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ABSTRACT. — It is proved that any equivariant mapping between G-manifolds (G a Lie group),
with a closed associated differential form, is transversal to the orbit of any point in its image up to a
G-invariant subspace of the tangent space.
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INTRODUCTION

Let G be a Lie group,M , N be two Fréchet G-manifolds, A : M → N an equivariant
differentiable mapping and β an invariant cross section of the tangent bundle over N .
Motivated by the problem of existence of solutions for an equation of the type

(0.1) β(A(x)) = 0,

we aim to obtain a transversality criterion on A, as has been done within the context
of Banach spaces in [5].

Particular cases of the situation above arise in the framework of perturbation
problems in elasticity theory where equation (0.1) is the free part of a perturbation
equation and A is an elastostatic operator (see [9] for some examples).

Before going further in the presentation of the motivations, let us point out a
question related to some perturbation problems, followed by a remark concerning the
finite-dimensional case.

Let Ã denote the map β ◦ A and suppose that a solution x0 ∈ M of the equation
(0.1) is known. Assume moreover that x0 is a fixed point for the action of G onM . Let
(Vx0, θ) be a chart at x0 such that θ(x0) = 0 and consider the Taylor development of
Ã about the origin, Ã = Ã1

+
∑
n≥2 Ã

n . Then Ã1 is an intertwining operator for the
restriction to A-related vector fields of the linear representations on the tangent spaces
T (M) and T (N), induced by the action of G on M and N . A characterization of the
space of intertwining operators for the induced representations on tensor spaces over
M and N , analogous to the one in [8] for the finite-dimensional case, could simplify
the solution of the existence problem for a perturbation equation of the type

(0.2) β(A(x))+ εβ(B(x)) = 0,
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where B is a differentiable mapping from M into N . Besides, if M and N are of finite
dimension and if the isotropy algebra g(x0) is semisimple then the Killing vector fields
vanishing at x0 in M (similarly the Killing vector fields vanishing at A(x0) in N ) can
be formally linearized in a neighborhood of x0 [3].

In the Fréchet case that we are considering, local existence of solutions (in a
neighborhood Vx0 of x0) for the equation (0.1) or (0.2) relies on the Nash implicit
function theorem which depends on the transversality of A, at any point x ∈ Vx0 ,
to the orbit GA(x) of A(x) in N . In [6] existence of local families of solutions for
perturbation equations was obtained (in the case where M and N are Banach spaces)
as a consequence of the “transversality” of the mapping A (in the sense that A(x)
belongs to the polar of the orbit Gx if x is not too far from x0) provided that A is a
submersion at x0 modulo GA(x0) (that is to say, A t{x0} GA(x0)).

A transversality criterion was obtained for nonlinear actions of a Lie group in [5]
extending the results presented for perturbation problems in the presence of linear
or affine symmetries [9]. In this paper we shall first obtain a similar transversality
criterion (Lemma 2.1) and then show, under some conditions, that for every x ∈ M ,
the mapping A is transversal to the orbit of A(x) in N up to a G-invariant subspace of
the tangent space TA(x)(N). This generalizes the previous statement and extends it to
the case of infinite-dimensional manifolds and groups.

1. VARIATIONAL PRINCIPLE

Let M and N be two differentiable manifolds modeled on Fréchet spaces E and F
respectively (see e.g. [2]). We suppose that N admits a Riemannian metric (|).

Let G be a Lie group (possibly infinite-dimensional) acting smoothly on M (resp.
on N ) by (g, x) 7→ ϕg(x) ∈ M for g ∈ G, x ∈ M (resp. (g, y) 7→ ψg(y) ∈ N

for g ∈ G, y ∈ N ). It is enough to suppose G only to be regular [7, 4], but to
simplify we shall assume that the exponential map is defined and gives a local chart in
a neighborhood of the identity in G.

Let A : M → N be a differentiable mapping that is supposed to be equivariant,

(1.1) A(ϕg(x)) = ψg(A(x)) for every g ∈ G and x ∈ M .

By differentiation we obtain

(1.2) dAx(X
∗
ϕ(x)) = X

∗
ψ (A(x)) ,

where X∗ϕ (resp. X∗ψ ) denotes the Killing vector field relative to the Lie transformation
group ϕ (resp. ψ) generated by an element X in g, the Lie algebra of G.

