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Solid mechanics. — Axial impact on a semi-infinite elastic rod, by PIERO
VILLAGGIO, communicated on 12 June 2008.

ABSTRACT. — An approximate theory for treating the axial collision of a rigid mass against an
elastic rod was proposed by Saint-Venant more than 150 years ago. The method works only for short
bars, under the assumption that the elastic axial displacement instantaneously propagates from one
end to the other after the impact. However, this hypothesis is unrealistic for long rods.

Here we suggest an extension of the method which is able to treat the axial impact on the initial
cross-section of a semi-infinite rod.
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1. INTRODUCTION

In 1849 H. Cox [2] proposed a simple and elegant method for treating the transversal
impact of a heavy mass at the center of an elastic beam of uniform cross section and
simply supported at its ends. A few years later Saint-Venant [5] applied the same
procedure to the case of a prismatical rod fixed at one end and subject to a longitudinal
impact at the other. Both solutions are obtained by a simple balance between the kinetic
energy of the striking mass and the strain energy stored in the beam or in the rod. Both
theories can also account for the inertia of the struck body after impact. Due to their
simplicity and experimental confirmation, they have been widely diffused in structural
analysis among engineers.

The method, however, presumes in advance that the impinged body is sufficiently
short and stiff so as to become completely deformed as soon as the striking mass
touches it at some point. But this happens only if the elastic wave departing from
the point of first contact travels with infinite velocity. In general, after a given time,
only a part of the structure adjacent to this point is in motion while the remaining
part is at rest. After having assumed that displacements propagate instantaneously
in the structure which is struck, Saint-Venant’s theory adds the hypothesis that this
(dynamical) deformation is similar to the statical one, namely it is obtainable by
multiplying the elastic displacements due to a concentrated load at the point of impact
by an amplification factor which is determined by the equation of energy balance.
Once this factor is known, we can also compute the maximum displacement state of
the structure when the kinetic energy of the moving mass is completely converted
into strain energy. Therefore also the maximal stresses can be estimated and hence
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the danger of a possible collapse. Several appealing extensions of the method are
illustrated in the book of Szabó [7, §24].

But, as mentioned above, this semi-statical theory is inapplicable to long rods or
beams. It seems that Saint-Venant himself perceived the inadequacy of the model and
tried to establish its limits (cf. Timoshenko [8, §41]). Here we suggest an improvement
of the theory considering the longitudinal impact of a semi-infinite rod.

2. THE EQUATION OF THE PROGRESSIVE IMPACT

We consider a semi-infinite rod of uniform cross section A and assume its barycentric
fiber coincides with the half-axis 0 ≤ x < ∞ of a Cartesian system of coordinates
(Fig. 1). Let E, ρ be the Young’s elastic modulus and the density of a material. Hence
the ratio c =

√
E/ρ represents the propagation velocity of sound waves in the medium

and, in particular, along the x-axis.
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FIG. 1. (a) Before the impact the rod is at rest. (b) At time t after the impact only the portion 0 ≤
x < ct is in motion.

Assume that a rigid mass M traveling with velocity v1 along the x-axis hits the
initial cross-section of the rod at x = 0. At this instant an elastic wave will spread from
the origin with a velocity c =

√
E/ρ. At time t the points 0 ≤ x < ct are in motion

while the points ct ≤ x <∞ are at rest.
But, before treating this case, suppose for the moment that the rod has a length l

and is clamped at the end x = l. Saint-Venant made the hypothesis that, given the
high value of the velocity c of an elastic wave traveling along a bar of finite length, the
whole span l is instantaneously deformed at the first contact with the mass M and the
axial displacement u(x, t) has the linear distribution

u(x, t) = y(t)

(
1−

x

l

)
, (1)

where y(t) is the displacement of the initial cross-section. Hence the rod contrasts
the axial motion of M with a force P = −EAy(t)/ l, behaving like a spring of
compliance EA/l. The theory neglects the influence of the strain energy of the rod,
but, by imposing the balance of momentum at the instant of impact, it is easy to show
(cf. Szabó [7, §24]) that the impinging massM assumes a velocity v0 having the value

v0 =
v1

1+ 1
3
ρlA
M

. (2)
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It should be noted that this theory excludes the possibility of rebounding of the
impinging mass from the end of the rod, but it is possible to treat the case of
detachment of M during the period of compression (cf. Szabó [7, §24]).

Let us now return to the case in which the rod is semi-infinite. The motion is
governed by the same dynamical equation of a rod with a mass attached at its end,
where, however, the compliance of the rod varies with t and so does its mass. We
examine three cases.

