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Partial differential equations. — Positive solutions of the Robin problem for semi-
linear elliptic equations on annuli, by YU-XIA FU and QIU-YI DAI, communicated
on 14 March 2008.

ABSTRACT. — Let n ≥ 3 and ΩR = {x ∈ Rn; R < |x| < 1}. We consider the following Robin
problem: 

−∆u = f (u), x ∈ ΩR,

u > 0, x ∈ ΩR,

∂u

∂ν
+ βu = 0, x ∈ ∂ΩR,

where β is a positive parameter and ν is the unit outward vector normal to ∂ΩR .
Under the assumptions (F1)–(F5) in the introduction, we prove that the above problem has at

most one solution when β is small enough. In addition to (F1)–(F5), if (A1) in the introduction is
satisfied, then the above problem has at least k nonradial solutions when β is large enough.
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1. INTRODUCTION

Let n ≥ 3 and Ω = ΩR = {x ∈ Rn
; R < |x| < 1}. We consider the following

problem:

(1.1)


−∆u = f (u), x ∈ ΩR,

u > 0, x ∈ ΩR,

∂u

∂ν
+ βu = 0, x ∈ ∂ΩR,

where β is a nonnegative parameter, ν is the unit outward vector normal to ∂ΩR , and
f ∈ C1(R) is a nonnegative function.

The investigation of the structure of solution sets is one of the main topics in the
study of elliptic partial differential equations. For problems like (1.1), there is vast
literature on two special cases: β = 0 and β = ∞.

When β = 0, problem (1.1) is called the Neumann problem. Under our
assumptions, it is trivial, since by integration by parts, we can easily prove that (1.1)
has no solution when β = 0.

When β = ∞, problem (1.1) is called the Dirichlet problem. There are many
interesting results on the Dirichlet problem (1.1), especially for the case of f (u) = up
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and 1 < p < (n+ 2)/(n− 2). For example, the compactness of the solution set
was obtained in [6]. Uniqueness and nonuniqueness of radial solutions were discussed
in [12, 13]. The existence of nonradial solutions was proven in [4]. Later on, a
multiplicity result for nonradial solutions for the inner radius R very close to 1 was
given in [10, 11] (to mention but a few results). For more results on the Dirichlet
problem (1.1) on general domains, we refer to [2, 13, 14, 19] and the references therein.

In the present note, we focus on the case β ∈ (0,∞). In this case, (1.1) is called
the Robin problem. Compared with the Dirichlet and Neumann problems, there are
few results on the Robin problem (see, however, [8, 15]). The reason seems to be
the general belief that results for the Robin problem should be similar to those for
the Dirichlet problem and the methods used may be similar. However, recent research
implies that this is not the case even for f (u) = λu. When f (u) = λu, it is well
known that problem (1.1) has a positive solution only for λ = λ1(Ω), where λ1(Ω)

is the first eigenvalue of the Laplacian with the corresponding boundary condition. In
the Dirichlet case, we know that λ1(Ω) is monotone with respect to the domain Ω ,
i.e. λ1(Ω1) ≥ λ1(Ω2) for Ω1 ⊂ Ω2. However, this is false for the Robin problem.
A Faber–Krahn type inequality is valid for both the first eigenvalue of the Dirichlet
problem and of the Robin problem (see [7]), but the proofs are very different: the Robin
case is more difficult, since the usual symmetrization method ceases to be applicable
(see [3, 5, 7]).

This note will give a new example which shows that the Robin problem is
essentially different from the Dirichlet problem. For this purpose, we assume that

(F1) f (s) > 0 for s > 0,
(F2) sf ′(s) > (1+ σ)f (s) for some 1 < σ < 4/(n− 2),
(F3) lims→∞ f (s)/s

p
= C > 0, 1 < p < (n+ 2)/(n− 2),

(F4) f (s)/s is monotone on (0,∞),
(F5) lims→0 f

′(s) = 0.

