb{R}^h} |y|^{2-k} |\nabla |y|^{(k-2)/2} u|^2 dy dz < +\infty$. So, let $u \in \mathcal{D}_{\mu}$ be a positive solution of [\(1.3\)](#page-0-1). Set

$$
u = u(|y|, z),
$$
 $(Hu)(r, z) := r^{(N-2)/2}u(r, z).$

The crucial observation is the following. Let $n := h + 1$. Then Hu solves

$$
(2.1) \qquad -\Delta_{\mathbb{H}^n} v := -(r^2 \Delta v - (n-2) r v_r) = \lambda v + v^{p-1} \quad \text{in } \mathbb{R}^+ \times \mathbb{R}^h,
$$

where $\lambda = \mu + ((n-1)^2 - (k-2)^2)/4$ and $\Delta_{\mathbb{H}^n}$ denotes the Laplace–Beltrami operator on (the half-space model for) \mathbb{H}^n . In addition, the map H is energy preserving, in the sense we are going to specify. First, recall that in the half-space model for \mathbb{H}^n the Sobolev norm of $v \in H^1(\mathbb{H}^n)$ is

$$
|||v|||^2 := \int_{\mathbb{H}^n} [|\nabla_{\mathbb{H}^n} v|^2 + v^2] dV_{\mathbb{H}^n} = \int_{\mathbb{R}^+ \times \mathbb{R}^h} [r^2 |\nabla v|^2 + v^2] \frac{dr \, dz}{r^{h+1}}.
$$

Now, given $v \in C_0^{\infty}(\mathbb{R}^+ \times \mathbb{R}^h)$, let

$$
(T_k v)(y, z) := |y|^{-(N-2)/2} v(|y|, z), \quad y \in \mathbb{R}^k, z \in \mathbb{R}^{n-1}.
$$

Then

$$
(2.2) \qquad \omega_k \int_{\mathbb{H}^n} [|\nabla_{\mathbb{H}^n} v|^2 - \lambda v^2] \, dV_{\mathbb{H}^n} = \int_{\mathbb{R}^k \times \mathbb{R}^h} \left[|\nabla T_k v|^2 - \mu \frac{(T_k v)^2}{|y|^2} \right] dy \, dz,
$$

where $\lambda = \mu + ((n-1)^2 - (k-2)^2)/4$. From [\(2.2\)](#page-1-1) and [\(1.1\)](#page-0-0) we get the (sharp) Poincaré and Sobolev inequalities

$$
(2.3) \qquad \int_{\mathbb{H}^n} |\nabla_{\mathbb{H}^n} v|^2 dV_{\mathbb{H}^n} \geq \frac{(n-1)^2}{4} \int_{\mathbb{H}^n} v^2 dV_{\mathbb{H}^n} \quad \forall v \in H^1(\mathbb{H}^n),
$$

S˜ n,pZ Hn v p dVHⁿ 2/p ≤ Z Hn |∇Hⁿ v| ² − (n − 1) 2 4 v 2 (2.4) dVHⁿ ,

where, in [\(2.4\)](#page-2-0), $2 < p \le \frac{2n}{n-2}$ if $n \ge 3$ and $p > 2$ if $n = 2$.

In particular, $(\int_{\mathbb{H}^n} [|\nabla_{\mathbb{H}^n} v|^2 - \lambda v^2] dV_{\mathbb{H}^n})^{1/2}$ is a norm on $C_0^{\infty}(\mathbb{H}^n)$ if $\lambda \leq$ $(n-1)^2/4$. We let \mathcal{H}_λ be the closure of $C_0^\infty(\mathbb{H}^n)$ with respect to this norm. From [\(2.2\)](#page-1-1) we see that T_k extends to an isometry between \mathcal{H}_{λ} and \mathcal{D}_{μ} .

THEOREM 2.1. *Let* $p > 2$ *if* $n = 2$ *, and* $2 < p \le 2n/(n-2)$ *if* $n \ge 3$ *. Let* $v \in H_\lambda$ *be a positive solution of* [\(2.1\)](#page-1-2). Then *v* has hyperbolic symmetry, i.e., for some $x_0 \in \mathbb{H}$, $v(x)$ depends only on the distance between x_0 and x in \mathbb{H}^n .

The proof of Theorem [2.1](#page-2-1) is based on a hyperbolic version of the moving plane method (cf. [\[1\]](#page-7-6)) in connection with [\(2.4\)](#page-2-0).

