

Rend. Lincei Mat. Appl. 19 (2008), 199[–204](#page-5-0)

Mathematical analysis. — *Transversality of equivariant mappings with closed associated differential forms on* G*-manifolds*, by MARC LESIMPLE and TULLIO VALENT, communicated on 12 June 2008.

ABSTRACT. \qquad It is proved that any equivariant mapping between G-manifolds (G a Lie group), with a closed associated differential form, is transversal to the orbit of any point in its image up to a G-invariant subspace of the tangent space.

KEY WORDS: Perturbation problems; equivariant mappings; transversality.

MATHEMATICS SUBJECT CLASSIFICATION (2000): 22F05, 47J05, 58E99, 57R99, 57S20, 58F30.

INTRODUCTION

Let G be a Lie group, M, N be two Fréchet G-manifolds, $A: M \rightarrow N$ an equivariant differentiable mapping and β an invariant cross section of the tangent bundle over N. Motivated by the problem of existence of solutions for an equation of the type

$$
(0.1) \qquad \beta(A(x)) = 0,
$$

we aim to obtain a transversality criterion on A, as has been done within the context of Banach spaces in [\[5\]](#page-4-0).

Particular cases of the situation above arise in the framework of perturbation problems in elasticity theory where equation [\(0.1\)](#page-0-0) is the free part of a perturbation equation and A is an elastostatic operator (see [\[9\]](#page-5-1) for some examples).

Before going further in the presentation of the motivations, let us point out a question related to some perturbation problems, followed by a remark concerning the finite-dimensional case.

Let A denote the map $\beta \circ A$ and suppose that a solution $x_0 \in M$ of the equation [\(0.1\)](#page-0-0) is known. Assume moreover that x_0 is a fixed point for the action of G on M. Let (V_{x_0}, θ) be a chart at x_0 such that $\theta(x_0) = 0$ and consider the Taylor development of \widetilde{A} about the origin, $\widetilde{A} = \widetilde{A}^1 + \sum_{n \geq 2} \widetilde{A}^n$. Then \widetilde{A}^1 is an intertwining operator for the restriction to A-related vector fields of the linear representations on the tangent spaces $T(M)$ and $T(N)$, induced by the action of G on M and N. A characterization of the space of intertwining operators for the induced representations on tensor spaces over M and N , analogous to the one in [\[8\]](#page-5-2) for the finite-dimensional case, could simplify the solution of the existence problem for a perturbation equation of the type

$$
(0.2) \qquad \beta(A(x)) + \epsilon \beta(B(x)) = 0,
$$

where B is a differentiable mapping from M into N . Besides, if M and N are of finite dimension and if the isotropy algebra $g(x_0)$ is semisimple then the Killing vector fields vanishing at x_0 in M (similarly the Killing vector fields vanishing at $A(x_0)$ in N) can be formally linearized in a neighborhood of x_0 [\[3\]](#page-4-1).

In the Fréchet case that we are considering, local existence of solutions (in a neighborhood V_{x_0} of x_0) for the equation [\(0.1\)](#page-0-0) or [\(0.2\)](#page-0-1) relies on the Nash implicit function theorem which depends on the transversality of A, at any point $x \in V_{x_0}$, to the orbit $G_{A(x)}$ of $A(x)$ in N. In [\[6\]](#page-4-2) existence of local families of solutions for perturbation equations was obtained (in the case where M and N are Banach spaces) as a consequence of the "transversality" of the mapping A (in the sense that $A(x)$) belongs to the polar of the orbit G_x if x is not too far from x_0) provided that A is a submersion at x_0 modulo $G_{A(x_0)}$ (that is to say, $A \bigcap \{x_0\} G_{A(x_0)}$).