A typical example of f (s) which satisfies (F1)–(F5) is f (s) = sp with 1 < p <

(n+ 2)/(n− 2). For a fixed integer k > 1, we denote by L the least common multiple
of 1, . . . , k, and by ωn the area of the unit sphere in Rn. Let

C(n) =

(
2nπ
n+ 2

)2(
n

wn

)4/n

and D(n,L) =

(
L(L+ n− 2)

σC(n)

)n/2
.

Then our assumption on the inner radius R of the annulus ΩR is

(A1) R ≥
(

D(n,L)

1+D(n,L)

)1/n

.

By calculus of variation methods, one can easily prove that problem (1.1) has at
least one solution under the assumptions (F1)–(F5). So we will ignore the question of
pure existence for problem (1.1), and will be concerned with the uniqueness, symmetry
and symmetry breaking of solutions. Our main results can be stated as follows.

THEOREM 1. If (F1)–(F5) are satisfied, then there exists a positive number β∗ such
that problem (1.1) has at most one solution for any β ∈ (0, β∗).
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REMARK 2. By the symmetry of the operator and the domain, we conclude from
Theorem 1 that the solution of problem (1.1) is unique and radially symmetric when
β ∈ (0, β∗). This contrasts with the Dirichlet case, where many nonradial solutions
can be obtained provided that (A1) is satisfied (see [10]).

THEOREM 3. If (F1)–(F5) and (A1) are satisfied, then there exists a positive number
β∗ such that problem (1.1) has at least k nonradial positive solutions for any β ∈
(β∗,+∞).

REMARK 4. Theorem 3 implies that the symmetry and uniqueness results for solutions
of problem (1.1) fail to hold when β is large enough.

The paper is organized as follows. In Section 2, we study the uniqueness of
solutions of problem (1.1). Section 3 is devoted to looking for nonradial solutions.

2. THE PROOF OF THEOREM 1

To prove Theorem 1, we need the following lemmas.

LEMMA 2.1. If u is a nonnegative solution of the equation

−∆u = up, x ∈ Rn,

with 1 < p < (n+ 2)/(n− 2), then u ≡ 0.

Lemma 2.1 is proved in [6].

LEMMA 2.2. For β small enough, there exists a number M > 0 independent of β
such that any solution u = uβ of problem (1.1) satisfies

‖u‖L∞(Ω̄R) ≤ M.

PROOF. Suppose that the conclusion is not true. Then there exists a sequence βj → 0
as j → ∞, a corresponding sequence of solutions uj = uβj of problem (1.1) with
β = βj , and a sequence of points xj in Ω̄R such that

Mj = ‖uj‖L∞(Ω̄R) = uj (xj )→∞ as j →∞.

Consider the auxiliary function

vj (y) = M
−1
j uj (xj +M

(1−p)/2
j y)

defined on Ω̄j = M
(p−1)/2
j (Ω̄R − xj ). Then it is easy to verify that vj (y) satisfies the

following problem:

(2.1)


−∆yvj = v

p
j

f (Mjvj )

(Mjvj )
p , y ∈ Ωj ,

vj (0) = 1,
∂vj

∂ν
+M

(1−p)/2
j βjvj = 0, y ∈ ∂Ωj .
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If we denote by D either the whole space Rn or the half-space Rn
+, then Ωj → D as

j →∞.
Since |vj (y)| ≤ 1, by standard elliptic estimates there exists a positive constant C1

independent of j such that for any compact domain K ⊂ D, we have

‖vj‖C2,γ (K) ≤ C1

for j large enough. Hence, up to a subsequence, we may assume that {vj } converges
uniformly on any compact domain of D to a function v. Furthermore, by (2.1) and the
assumption (F3), v should satisfy

(2.2)


−∆v = Cvp, y ∈ D,

v(0) = 1,
∂v

∂ν
= 0, y ∈ ∂D (D = Rn

+),

If D = Rn, then ṽ = C1/(p−1)v satisfies

(2.3)
{
−∆ṽ = ṽp, y ∈ Rn,

ṽ(0) = C1/(p−1).