3. HYPERBOLIC SYMMETRY AND UNIQUENESS

THEOREM 3.1. Let $\lambda \leq 2p/(p+2)^2$ if $n = 2$, and $\lambda \leq (n-1)^2/4$ if $n \geq 3$. Then [\(2.1\)](#page-1-2) has at most one positive solution in \mathcal{H}_{λ} .

COROLLARY 3.2. *Positive symmetric extremals of* [\(1.1\)](#page-0-0) *are unique if* $\mu \leq$ $(k-2)^2/4$ *and* $h \ge 2, k \ge 1$ *. If* $h = 1$ *, we have to assume* $\mu \le (k-2)^2/4 - \frac{1}{4}(\frac{p-2}{p+2})$ $\frac{p-2}{p+2}$)².

To prove Theorem [3.1](#page-2-2) we can assume, by Theorem [2.1](#page-2-1) and in the ball model for \mathbb{H}^n , that $v \in \mathcal{H}_\lambda$ is a positive radial solution in $\{\xi \in \mathbb{R}^n : |\xi| < 1\}$ of

(3.1)
$$
\left[\frac{1-|\xi|^2}{2}\right]^2 \Delta v + (n-2)\left[\frac{1-|\xi|^2}{2}\right] \langle \nabla v, \xi \rangle + \lambda v + v^{p-1} = 0.
$$

In hyperbolic polar coordinates $t = \log \frac{1+|\xi|}{1-|\xi|}$, $w(t) := v(\tanh \frac{t}{2})$, [\(3.1\)](#page-2-3) reads

(3.2)
$$
w'' + (n-1)(\coth t)w' + \lambda w + w^{p-1} = 0, \quad w'(0) = 0.
$$

By means of an auxiliary energy, inspired by Kwong's work (see [\[9\]](#page-7-7)), and Sturm comparison arguments we first prove

PROPOSITION 3.3. Let $\lambda \leq (n-1)^2/4$ and $p \leq 2^*$ if $n \geq 3$. If $n = 2$ assume $\lambda \leq 2p/(p+2)^2$. Then the Dirichlet problem

(3.3)
$$
\psi'' + (n-1)(\coth t)\psi' + \lambda \psi + \psi^{p-1} = 0,
$$

$$
\psi'(0) = 0, \quad \psi(T) = 0, \quad \psi(t) > 0 \quad \forall t \in [0, T),
$$

has at most one solution, and no solution if $n \geq 3$, $p = 2^*$, $\lambda = n(n-2)/4$.

The next step is to establish precise asymptotic decay.

LEMMA 3.4. *Let* $n \geq 2$, $p > 2$, $\lambda \leq (n-1)^2/4$. Let $v \in H_\lambda$ be a positive radial *solution of* [\(3.1\)](#page-2-3) *and* $w(t) := v(\tanh \frac{t}{2})$ *. Then*

$$
\lim_{t \to +\infty} \frac{\log w^2}{t} = \lim_{t \to +\infty} \frac{\log w^2}{t} = -[n - 1 + \sqrt{(n - 1)^2 - 4\lambda}].
$$

Using Proposition [3.3](#page-2-4) and Lemma [3.4](#page-3-0) we can prove Theorem [3.1.](#page-2-2)

We now derive from Theorem [3.1](#page-2-2) uniqueness of cylindrically symmetric positive extremals of the weighted Sobolev inequality (see [\[13\]](#page-7-8))

(3.4)
$$
||u||_{\alpha}^{2} := \int_{\mathbb{R}^{N}} (|\nabla_{y} u|^{2} + (\alpha + 1)^{2}|y|^{2\alpha} |\nabla_{z} u|^{2}) dy dz
$$

$$
\geq \tilde{S} \bigg(\int_{\mathbb{R}^{N}} |u|^{2Q/Q - 2} dy dz \bigg)^{(Q-2)/Q} \forall u \in C_{0}^{\infty}(\mathbb{R}^{N}),
$$

where $N := k + h$, $k, h \geq 1$, $(y, z) \in \mathbb{R}^k \times \mathbb{R}^h$, $\alpha > 0$, $Q := k + h(1 + \alpha)$. The associated Euler–Lagrange equation is the critical Grushin-type equation