A transversality criterion was obtained for nonlinear actions of a Lie group in [\[5\]](#page-4-0) extending the results presented for perturbation problems in the presence of linear or affine symmetries [\[9\]](#page-5-1). In this paper we shall first obtain a similar transversality criterion (Lemma [2.1\)](#page-2-0) and then show, under some conditions, that for every $x \in M$, the mapping A is transversal to the orbit of $A(x)$ in N up to a G -invariant subspace of the tangent space $T_{A(x)}(N)$. This generalizes the previous statement and extends it to the case of infinite-dimensional manifolds and groups.

1. VARIATIONAL PRINCIPLE

Let M and N be two differentiable manifolds modeled on Fréchet spaces E and F respectively (see e.g. [\[2\]](#page-4-3)). We suppose that N admits a Riemannian metric (1).

Let G be a Lie group (possibly infinite-dimensional) acting smoothly on M (resp. on N) by $(g, x) \mapsto \varphi_g(x) \in M$ for $g \in G$, $x \in M$ (resp. $(g, y) \mapsto \psi_g(y) \in N$ for $g \in G$, $y \in N$). It is enough to suppose G only to be regular [\[7,](#page-4-4) [4\]](#page-4-5), but to simplify we shall assume that the exponential map is defined and gives a local chart in a neighborhood of the identity in G .

Let $A: M \to N$ be a differentiable mapping that is supposed to be equivariant,

(1.1)
$$
A(\varphi_g(x)) = \psi_g(A(x)) \text{ for every } g \in G \text{ and } x \in M.
$$

By differentiation we obtain

(1.2)
$$
dA_x(X^*_{\varphi}(x)) = X^*_{\psi}(A(x)),
$$

where X^*_{φ} (resp. X^*_{ψ}) denotes the Killing vector field relative to the Lie transformation group φ (resp. ψ) generated by an element X in g, the Lie algebra of G.

Denote by U (resp. V) the linear representation of G induced by φ (resp. ψ) in the space of vector fields on M (resp. on N) denoted by $T(M)$ (resp. $T(N)$) given by $U_g = d\varphi_g$ (resp. $V_g = d\psi_g$) with $g \in G$. The representation U is differentiable to a representation dU of g, defined by $dU_X = \frac{d}{dt} U_{\exp tX}|_{t=0}$ (the limit being taken in the topology of E, and dU_X is continuous for the topology induced by $C^{\infty}(G, E)$ on $T(M)$).

Let there be given a differentiable mapping $\kappa : M \rightarrow N$ and for every $x \in M$, consider the duality on $T_x(M) \times T_{\kappa(x)}(N)$ defined by $\langle v_x, w_{\kappa(x)} \rangle =$ $(d\kappa_X(v_X)|w_{\kappa(X)})_{\kappa(X)}$, where $v \in T(M)$ and $w \in T(N)$. (Such a mapping κ can be interpreted as a trace operator in the Banach case if A describes a boundary value problem [\[9\]](#page-5-1).)

Let $\{U_{\alpha}, \theta_{\alpha}\}\$ be an atlas of N and denote by G_1 the group of diffeomorphisms of F given by $d\theta_{\beta\alpha}$, where $\theta_{\beta\alpha} = \theta_{\beta} \circ \theta_{\alpha}^{-1}$: $\theta_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \theta_{\beta}(U_{\alpha} \cap U_{\beta})$. Let $L(N, G_1)$ be the principal fibre bundle with transition functions $d\theta_{\beta\alpha}$ and suppose that there exists a connection on L (that is, a linear connection on N). Then the duality \langle , \rangle induces a duality on $T_x(M) \times T_{A(x)}(N)$ given by $\langle v_x, w_{A(x)} \rangle = \langle v_x, \tau_{A(x)}^{\kappa(x)} w_{A(x)} \rangle$, where $\tau_{A(x)}^{\kappa(x)}$ denotes the parallel displacement along a piecewise differentiable curve τ joining $A(x)$ to $\kappa(x)$ in N.

Let β be an invariant vector field on N. We associate to the mapping $\beta \circ A$ a differential form ω_A on M defined by $\omega_A(x)(v_x) = \langle v_x, \beta(A(x)) \rangle$ for $x \in M$ and $v_x \in T_x(M)$.