Denote by U (resp. V ) the linear representation of G induced by ϕ (resp. ψ) in
the space of vector fields on M (resp. on N ) denoted by T (M) (resp. T (N)) given by
Ug = dϕg (resp. Vg = dψg) with g ∈ G. The representation U is differentiable to
a representation dU of g, defined by dUX = d

dt
Uexp tX |t=0 (the limit being taken in

the topology of E, and dUX is continuous for the topology induced by C∞(G, E) on
T (M)).
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Let there be given a differentiable mapping κ : M → N and for every
x ∈ M , consider the duality on Tx(M) × Tκ(x)(N) defined by 〈vx, wκ(x)〉 =
(dκx(vx)|wκ(x))κ(x) , where v ∈ T (M) and w ∈ T (N) . (Such a mapping κ can be
interpreted as a trace operator in the Banach case if A describes a boundary value
problem [9].)

Let {Uα, θα} be an atlas of N and denote by G1 the group of diffeomorphisms
of F given by dθβα , where θβα = θβ ◦ θ

−1
α : θα(Uα ∩ Uβ) → θβ(Uα ∩ Uβ). Let

L(N,G1) be the principal fibre bundle with transition functions dθβα and suppose
that there exists a connection on L (that is, a linear connection onN ). Then the duality
〈 , 〉 induces a duality on Tx(M)× TA(x)(N) given by 〈vx, wA(x)〉 = 〈vx, τ

κ(x)
A(x)wA(x)〉,

where τ κ(x)A(x) denotes the parallel displacement along a piecewise differentiable curve τ
joining A(x) to κ(x) in N .

Let β be an invariant vector field on N . We associate to the mapping β ◦ A a
differential form ωA on M defined by ωA(x)(vx) = 〈vx, β(A(x))〉 for x ∈ M and
vx ∈ Tx(M).

If the differential form ωA is exact then the equation (0.1) is equivalent to a
variational principle relative to a differentiable function J on M:

(1.3) (dJx)(vx) = 0

for every vx ∈ Tx(M), where dJ = ωA .

REMARK 1.1. If the differential form ωA is only closed, then d(β ◦A)x is symmetric
with respect to the bilinear form 〈 , 〉. This fact is relevant for some nonlinear
variational elliptic problems [1].

2. TRANSVERSALITY CRITERION

We are mainly interested in the case where the differential form ωA is closed. The
closedness condition can be written as

(2.1) 〈v1(x), dβA(x) ◦ dAx(v2(x))〉 = 〈v2(x), dβA(x) ◦ dAx(v1(x))〉

for every v1, v2 ∈ T (M) and x ∈ M . Furthermore, assume that the representation V
is contragradient to U ; so if vx ∈ Tx(M) and wA(x) ∈ TA(x)(N) we have

(2.2) 〈Ug(vx), Vg(wA(x))〉 = 〈vx, wA(x)〉 for every x ∈ M .

By differentiation we can write, for every X ∈ g,

(2.3) 〈dUX(vx), wA(x)〉 = −〈vx, dVX(wA(x))〉 .

LEMMA 2.1. Under conditions (1.1), (2.1) and (2.2), we have the following property:
for every X ∈ g′ = [g, g] and v ∈ T (M),

〈dUX(vx), dβA(x) ◦ dAx(vx)〉 = 0

at any point x ∈ M .
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PROOF. The proof is similar to the one given in [5] for the transversality criterion
in the linear case. Let v1, v2 ∈ T (M); since dAx intertwines dU with dV and β is
invariant, we can write

〈v1(x), dβ ◦ dAx dUX(v2(x))〉 = 〈v1(x), dVX dβ ◦ dAx(v2(x))〉

and by (2.3),

〈v1(x), dβ ◦ dAx dUX(v2(x))〉 = −〈dUXv1(x), dβ ◦ dAx(v2(x))〉.

Taking v1 = dUY (v2) with Y ∈ g, we have

〈dUY (v2(x)), (dβ ◦ dAx)dUX(v2)(x)〉 = −〈dUXdUY (v2)(x), dβ ◦ dAx(v2(x))〉,

and dβ ◦ dAx being symmetric (condition (2.1) ) we can also write

〈dUY (v2(x)), dβ ◦ dAx dUX(v2(x))〉 = 〈dUX(v2(x)), dβ ◦ dAx dUY (v2(x))〉;

so 〈dU[X,Y ](v2(x)), dβ ◦ dAx(v2(x))〉 = 0. 2

For each x ∈ M , we denote by G(x) the isotropy subgroup of G at x. We denote
by Gϕ

x and Gψ
y the orbits of x in M and y in N respectively.