(3.5)
$$
-\Delta_{y}u - (\alpha + 1)^{2}|y|^{2\alpha}\Delta_{z}u = |u|^{4/(Q-2)}u, \quad u \in \mathcal{D}^{\alpha}(\mathbb{R}^{N}),
$$

where $\mathcal{D}^{\alpha}(\mathbb{R}^N)$ is the closure of $C_0^{\infty}(\mathbb{R}^N)$ with respect to $||u||_{\alpha}$ (see [\[13\]](#page-7-8) and [\[7\]](#page-7-9)). A cylindrically symmetric positive solution u of [\(3.5\)](#page-3-1) gives, via the change of variables

$$
v(r, z) := (\alpha + 1)^{-(Q-2)/2} r^{(Q-2)/2(1+\alpha)} u(r^{1/(1+\alpha)}, z),
$$

a solution of

$$
-\Delta \mathbb{H}^n v - \frac{1}{4} \left[h^2 - \left(\frac{k-2}{\alpha+1} \right)^2 \right] v = v^{(Q+2)/(Q-2)}.
$$

In addition, a direct computation gives for every $u \in C_0^{\infty}((\mathbb{R}^k \setminus \{0\}) \times \mathbb{R}^h)$, $u =$ $u(|y|, z)$ and $n = h + 1$,

$$
\omega_k(\alpha+1)\int_{\mathbb{H}^n}\bigg[|\nabla_{\mathbb{H}^n}v|^2-\frac{h^2}{4}v^2\bigg]dV_{\mathbb{H}^n}=(\alpha+1)^{-(Q-2)}\bigg[\|u\|_{\alpha}^2-\frac{(k-2)^2}{4}\int_{\mathbb{R}^N}\frac{u^2}{|y|^2}\bigg].
$$

This gives a Hardy inequality (see also [\[4\]](#page-7-10)), which in turn implies, when $k \geq 3$, that $v \in H^1(\mathbb{H}^n)$ iff $||u||_{\alpha} < \infty$ ([\(3.4\)](#page-3-2) can be similarly derived from [\(2.4\)](#page-2-0)).

So, as another application of Theorem [3.1,](#page-2-2) we get the following improvement (in case $k > 2$) of a uniqueness result in [\[13\]](#page-7-8):

PROPOSITION 3.5. Let $k \neq 2$ and $h \geq 1$, or $k = 2$ and $h \geq 2$. Then there is at most *one cylindrically symmetric positive entire solution of* [\(3.5\)](#page-3-1)*.*

4. HYPERBOLIC SYMMETRY AND NONDEGENERACY

We now show how to prove nondegeneracy of positive solutions for

(4.1)
$$
-\Delta u = \frac{u^{N/(N-2)}}{|y|}, \quad u \in D^1(\mathbb{R}^N).
$$

Positive solutions of [\(4.1\)](#page-4-0) are given by $U_{\lambda,\zeta}(y, z) := \lambda^{(N-2)/2} U(\lambda y, \lambda z + \zeta)$, $\lambda > 0$, $\zeta \in \mathbb{R}^h$, U as in [\(1.2\)](#page-0-2). Taking derivatives in λ and ζ , we see that

(4.2)
$$
\Psi_0 := \frac{1 - |y|^2 - |z|^2}{[(1 + |y|)^2 + |z|^2]^{N/2}} \text{ and } \Psi_j := \frac{z_j}{[(1 + |y|)^2 + |z|^2]^{N/2}}
$$

for $j = 1, \ldots, h$ are solutions for the linearization of [\(4.1\)](#page-4-0) at U:

(4.3)
$$
-\Delta \Psi = \frac{N(k-1)}{(1+|y|)^2+|z|^2} \Psi, \quad \Psi \in D^1(\mathbb{R}^N).
$$

Nondegeneracy is the content of the following:

THEOREM 4.1. *Let* Ψ *be a solution of* [\(4.3\)](#page-4-1) *and* Ψ _{*i*} *be as in* [\(4.2\)](#page-4-2)*. Then*

$$
\exists c_0,\ldots,c_h\in\mathbb{R}:\quad \Psi=\sum_{j=0}^hc_j\Psi_j.
$$

Qualitative properties of solutions of [\(4.3\)](#page-4-1) are first required.