If the differential form ω_A is exact then the equation [\(0.1\)](#page-0-0) is equivalent to a variational principle relative to a differentiable function J on M:

$$
(1.3) \qquad \qquad (dJ_x)(v_x) = 0
$$

for every $v_x \in T_x(M)$, where $dJ = \omega_A$.

REMARK 1.1. If the differential form ω_A is only closed, then $d(\beta \circ A)_x$ is symmetric with respect to the bilinear form \langle , \rangle . This fact is relevant for some nonlinear variational elliptic problems [\[1\]](#page-4-6).

2. TRANSVERSALITY CRITERION

We are mainly interested in the case where the differential form ω_A is closed. The closedness condition can be written as

(2.1)
$$
\langle v_1(x), d\beta_{A(x)} \circ dA_x(v_2(x)) \rangle = \langle v_2(x), d\beta_{A(x)} \circ dA_x(v_1(x)) \rangle
$$

for every $v_1, v_2 \in T(M)$ and $x \in M$. Furthermore, assume that the representation V is contragradient to U; so if $v_x \in T_x(M)$ and $w_{A(x)} \in T_{A(x)}(N)$ we have

(2.2)
$$
\langle U_g(v_x), V_g(w_{A(x)}) \rangle = \langle v_x, w_{A(x)} \rangle \quad \text{for every } x \in M.
$$

By differentiation we can write, for every $X \in \mathfrak{g}$,

(2.3)
$$
\langle dU_X(v_x), w_{A(x)} \rangle = -\langle v_x, dV_X(w_{A(x)}) \rangle.
$$

LEMMA 2.1. *Under conditions*[\(1.1\)](#page-1-0)*,* [\(2.1\)](#page-2-1) *and* [\(2.2\)](#page-2-2)*, we have the following property: for every* $X \in \mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ *and* $v \in T(M)$ *,*

$$
\langle dU_X(v_x), d\beta_{A(x)} \circ dA_x(v_x) \rangle = 0
$$

at any point $x \in M$.

PROOF. The proof is similar to the one given in [\[5\]](#page-4-0) for the transversality criterion in the linear case. Let $v_1, v_2 \in T(M)$; since dA_x intertwines dU with dV and β is invariant, we can write

$$
\langle v_1(x), d\beta \circ dA_x dU_X(v_2(x)) \rangle = \langle v_1(x), dV_X d\beta \circ dA_x(v_2(x)) \rangle
$$

and by (2.3) ,

$$
\langle v_1(x), d\beta \circ dA_x dU_X(v_2(x)) \rangle = -\langle dU_X v_1(x), d\beta \circ dA_x(v_2(x)) \rangle.
$$

Taking $v_1 = dU_Y(v_2)$ with $Y \in \mathfrak{g}$, we have

$$
\langle dU_Y(v_2(x)), (d\beta \circ dA_x)dU_X(v_2)(x)\rangle = -\langle dU_XdU_Y(v_2)(x), d\beta \circ dA_x(v_2(x))\rangle,
$$

and $d\beta \circ dA_x$ being symmetric (condition [\(2.1\)](#page-2-1)) we can also write

$$
\langle dU_Y(v_2(x)), d\beta \circ dA_x dU_X(v_2(x)) \rangle = \langle dU_X(v_2(x)), d\beta \circ dA_x dU_Y(v_2(x)) \rangle;
$$

so $\langle dU_{[X, Y]}(v_2(x)), d\beta \circ dA_x(v_2(x)) \rangle = 0.$ \Box

For each $x \in M$, we denote by $G(x)$ the isotropy subgroup of G at x. We denote by G_x^{φ} and G_y^{ψ} the orbits of x in M and y in N respectively.