Set Ã = β ◦A : M → T (N). We shall show that Im dÃx belongs to Tx(Gϕ
x )
◦ (the

polar of Tx(Gϕ
x )); that is to say, Ã is “transversal” to the orbit Gψ

A(x) at each x ∈ M
(in the sense that there exists a G-invariant subspace WA(x) of TA(x)(N) contained in
Tx(G

ϕ
x )
◦ such that Im dÃx + TA(x)(G

ψ

A(x)) ' TA(x)(N)/WA(x)).
We shall deduce (under some conditions) that A is transversal—up to a G-

invariant subspace WA(x) of TA(x)(N)—to Gψ

A(x) at each x ∈ M , in the sense that

TA(x)(N)/WA(x) is G-isomorphic to Im dAx ⊕ TA(x)(G
ψ

A(x)).

REMARK 2.1. A point, not developed in this paper, is that the following proposition
brings forth (under the same kind of compatibility condition—as in perturbation
theory—already considered in [5], namely the closedness condition (2.1)) a reduction
scheme for the existence problem of local solutions for the perturbation equation (0.2),
in the context of Nash implicit function theorem [2] (in [6] such a reduction scheme is
presented in the case of Banach spaces).

PROPOSITION 2.1. Suppose that g′ contains all nonvanishing Killing vector fields
on M . Assume conditions (1.1), (2.1) and (2.2) are satisfied. Then for any x ∈ M we
have:

(i) Im dÃx ⊂ Tx(G
ϕ
x )
◦ ;

(ii) if dβA(x)|Im dAx is injective, then Im dAx ⊂ Tx(G
ϕ
x )
◦.
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Furthermore, if Vg is an isometry relative to the metric (|) on N for each g ∈ G (that
is, if T (N) is a Riemannian G-vector bundle) then A t Gψ

A(x) up to a G-invariant
subspace of TA(x)(N).

PROOF. Let X∗ϕ be a Killing vector field on M . By the preceding lemma we have,
dU being the contragradient of dV , 〈X∗ϕ(x), dÃx dUY (X

∗
ϕ(x))〉 = 0 for every Y ∈ g′.

Since it is assumed that g′ contains all nonvanishing Killing vector fields and that
Gϕ
x ' G/G(x), we have {dUY (X∗ϕ(x)) : Y ∈ g′} = Tx(G

ϕ
x ). Hence dÃx(Tx(Gϕ

x )) ⊂

Tx(G
ϕ
x )
◦. But dÃx(Tx(Gϕ

x )) ⊂ TA(x)(G
ψ

A(x)); so Tx(Gϕ
x ) ⊂ Ker dÃx .

It follows that Im dÃx ∩ TA(x)(G
ψ

A(x)) = {0}: in fact, let vx ∈ Tx(M); if u =

dÃx(vx) belongs to TA(x)(G
ψ

A(x)), then the class of vx in Tx(M)/Ker dÃx , which is
the inverse image of u under the quotient map of dÃx , belongs to Tx(Gϕ

x )/Ker dÃx
and so is zero. Thus vx ∈ Ker dÃx and so u = 0. Hence Im dÃx ⊂ Tx(G

ϕ
x )
◦.

If now dβA(x)|Im dAx is injective, then Ker dÃx ⊂ Ker dAx and in the same way as
before, we find that Im dAx ∩ TA(x)(G

ψ

A(x)) = {0}. So Im dAx ⊂ Tx(G
ϕ
x )
◦.

For each x ∈ M , let WA(x) be a complement of Im dAx in Tx(Gϕ
x )
◦ and consider

the subbundle W of the G-vector bundle T (N) with fibre WA(x) (and Wy = {0}
if y /∈ A(M)). Then W is a G-invariant subspace of T (N). Indeed, Vg being
an isometry, we have (Vg(w)|X∗ψ ) = (w|Vg−1(X∗ψ )) = 0 for every w ∈ W and

X∗ψ ∈ T (G
ψ

A(x)), so Vg(wA(x)) ∈ Tϕ(x)(Gϕ
x )
◦ and Vg(wA(x)) /∈ Im dAϕg(x) (since

wA(x) /∈ Im dAx). Also, the restriction to Im dAx ⊕ TA(x)(G
ψ

A(x)) of the projection on
TA(x)(N)/WA(x) is a G-isomorphism. 2
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