PROPOSITION 4.2. *Let* Ψ *be a solution of* [\(4.3\)](#page-4-1). *Then* Ψ *is smooth in* $\{y \neq 0\}$ *and Hölder continuous up to* $\{y = 0\}$ *. Furthermore,*

(i) $|\Psi(x)| \le c/(1+|x|^{N-2})$ *for some* $c > 0$ *,*

(ii) Ψ *is radially symmetric in* y*.*

Thanks to (ii) , we can rewrite (4.3) as an equation for the hyperbolic laplacian on the ball model. Let M denote the Möbius map (the standard hyperbolic isometry between the half-space and the ball model)

$$
M(r, z) := \left(\frac{1 - r^2 - |z|^2}{(1 + r)^2 + |z|^2}, \frac{2z}{(1 + r)^2 + |z|^2}\right).
$$

Then $\Phi(\xi) := (H\Psi)(M\xi), \xi \in \mathbb{R}^n, |\xi| < 1$, is in $H^1(\mathbb{H}^n)$ and solves

(4.4)
$$
- \Delta_{\mathbb{H}^n} \Phi := - \left[\frac{1 - |\xi|^2}{2} \right]^2 \Delta \Phi - (n - 2) \left[\frac{1 - |\xi|^2}{2} \right] \langle \nabla \Phi, \xi \rangle
$$

$$
= \frac{h^2 - (k - 2)^2}{4} \Phi + \frac{N(k - 1)}{4} (1 - |\xi|^2) \Phi.
$$

In particular, [\(4.4\)](#page-4-3) has the solutions

$$
\Phi_j(\xi) = \left(\frac{1-|\xi|^2}{4}\right)^{(N-2)/2} \xi_j, \quad j = 0, \dots, h.
$$

Now the proof of Theorem [4.1](#page-4-4) ends in two steps. If Φ solves [\(4.3\)](#page-4-1), then

STEP 1. $\exists c_0, \ldots, c_h \in \mathbb{R}$ such that $\Phi^r := \Phi - \sum_{j=0}^h c_j \Phi_j$ is radial. STEP 2. [\(4.4\)](#page-4-3) has no nontrivial radial solution in $H^1(\mathbb{H}^n)$.

We sketch the proof of Step 2. Let $z(\rho) := \Phi^r(\sqrt{\rho})(\frac{1-\rho}{2})^{-(N-2)/2}$ for $\rho \in (0, 1)$. Proposition [4.2\(](#page-4-5)ii) implies z is bounded in $(0, 1)$, while, easily,

(4.5)
$$
\rho(1-\rho)z'' + \left[\frac{h+1}{2} - \left(\frac{h+2k-3}{2} + 1\right)\rho\right]z' + \frac{k-1}{2}z = 0
$$

in (0, 1). Now, [\(4.5\)](#page-5-0) is *Gauss's hypergeometric equation*. Its solutions are given explicitly by hypergeometric functions and one can deduce that $z \neq 0$ implies z unbounded on $(0, 1)$. Thus $z \equiv 0$.

5. SCALAR CURVATURE TYPE EQUATIONS

The Webster scalar curvature problem on the unit sphere in \mathbb{C}^n , a CR analogue of the Nirenberg problem, is to find positive solutions of

(5.1)
$$
-\Delta_{H^n}u(\xi) = \mathcal{R}(\xi)u(\xi)^{(Q+2)/(Q-2)} \text{ in } H^n,
$$

where $Q := 2n+2$, $H^n = \mathbb{R}^{2n} \times \mathbb{R}$ is the Heisenberg group and Δ_{H^n} is the Heisenberg sublaplacian.

In case $\mathcal{R}(\xi) = 1 + \varepsilon \mathcal{K}(\xi)$, [\(5.1\)](#page-5-1) has been studied in [\[10\]](#page-7-11), and in case $\mathcal{R}(\xi) =$ $\mathcal{R}(|Z|, t), \xi = (Z, t) \in \mathbb{R}^{2n} \times \mathbb{R}$, it has been studied in [\[6\]](#page-7-12). In this regard, we recall (see [\[13\]](#page-7-8)) that the Heisenberg sublaplacian acts on cylindrically symmetric functions as the Grushin operator:

if
$$
u(Z, t) = u(|Z|, t)
$$
 then $\Delta_{H^n} u = \Delta_Z u + 4|Z|^2 u_{tt}$,

where Δ_Z is the laplacian in \mathbb{R}^{2n} . More general critical Grushin equations appear in [\[7\]](#page-7-9), related to the Yamabe problem in groups of Heisenberg type:

(5.2)
$$
-\Delta_y u - 4|y|^2 \Delta_z u = u^{(Q+2)/(Q-2)}
$$

for $(y, z) \in \mathbb{R}^{2n} \times \mathbb{R}^h$ and $h \ge 1$. Here $Q = 2n + 2h$. So, [\(5.1\)](#page-5-1) belongs to the class

(5.3)
$$
-\Delta_y u - 4|y|^2 \Delta_z u = K(y, z)u^{(Q+2)/(Q-2)}.
$$

Under symmetry assumptions, (5.3) is related to equation (4.1) , in the following sense.