Set $\widetilde{A} = \beta \circ A : M \to T(N)$. We shall show that Im $d\widetilde{A}_x$ belongs to $T_x(G_x^{\varphi})^{\circ}$ (the polar of $T_x(G_x^{\varphi})$; that is to say, \widetilde{A} is "transversal" to the orbit $G_{A(x)}^{\psi}$ at each $x \in M$ (in the sense that there exists a G-invariant subspace $W_{A(x)}$ of $T_{A(x)}(N)$ contained in $T_x(G_x^{\varphi})^{\circ}$ such that $\text{Im } d\widetilde{A}_x + T_{A(x)}(G_{A(x)}^{\psi}) \simeq T_{A(x)}(N)/W_{A(x)}$.

We shall deduce (under some conditions) that A is transversal—up to a G invariant subspace $W_{A(x)}$ of $T_{A(x)}(N)$ —to $G_{A(x)}^{\psi}$ at each $x \in M$, in the sense that $T_{A(x)}(N)/W_{A(x)}$ is G-isomorphic to Im $dA_x \oplus T_{A(x)}(G_{A(x)}^{\psi})$.

REMARK 2.1. A point, not developed in this paper, is that the following proposition brings forth (under the same kind of compatibility condition—as in perturbation theory—already considered in [\[5\]](#page-4-0), namely the closedness condition [\(2.1\)](#page-2-1)) a reduction scheme for the existence problem of local solutions for the perturbation equation [\(0.2\)](#page-0-1), in the context of Nash implicit function theorem [\[2\]](#page-4-3) (in [\[6\]](#page-4-2) such a reduction scheme is presented in the case of Banach spaces).

PROPOSITION 2.1. *Suppose that* g 0 *contains all nonvanishing Killing vector fields on M*. Assume conditions [\(1.1\)](#page-1-0)*,* [\(2.1\)](#page-2-1) *and* [\(2.2\)](#page-2-2) *are satisfied. Then for any* $x \text{ ∈ } M$ *we have:*

(i) $\text{Im } d\widetilde{A}_x \subset T_x(G_x^{\varphi})^{\circ}$;

(ii) *if* $d\beta_{A(x)|\text{Im }dA_x}$ *is injective, then* $\text{Im }dA_x \subset T_x(\mathbf{G}_x^{\varphi})^{\circ}$.

Furthermore, if V_g *is an isometry relative to the metric* (|) *on* N *for each* $g \in G$ *(that is, if* $T(N)$ *is a Riemannian G-vector bundle) then* $A \pitchfork G_{A(x)}^{\psi}$ *up to a G-invariant subspace of* $T_{A(x)}(N)$ *.*

PROOF. Let X^*_{φ} be a Killing vector field on M. By the preceding lemma we have, *dU* being the contragradient of *dV*, $\langle X^*_{\varphi}(x), d\widetilde{A}_x dU_Y (X^*_{\varphi}(x)) \rangle = 0$ for every $Y \in \mathfrak{g}'$. Since it is assumed that g' contains all nonvanishing Killing vector fields and that $G_x^{\varphi} \simeq G/G(x)$, we have $\{dU_Y(X_{\varphi}^*(x)) : Y \in \mathfrak{g}'\} = \overline{T_X(G_x^{\varphi})}$. Hence $d\widetilde{A}_X(T_X(G_x^{\varphi})) \subset$ $T_x(G_x^{\varphi})^{\circ}$. But $d\widetilde{A}_x(T_x(G_x^{\varphi})) \subset T_{A(x)}(G_{A(x)}^{\psi});$ so $T_x(G_x^{\varphi}) \subset \text{Ker } d\widetilde{A}_x$.

It follows that $\text{Im } d\widetilde{A}_x \cap T_{A(x)}(G_{A(x)}^{\psi}) = \{0\}$: in fact, let $v_x \in T_x(M)$; if $u =$ $d\widetilde{A}_x(v_x)$ belongs to $T_{A(x)}(G_{A(x)}^{\psi})$, then the class of v_x in $T_x(M)/\text{Ker } d\widetilde{A}_x$, which is the inverse image of u under the quotient map of $d\widetilde{A}_x$, belongs to $T_x(G_x^{\varphi})/\text{Ker }d\widetilde{A}_x$ and so is zero. Thus $v_x \in \text{Ker } d\widetilde{A}_x$ and so $u = 0$. Hence $\text{Im } d\widetilde{A}_x \subset T_x(\mathbf{G}_x^{\varphi})^\circ$.