This contradicts Lemma 2.1.
If D = Rn

+, then the function ṽ defined by

ṽ(y1, . . . , yn) =

{
C1/(p−1)v(y1, . . . , yn) if y ∈ Rn

+,

C1/(p−1)v(y1, . . . , yn−1,−yn) if y ∈ Rn
−,

satisfies (2.3). This also contradicts Lemma 2.1.

PROOF OF THEOREM 1. We argue by contradiction. Suppose that the conclusion
of Theorem 1 is false. Then there exists a sequence βj → 0+ as j → ∞ such that
problem (1.1) with β = βj has two different solutions u(1)j , u(2)j . We shall deduce that,
up to a subsequence,

lim
j→∞

u
(i)
j = 0 uniformly on ΩR for i = 1, 2.

Indeed, by Lemma 2.2 and the standard elliptic estimate, there exists a positive
constant C independent of j such that

‖u
(i)
j ‖C2,γ (ΩR)

≤ C for i = 1, 2.

Hence, up to a subsequence, we may assume that u(i)j (i = 1, 2) converges uniformly
on ΩR to a function u(i) (i = 1, 2) as j →∞, and u(i) (i = 1, 2) is a solution of the
following problem:

(2.4)


−∆u = f (u), x ∈ ΩR,

u(x) ≥ 0, x ∈ ΩR,

∂u

∂ν
= 0, x ∈ ∂ΩR.

Now, u(i) ≡ 0 (i = 1, 2) follows from f (u) ≥ 0 and integration by parts.
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Set

wj (x) =
u
(1)
j (x)− u

(2)
j (x)

‖u
(1)
j − u

(2)
j ‖L∞(Ω̄R)

.

We can verify that wj (x) satisfies

(2.5)


−∆wj = f

′(ξj )wj , x ∈ ΩR,

‖wj‖L∞(Ω̄R) = 1,
∂wj

∂ν
+ βjwj = 0, x ∈ ∂ΩR,

where ξj (x) is between u(1)j (x) and u(2)j (x). Accordingly, ξj (x) → 0 as j → ∞.
Noticing that |wj | ≤ 1, by a standard elliptic estimate, and up to a subsequence, we
may assume that wj (x) converges uniformly on ΩR to a function w(x) as j → ∞.
Furthermore, since ξj (x)→ 0, by (F5) and (2.5), we know that w(x) satisfies

(2.6)


−∆w = 0, x ∈ ΩR,

‖w‖L∞(Ω̄R) = 1,
∂w

∂ν
= 0, x ∈ ∂ΩR.

This implies that w(x) ≡ ±1 on ΩR . Thus, there exists an integer N such that
u
(1)
j (x) − u

(2)
j (x) has a fixed sign on ΩR for any j > N . Consequently, it follows

from the assumption (F4) that f (u(1)j )/u
(1)
j − f (u

(2)
j )/u

(2)
j has a fixed sign on ΩR for

any j > N .
On the other hand, by Green’s formula, we have∫

ΩR

[f (u(1)j )u
(2)
j − f (u

(2)
j )u

(1)
j ] = 0,

which implies that f (u(1)j )/u
(1)
j − f (u

(2)
j )/u

(2)
j should change sign on ΩR for any j .

This contradiction completes the proof of Theorem 1.

3. THE PROOF OF THEOREM 3

This section is devoted to proving Theorem 3. To this end, we introduce some notations
and definitions. Let O(n) be the set of all n× n orthogonal matrices.

DEFINITION 3.1. LetG be a subgroup ofO(n). The action of an element g inG
on a function u : ΩR → R is defined by

gu(x) = u(gx) ∀x ∈ ΩR.

A function u is said to be invariant under G or G-symmetric if

gu(x) = u(x) for all g ∈ G, x ∈ ΩR;

in this case, we write u ∈ InvG.
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DEFINITION 3.2. Two functions u and v onΩR are said to be equivalent if there
exists a g ∈ O(n) such that v(x) = gu(x) for all x ∈ ΩR .

It is easy to check that if u and v are equivalent, then u is a solution of problem
(1.1) if and only if v is.