Let $N = n + 1 + h$ and consider the equation

(5.4)
$$
-\Delta u = \phi(y, z) \frac{u^{N/(N-2)}}{|y|}, \quad (y, z) \in \mathbb{R}^{n+1} \times \mathbb{R}^h.
$$

LEMMA 5.1. *Let* $K(y, z) = K(|y|, z)$. Set $\phi(y, t) := \frac{1}{4} K(\sqrt{|y|}, z)$ and assume $u =$ $u(|y|, z)$ *solves* [\(5.4\)](#page-6-0)*. Then* $v(y, t) := u(|y|^2, t)$ *solves* [\(5.3\)](#page-5-2)*.*

On the base of Sections 3–4, several results can be proved for [\(5.4\)](#page-6-0). We present some of them, somehow global in nature, applied to [\(5.1\)](#page-5-1).

THEOREM 5.1. *Let* $\mathcal{R} = \mathcal{R}(|Z|, t)$ *, with* $\mathcal{R} \equiv \mathcal{R}(\infty) = 1$ *on* $\{Z = 0\}$ *. Suppose that either* $\inf \mathcal{R}(\xi) > 2^{-2-1/n}$, or $\mathcal{R}(Z, t) = 1 + \rho(Z, t)$ where $\rho \in C_c$ $(H^n \setminus \{Z = 0\})$. *Then* [\(5.1\)](#page-5-1) *has a solution.*

We solve [\(5.4\)](#page-6-0) by global variational methods. For $u \in D^1(\mathbb{R}^N)$, let

$$
(5.5) \tJ(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx - \frac{N-2}{2(N-1)} \int_{\mathbb{R}^N} \phi(x) \frac{|u|^{2(N-1)/(N-2)}}{|y|} dx.
$$

A blow-up analysis can be carried out for Palais–Smale sequences of J. Thanks to the uniqueness result for [\(4.1\)](#page-4-0), precise information on how blow-up can occur can be obtained assuming $\phi(0, z) \equiv \phi(\infty) = 1$. Denoting by $S = S_1^0$ the best constant in [\(1.1\)](#page-0-0) with $\mu = 0$ and $t = 1$, we can prove in this case

LEMMA 5.2. *Either* J *has a positive critical point, or Palais–Smale sequences at levels* $\beta \in (S^{N-1}/2(N-1), S^{\hat{N}-1}/(N-1))$ *cannot blow up.*

The nature of blow-up implies low sublevels are disconnected and this leads to a min-max level $\beta > S^{N-1}/2(N-1)$ while the assumptions in Theorems [5.1](#page-6-1) allow proving that $\beta < S^{N-1}/(N-1)$, a rather surprising result under the second one.

Finally, nondegeneracy of the critical points of J established in Section 4 allows one to perform a finite-dimensional reduction, in the spirit of [\[10\]](#page-7-11). Let

$$
N \ge 4, \quad \phi = 1 + \varepsilon \varphi, \quad \psi(z) := \varphi(0, z), \quad z \in \mathbb{R}^h,
$$

$$
(\ast)
$$

the limits $\lim_{x\to 0} \phi\left(\frac{x}{|x|}\right)$ $|x|^2$) and $\lim_{x\to 0} \nabla_z \phi \left(\frac{x}{|x|} \right)$ $|x|^2$ $\Big) \neq 0$ exist.