If now $d\beta_{A(x)|\text{Im }dA_x}$ is injective, then Ker $d\tilde{A}_x \subset \text{Ker }dA_x$ and in the same way as before, we find that $\text{Im } dA_x \cap T_{A(x)}(G_{A(x)}^{\psi}) = \{0\}$. So $\text{Im } dA_x \subset T_x(G_x^{\psi})^{\circ}$.

For each $x \in M$, let $W_{A(x)}$ be a complement of Im dA_x in $T_x(G_x^{\varphi})^{\circ}$ and consider the subbundle W of the G-vector bundle $T(N)$ with fibre $W_{A(x)}$ (and $W_y = \{0\}$ if $y \notin A(M)$). Then W is a G-invariant subspace of $T(N)$. Indeed, V_g being an isometry, we have $(V_g(w)|X^*_{\psi}) = (w|V_{g^{-1}}(X^*_{\psi})) = 0$ for every $w \in W$ and $X^*_{\psi} \in T(G_{A(x)}^{\psi})$, so $V_g(w_{A(x)}) \in T_{\varphi(x)}(G_x^{\varphi})^{\circ}$ and $V_g(w_{A(x)}) \notin \text{Im} dA_{\varphi_g(x)}$ (since $w_{A(x)} \notin \text{Im} dA_x$). Also, the restriction to Im $dA_x \oplus T_{A(x)}(G_{A(x)}^{\psi})$ of the projection on $T_{A(x)}(N)/W_{A(x)}$ is a G-isomorphism. \Box

REFERENCES

- [1] F. CARDIN, *Global finite generating functions for field theory.* In: Classical and Quantum Integrability, Banach Center Publ. 59, Inst. Math., Polish Acad. Sci., 2003, 133–142.
- [2] R. S. HAMILTON, *The inverse function theorem of Nash and Moser*. Bull. Amer. Math. Soc. 7 (1982), 65–222.
- [3] R. HERMANN, *The formal linearization of a semisimple Lie algebra of vector fields about a singular point.* Trans. Amer. Math. Soc. 130 (1968), 105–109.
- [4] N. KAMRAN - T. ROBART, *On the parametrization problem of Lie pseudogroups of infinite type.* C. R. Acad. Sci. Paris Sér. I 331 (2000), 899-903.
- [5] M. LESIMPLE - T. VALENT, *Transversality of covariant mappings admitting a potential.* Rend. Lincei Mat. Appl. 18 (2007), 117–124.
- [6] M. LESIMPLE - T. VALENT, *Local existence of solutions for perturbation problems with non linear symmetries.* Boll. Un. Mat. Ital. (8) 10-B (2007), 707–717.
- [7] J. MILNOR, *Remarks on infinite-dimensional Lie groups.* In: Relativity, Groups and Topology, II (Les Houches, 1983), B. S. De Witt and R. Stora (eds.), North-Holland, 1984, 1007–1057.
- [8] R. S. PALAIS, *Natural operations on differential forms*, Trans. Amer. Math. Soc. 92 (1959), 125–141.
- [9] T. VALENT, *Nonlinear symmetries of mappings. Existence theorems for a perturbation problem in the presence of symmetries*. In: Recent Developments in Partial Differential Equations, Quad. Mat. 2, Seconda Univ. Napoli, Caserta, 1998, 211–253.

Received 8 May 2007, and in revised form 12 March 2008.

> M. Lesimple, T. Valent Dipartimento di Matematica Pura ed Applicata Universita degli Studi di Padova ` via Trieste, 63 I-35121 PADOVA, Italy lesimple@math.unipd.it valent@math.unipd.it