Let Gj be a rotation subgroup of O(2) defined by

Gj :=
{
g ∈ O(2); g(x1,x2) =

(
x1 cos

2πl
j
+x2 sin

2πl
j
,−x1 sin

2πl
j
+x2 cos

2πl
j

)
,

(x1, x2) ∈ R2, l is any integer
}
.

We will solve problem (1.1) by finding positive critical points of the functional

J (u) =
1
2

∫
ΩR

|∇u|2 +
1
2

∫
∂ΩR

βu2
−

∫
ΩR

F(u+),

where F(u) =
∫ u

0 f (t) dt and u+ = max{u, 0}.
Instead of looking for positive critical points of J (u) onH 1(ΩR), we look for them

on the Nehari submanifold M , where

M = {u ∈ H 1(ΩR); I (u) = 0 and u 6≡ 0}

and
I (u) =

∫
ΩR

|∇u|2 +

∫
∂ΩR

βu2
−

∫
ΩR

u+f (u+).

Let

V0 = {u ∈ M; u ∈ InvO(n)},
Vj = {u ∈ M; u ∈ Inv(Gj ×O(n− 2))} for j = 1, . . . , L.

It is obvious that V0⊂Vj for j=1, . . . , L. We first prove that V0 6=∅ and Vj − V0 6=∅

for j = 1, . . . , L. The former follows from the mountain pass lemma (see [1]) and
the symmetric criticality principle (see Theorem 1.28, pp. 18 in [16]). Indeed, if J (u)
is viewed as a functional on H 1

r (ΩR) = {u ∈ H
1(ΩR); u ∈ InvO(n)}, then it is

easy to verify that J (u) is C1 and has a mountain pass structure. Moreover, J (u)
satisfies the P-S condition due to (F2), (F3) and the compactness of the imbedding
H 1
r (ΩR) ↪→ Lp+1(ΩR). Consequently, we can obtain a nontrivial radial solution of

problem (1.1) by making use of the mountain pass lemma and the symmetric criticality
principle. Hence, V0 6= ∅.

To prove Vj − V0 6= ∅, the following lemmas are needed.

LEMMA 3.3. There exists a constant C > 0 independent of v such that for any
v ∈ M , we have

‖v‖H 1(ΩR)
≥ C.

PROOF. For any v ∈ M , we have v 6≡ 0 and∫
ΩR

|∇v|2 +

∫
∂ΩR

βv2
=

∫
ΩR

v+f (v+).
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By (F3), we conclude that there exists a constant C0 such that

f (v+) ≤ C0(v
+)p.

Hence, ∫
ΩR

|∇v|2 +

∫
∂ΩR

βv2
≤ C0

∫
ΩR

(v+)p+1.

By the Sobolev inequality, we have

(3.1)
∫
ΩR

|∇v|2 +

∫
∂ΩR

βv2
≤ C0‖v

+
‖
p+1
H 1

0 (ΩR)
≤ C0‖v

+
‖
p+1
H 1(ΩR)

.

If we denote by λβ1 (ΩR) the first eigenvalue of

(3.2)

−∆ϕ = λϕ, x ∈ ΩR,

∂ϕ

∂ν
+ βϕ = 0, x ∈ ∂ΩR,

then ∫
ΩR

|∇v|2 +

∫
∂ΩR

βv2
≥ λ

β

1 (ΩR)

∫
ΩR

v2 for any v ∈ H 1(ΩR).

Accordingly,

‖v‖2
H 1(ΩR)

=

∫
ΩR

|∇v|2 +

∫
ΩR

v2(3.3)

≤

∫
ΩR

|∇v|2 +
1

λ
β

1 (ΩR)

∫
ΩR

|∇v|2 +
β

λ
β

1 (ΩR)

∫
∂ΩR

v2

≤

(
1+

1

λ
β

1 (ΩR)

)(∫
ΩR

|∇v|2 +

∫
∂ΩR

βv2
)
.

Combining (3.1) and (3.3), we obtain

λ
β

1 (ΩR)

1+ λβ1 (ΩR)
‖v‖2

H 1(ΩR)
≤ C0‖v‖

p+1
H 1(ΩR)

.