THEOREM 5.2. *Assume* (∗)*. Let* ψ(z) *have a finite number of nondegenerate critical points* ζ_i , $j = 1, \ldots, m$, *of index* $m_j = m(\psi; \zeta_j)$ *such that*

$$
\Delta^*(\zeta_j) := (k-1)\Delta_y \varphi(0,\zeta_j) + (2k+h-3)\Delta_z \varphi(0,\zeta_j) \neq 0 \quad \forall j.
$$

Then [\(5.4\)](#page-6-0) *has a solution for* |ε| *small provided*

$$
\sum_{\{j\,:\,\Delta^*(\zeta_j)>0\}} (-1)^{m_j}\neq 1.
$$

As for [\(5.1\)](#page-5-1), let $K = \mathcal{K}(|Z|, t)$ be smooth, such that $\lim_{|Z|^2 + t^2 \to \infty} \mathcal{K}$ exists and

$$
\frac{\partial^i \mathcal{K}}{\partial r^i}(0, t) \equiv 0 \quad \forall i = 1, ..., 4, \quad \exists c \neq 0: \quad t^2 \mathcal{K}_t(0, t) \underset{|t| \to \infty}{\longrightarrow} c.
$$

COROLLARY 5.3. Let $\mathcal{R} := 1 + \varepsilon \mathcal{K}$, K as above and such that $\mathcal{K}(0, t)$ has only a *finite number of, nondegenerate, critical points. Then* [\(5.1\)](#page-5-1) *has a solution for* ε *small, provided* K(0, t) *has at least two minima.*

REFERENCES

- [1] L. ALMEIDA - L. DAMASCELLI - Y. GE, *A few symmetry results for nonlinear elliptic PDE on noncompact manifolds*. Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 313–342.
- [2] M. BADIALE - G. TARANTELLO, *A Sobolev–Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics*. Arch. Ration. Mech. Anal. 163 (2002), 259–293.
- [3] D. CASTORINA - I. FABBRI - G. MANCINI - K. SANDEEP, *Hardy–Sobolev inequalities, hyperbolic symmetry and scalar curvature type equations*. J. Differential Equations, to appear.
- [4] L. D'AMBROSIO, *Hardy inequalities related to Grushin type operators*. Proc. Amer. Math. Soc. 132 (2003), 725–734.
- [5] I. FABBRI - G. MANCINI - K. SANDEEP, *Classification of solutions of a critical Hardy–Sobolev operator*. J. Differential Equations 224 (2006), 258–276.
- [6] V. FELLI - F. UGUZZONI, *Some existence results for the Webster scalar curvature problem in presence of symmetry*. Ann. Mat. Pura Appl. 183 (2004), 469–493.
- [7] N. GAROFALO - D. VASSILEV, *Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type*. Duke Math. J. 106 (2001), 411–448.
- [8] M. GAZZINI - R. MUSINA, *Hardy–Sobolev–Maz'ya inequalities: symmetry and breaking symmetry of extremal functions*. Preprint.
- [9] M. K. KWONG - Y. LI, *Uniqueness of radial solutions of semilinear elliptic equations*. Trans. Amer. Math. Soc. 333 (1992), 339–363.
- [10] A. MALCHIODI - F. UGUZZONI, *A perturbation result for the Webster scalar curvature problem on the CR sphere*. J. Math. Pures Appl. 81 (2002), 983–997.
- [11] G. MANCINI - K. SANDEEP, *On a semilinear elliptic equation in* \mathbb{H}^n . Ann. Scuola Norm. Sup. Pisa Cl. Sci., to appear.
- [12] V. G. MAZ'YA, *Sobolev Spaces*. Springer Ser. Soviet Math., Springer, Berlin, 1985.
- [13] R. MONTI - D. MORBIDELLI, *Kelvin transform for Grushin operators and critical semilinear equations*. Duke Math. J. 131 (2006), 167–202.
- [14] R. MUSINA, *Ground state solutions of a critical problem involving cylindrical weights*. Nonlinear Anal. 68 (2008), 3972–3986.
- [15] A. K. TERTIKAS - K. TINTAREV, *On existence of minimizers for the Hardy– Sobolev–Maz'ya inequality*. Ann. Mat. Pura Appl. 186 (2007), 645–662.

Received 28 February 2008, and in revised form 10 March 2008.

> D. Castorina, I. Fabbri, G. Mancini Dipartimento di Matematica Universita degli Studi "Roma Tre" ` Largo S. Leonardo Murialdo 1 00146 ROMA, Italy daniele.castorina@dipmat.unipg.it fabri@mat.uniroma3.it mancini@mat.uniroma3.it

K. Sandeep TIFR Centre for Applicable Mathematics Sharadanagar, Chikkabommasandra BANGALORE 560 064, India sandeep@math.tifrbng.res.in