This implies that

‖v‖H 1(ΩR)
≥

[
λ
β

1 (ΩR)

C0(1+ λ
β

1 (ΩR))

]1/(p−1)

,

and the proof of Lemma 3.3 is complete.

Let
b0 = inf{J (u); u ∈ V0}.



182 Y. FU - Q. DAI

Then, as V0 ↪→ Lp+1(ΩR) is compact, there exists u0 ∈ V0 such that J (u0) = b0.
Moreover, by Lemma 3.3 and the symmetric criticality principle, we have u0 > 0,
and u0 is a solution of problem (1.1). In the following paragraphs, unless specially
declared, we always use u0 to denote a minimizer of J (u) in V0, that is, u0 is a function
such that

J (u0) = b0 = inf{J (u); u ∈ V0}.

To continue our proof of Vj − V0 6= ∅, we consider the following linearized
eigenvalue problem of problem (1.1) at u0:

(3.4)

−∆w − f
′(u0)w = µw, x ∈ ΩR,

∂w

∂ν
+ βw = 0, x ∈ ∂ΩR.

In spherical coordinates, problem (3.4) is equivalent to

(3.5)


−ϕ′′(r)−

n− 1
r

ϕ′(r)−

{
f ′(u0)−

αj

r2

}
ϕ(r) = µj,lϕ(r), r ∈ (R, 1),

ϕ′(1)+ βϕ(1) = 0,
−ϕ′(R)+ βϕ(R) = 0,

where αj = j (j + n − 2), j = 0, 1, . . . , and l = 1, 2, . . . . Note that the αj are the
eigenvalues of−∆ on Sn−1, the unit sphere. If ψj denote the eigenfunctions of−∆ on
Sn−1 corresponding to αj , and ϕj,l are the eigenfunctions corresponding to µj,l(u0),
then the associated eigenfunctions wj,l of problem (3.4) are given by wj,l = ϕj,lψj .
In particular, for l = 1, if we denote ϕj,1 by ϕj , then wj = wj,1 = ϕjψj . It is easy to
check that w0 is radially symmetric.

To obtain a useful property of the eigenvalues of problem (3.5), we need the
following lemma.

LEMMA 3.4. Let λD1 (ΩR) be the first eigenvalue of

(3.6)
{
−∆ϕ = λϕ, x ∈ ΩR,

ϕ = 0, x ∈ ∂ΩR.

Then

λD1 (ΩR) >

[
2nπ

(n+ 2)(1− Rn)1/n

]2[
n

ωn

]4/n

.

PROOF. By Theorem 5.1, pp. 121 in [18] (or see [9]), we have

λD1 (ΩR) ≥
4nπ2

n+ 2
(nω−1

n )2/n
1

|ΩR|2/n
.

Since
|ΩR| =

ωn

n
(1− Rn),

we have

λD1 (ΩR) >

[
2nπ

(n+ 2)(1− Rn)1/n

]2[
n

ωn

]4/n

.

This completes the proof of Lemma 3.4.
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With the aid of Lemma 3.4, we can prove a useful property of the eigenvalues of
problem (3.5).

LEMMA 3.5. Assume that (F1), (F2), and (A1) are satisfied. Then there exists a
positive number β∗ such that µj,1(u0) < 0 for any 0 ≤ j ≤ L, and β > β∗.

PROOF. By the Rayleigh–Ritz formula for the first eigenvalue, we have

µj,1 = inf
{

Qj (v)∫ 1
R
rn−1v2

; v ∈ H 1(ΩR), v is radial
}
,

where

Qj (v) = −

∫ 1

R

∂

∂r

(
rn−1 ∂v

∂r

)
v −

∫ 1

R

rn−1
(
f ′(u0)−

αj

r2

)
v2.

Since u0 is a solution of problem (1.1), we have

(3.7)
∫
ΩR

|∇u0|
2
+

∫
∂ΩR

βu2
0 =

∫
ΩR

u0f (u0).

By (F2) and (3.7), we get

ωnQj (u0) =

∫
∂ΩR

βu2
0 +

∫
ΩR

|∇u0|
2
−

∫
ΩR

f ′(u0)u
2
0 +

∫
ΩR

αj

r2 u
2
0(3.8)

≤ −σ

(∫
∂ΩR

βu2
0 +

∫
ΩR

|∇u0|
2
)
+
αj

R2

∫
ΩR

u2
0,

where ωn is the area of Sn−1.
Let λβ1 (ΩR) be the first eigenvalue of the eigenvalue problem (3.2). Then∫

ΩR

|u0|
2
≤

1

λ
β

1 (ΩR)

(∫
∂ΩR

βu2
0 +

∫
ΩR

|∇u0|
2
)
.

From (3.8), we get

Qj (u0) ≤
1
ωn

(
−σ +

αj

R2λ
β

1 (ΩR)

)(∫
∂ΩR

βu2
0 +

∫
ΩR

|∇u0|
2
)
.

If j = 0, we have obviously Q0(u0) < 0 and µ0,1(u0) < 0.
If j ≥ 1, we conclude that there exists a positive number β∗ such that for any

β ∈ (β∗,∞), we have

λ
β

1 (ΩR) >

(
2nπ
n+ 2

)2(
n

ωn

)4/n

(1− Rn)−2/n,

due to Lemma 3.4 and limβ→∞ λ
β

1 (ΩR) = λ
D
1 (ΩR). Consequently,

−σ +
αj

R2λ
β

1 (ΩR)
< −σ +

αj

R2( 2nπ
n+2 )

2( n
ωn
)4/n(1− Rn)−2/n

.
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Let

C(n) =

(
2nπ
n+ 2

)2(
n

wn

)4/n

.

Then the right hand side of the above inequality becomes

−σ +
αj

R2(1− Rn)−2/nC(n)
.

Since
−σ +

αj

R2(1− Rn)−2/nC(n)
≤ 0

means (
Rn

1− Rn

)2/n

≥
αj

C(n)σ
,

it follows from the hypothesis (A1) that Qj (u0) < 0. Hence, µj,1(u0) < 0 for 1 ≤
j ≤ L, and the proof of Lemma 3.5 is complete.

LEMMA 3.6. Let (ρ, θ) be the polar coordinates in R2. For n > 2, let ψj =
ρj cos jθ (j ≥ 1) be the eigenfunction of −∆ on Sn−1 corresponding to αj . Then
wj = ϕjψj ∈ Inv(Gj ×O(n− 2)).

PROOF. Since ϕj is an eigenfunction of problem (3.5), ϕj is radial and ϕj ∈

InvO(n) ⊂ Inv(Gj × O(n − 2)). Moreover, by definition, the action of Gj on ψj
is equivalent to rotating it through 2πl/j , so we have

gψj = ρ
j cos j (θ + 2πl/j) = ψj , ∀g ∈ Gj .

Hence, wj = ϕjψj ∈ Inv(Gj ×O(n− 2)).
Now, the conclusion Vj −V0 6= ∅ follows immediately from the following lemma.

LEMMA 3.7. Let w0 and wj ∈ Inv(Gj × O(n − 2)) be eigenfunctions of problem
(3.1) associated to µ0,1 and µj,1 (1 ≤ j ≤ L) respectively, such that

∫
ΩR
w2

0 =∫
ΩR
w2
j = 1. Then there exist ε > 0 and a smooth function δ : (−ε, ε) → R with

δ(0) = δ′(0) = 0 such that

(3.9) I (u0 + δ(t)w0 + twj ) = 0

and

(3.10) J (u0 + δ(t)w0 + twj ) < J (u0)

for t small enough.

PROOF. Define a function H : R2
→ R by

H(δ, t) = I (u0 + δw0 + twj ).
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Obviously, H(0, 0) = 0, since u0 is a solution of problem (1.1). A simple calculation
implies that

H(δ, 0) = δ
∫
ΩR

{f (u0)− f
′(u0)u0}w0 +O(δ

2).

Hence, by (F2), we have

∂H

∂δ
(0, 0) =

∫
ΩR

{f (u0)− f
′(u0)u0}w0 < 0.

Consequently, by the implicit function theorem we conclude that there exists a number
ε > 0 and a smooth function δ = δ(t) : (−ε, ε) → R with δ(0) = 0 such that (3.9)
holds.

Next, we show that δ′(0) = 0. To this end, we first note that

H(0, t) = t
∫
ΩR

{f (u0)− f
′(u0)u0}wj +O(t

2)

for t small enough. Accordingly, ∂H
∂t
(0, 0) = 0 due to

∫
Sn−1 ψj (θ1, . . . , θn−1) = 0.

Now, δ′(0) = 0 follows immediately from the identity

(3.11)
∂H

∂δ
(δ(t), t)

dδ

dt
+
∂H

∂t
(δ(t), t) = 0.

Finally, a direct calculation implies that

J (u0 + δ(t)w0 + twj ) = J (u0)+
1
2
δ2µ0,1 +

1
2
t2µj,1 + o(t

2)

for t small enough. Hence, by Lemma 3.5, we know that J (u0+δ(t)w0+twj ) < J (u0)

for t small enough, and this completes the proof of Lemma 3.7.

To prove Theorem 3, we let

bj = inf{J (u); u ∈ Vj } for j = 1, . . . L.

Since Vj 6= ∅ and the imbeddings Vj ↪→ Lp+1(ΩR) are compact, we conclude that for
any 1 ≤ j ≤ L there exists uj ∈ Vj such that J (uj ) = bj . Furthermore, by Lemma 3.3
and the symmetric criticality principle, the uj are solutions of problem (1.1). Hence,
to complete the proof of Theorem 3, we have to prove the following two properties of
uj with 1 ≤ j ≤ k:

(i) uj is nonradial.
(ii) ui 6≡ uj for i 6= j and 1 ≤ i, j ≤ k.

Obviously, (i) follows immediately from Lemma 3.7, since bj < b0 by that lemma. To
prove (ii), we need the following lemma.

LEMMA 3.8. For any j = 1, 2, . . . and m = 2, 3, . . . , the inequality bj ·m < b0
implies bj < bj ·m.
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PROOF. Suppose that bj ·m is achieved at uj ·m, that is,

bj ·m = J (uj ·m), uj ·m ∈ Vj ·m, uj ·m 6≡ 0.

For convenience, we set u = uj ·m. According to the regularity theory of elliptic
equations, u is in fact a positive C2 function.

Let (ρ, θ) be the polar coordinates of R2 and y = (x3, x4, . . . , xn) ∈ Rn−2. We
write u(x) as u(ρ, θ, |y|). Let D denote the domain ΩR ∩Rn−2. Then∫

ΩR

|∇u|2 dx1 dx2 dy =

∫
D

∫ 2π

0

∫ 1

R

(
u2
ρ +

1
ρ2u

2
θ + |∇yu|

2
)
ρ dρ dθ dy,∫

∂ΩR

βu2
=

∫
D

∫ 2π

0
βu2 dθ dy,

∫
ΩR

F(u+) =

∫
D

∫ 2π

0

∫ 1

R

F(u+)ρ dρ dθ dy.

Define v ∈ Vj \ {0} by

v(ρ, θ, |y|) = u

(
ρ,
θ

m
, |y|

)
, 0 ≤ θ ≤ 2π.

Then

vρ(ρ, θ, |y|) = uρ

(
ρ,
θ

m
, |y|

)
,

vθ (ρ, θ, |y|) =
1
m
uθ

(
ρ,
θ

m
, |y|

)
,

∇yv(ρ, θ, |y|) = ∇yu

(
ρ,
θ

m
, |y|

)
.

Therefore,∫
ΩR

|∇v|2 dx1 dx2 dy =

∫
D

∫ 2π

0

∫ 1

R

(
u2
ρ +

1
ρ2m2u

2
θ + |∇yu|

2
)
ρ dρ dθ dy.

Similarly, ∫
∂ΩR

βv2
=

∫
∂ΩR

βu2,

∫
ΩR

F(v+) =

∫
ΩR

F(u+).

Since u does not belong to V0, we have∫
D

∫ 2π

0

∫ 1

R

1
ρ2m2u

2
θρ dρ dθ dy > 0.

Thus, by the definition of J ,

bj ≤ J (v) < J (u) = bj ·m.
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PROOF OF (ii). Let 1 ≤ i < j ≤ k, and L be the least common multiple of 1, . . . , k.
If j = i ·m for some m ≥ 2, then by Lemma 3.8 we have

bi < bj = bi·m,

since bi·m = bj < b0. Hence, uj 6= ui .
If j 6= i ·m for any m ≥ 2, then j < L, and Vi ∩ Vj = VL. If ui ≡ uj ≡ ū ∈ VL,

we have
bL ≤ J (ū) = bi < b0.

On the other hand, it follows from Lemma 3.8 that bi < bL, because L = i · mL for
some mL ≥ 2; this is a contradiction.
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Rayleigh–Faber–Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I
Math. 302 (1986), 47–50.

[4] H. BREZIS - L. NIRENBERG, Positive solutions of nonlinear elliptic equations
involving critical Sobolev exponents. Comm. Pure Appl. Math. 34 (1983), 437–477.

[5] D. DANERS, A Faber–Krahn inequality for Robin problems in any space dimension.
Math. Ann. 335 (2006), 767–785.

[6] B. GIDAS - J. SPRUCK, A priori bounds for positive solutions of nonlinear elliptic
equations. Comm. Partial Differential Equations 6 (1981), 883–891.

[7] T. GIORGI - R. G. SMITS, Monotonicity results for the principal eigenvalue of the
generalized Robin problem. Illinois J. Math. 49 (2005), 1133–1143.

[8] Y. G. GU - T. LIU, A priori estimate and existence of positive solutions of semilinear
elliptic equations with the third boundary value problem. J. Systems Sci. Complexity
14 (2001), 389–398.

[9] P. LI - S. T. YAU, On the Schrödinger equation and the eigenvalue problem. Comm.
Math. Phys. 88 (1983), 309–318.

[10] S. S. LIN, Existence of many positive nonradial solutions for nonlinear elliptic
equations on an annulus. J. Differential Equations 103 (1993), 338–349.

[11] S. S. LIN, Existence of positive nonradial solutions for nonlinear elliptic equations
in annulus domains. Trans. Amer. Math. Soc. 332 (1992), 775–791.

[12] W. M. NI, Uniqueness of solutions of nonlinear Dirichlet problems. J. Differential
Equations 50 (1983), 289–304.



188 Y. FU - Q. DAI

[13] W. M. NI - R. D. NUSSBAUM, Uniqueness and nonuniqueness for positive radial
solutions of ∆u+ f (u, r) = 0. Comm. Pure Appl. Math. 38 (1985), 67–108.

[14] T. C. OUYANG - J. P. SHI, Exact multiplicity of positive solutions for a class of
semilinear problem II. J. Differential Equations 158 (1999), 94–151.

[15] X. WANG, Neumann problems of semilinear elliptic equations involving critical
Sobolev exponents. J. Differential Equations 93 (1991), 283–310.

[16] M. WILLEM, Minimax Theorems. Birkhäuser, 1996.
[17] H. C. YANG, An estimate of the first eigenvalue for Riemannian manifolds with

Robin boundary value conditions. Acta Math. Sinica 46 (2003), 843–850.
[18] S. T. YAU - R. SCHOEN, Lectures on Differential Geometry. Chinese Higher

Education Press, 2004.
[19] L. Q. ZHANG, Uniqueness of positive solution of∆u+u+up = 0 in a ball. Comm.

Partial Differential Equations 17 (1992), 1141–1164.

Received 25 January 2008,
and in revised form 30 January 2008.

Yu-xia Fu
Department of Applied Mathematics

Hunan University
CHANGSHA, Hunan 410082, P.R. China

fu yuxia@yahoo.com.cn

Qiu-yi Dai
Department of Mathematics

Hunan Normal University
CHANGSHA, Hunan 410081, P.R. China

daiqiuyi@yahoo.com.cn


	Introduction
	The proof of Theorem 1
	The proof of Theorem 3