3. SOLUTIONS FOR THE DYNAMICAL EQUATION

Suppose first that the mass of the rod is negligible with respect to M . Thus y(t), the
displacement of the initial cross section, must satisfy the differential equation

My′′(t)+
EA

ct
y(t) = 0, (3)

with the initial conditions y(0) = 0, y′(0) = v1. In order to solve (3) it is convenient
to put b = EA

cM
and multiply by t2, so that (3) assumes the form

t2y′′(t)+ bty = 0. (4)

This is a Bessel differential equation whose solution, recorded by Kamke [4, p. 440],
reads

y = C1
√
tJ1(2
√
bt)+ C2

√
tN1(2

√
bt), (5)

where J1, N1 are a Bessel and a Neumann function, respectively, and C1, C2 are two
arbitrary constants determined by the initial conditions. Since

√
tN1(2

√
bt) is infinite

at t = 0, the constant C2 must be zero, and hence the solution is

y = C1
√
tJ1(2
√
bt), (6)

which vanishes for t = 0, satisfying in this way the first initial condition y(0) = 0. The
constantC1 is determined from the second initial condition y′(0) = v1, and, eventually
using some formulae for the derivatives of Bessel functions (cf. Jahnke–Emde–Lösch
[3, p. 154]) we obtain the surprisingly simple value C1 = v1/

√
b. Therefore the

subsequent motion after the impact is governed by the expression

y(t) =
v1
√
b

√
t J1(2

√
bt). (7)

A detailed representation of the motion is given by the graph of (7), but let us simply
limit ourselves to finding the duration of the first half-period of oscillation of the
mass M , namely the time t1 at which it recovers the position y(t1) = 0. This time
is determined by the first zero of the Bessel function J1(2

√
bt), that is (cf. Jahnke–

Emde–Lösch [3, p. 159]), for 2
√
bt1 ' 3.832, which implies t1 = 1

b
3.6710.
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A second, alternative, situation occurs when the mass M is negligible with respect
to the moving part of the rod, which at time t has the value 1

3ρAct . In this case the
equation of the motion becomes

1
3
ρActy′′(t)+

EA

ct
y(t) = 0, (8)

with the initial conditions y(0) = 0, y′(0) = v0 since l = ct = 0 in formula (2).
Dividing by A and recalling that c2

= E/ρ, we reduce (8) to

t2y′′ + 3y = 0, (9)

which is again a Bessel differential equation having the general integral (cf. Kamke
[4, p. 440])

y(t) = C1t
(1+µ)/2

+ C2t
(1−µ)/2, (10)

where µ =
√

1− 4 · 3 = ±i
√

11, so that, redefining the constants C1, C2, we can
write (10) in the real form

y(t) = C1
√
t cos

(√
11
2

ln t
)
+ C2
√
t sin

(√
11
2

ln t
)
. (11)

At t = 0 we have y(0) = 0 for any values of the constants C1, C2, but y′(0) is
singular. Therefore the only possible values of C1, C2 are C1 = C2 = 0, which
implies y(t) ≡ 0. This result agrees with the exact solution found by Saint-Venant
(see, e.g., the books of Timoshenko–Goodier [9, §143] or Stronge [6, Ch. 7.2]), which
shows that, in this case, the rod does not undergo any displacement.

We now consider the case in which the two masses,M and 1
3ρAct , are of the same

order of magnitude. Then the motion after the impact is described by the equation(
1
3
ρAct +M

)
y′′ +

EA

ct
y = 0, (12)

with the initial conditions y(0) = 0, y′(0) = v1. Division by EA
ct

and setting b = EA
cM

,
c2
=

E
ρ

transforms (12) into(
1
3
t2 +

1
b
t

)
y′′(t)+ y(t) = 0. (13)

This is a hypergeometric differential equation that, with the change of variables

y = η(ξ), t = −
3
b
ξ,

can be converted into the canonical form (cf. Kamke [4, p. 481])

ξ(ξ − 1)η′′(ξ)+ 3η(ξ) = 0. (14)
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Equation (14) is a particular case of the general hypergeometric equation

ξ(ξ − 1)η′′(ξ)+ [(α + β + 1)ξ − γ ]η′(ξ)+ αβη(ξ) = 0,

provided that we take α = 1
2 (−1 + i

√
11), β = 1

2 (−1 − i
√

11), γ = 0. There are
two independent solutions of (14), but only one is bounded at the origin, namely (cf.
Kamke [4, p. 467])

η(ξ) = C1ξF (α + 1, β + 1, 2, ξ), (15)

where C1 is a constant, and F is a hypergeometric function, whose series expansion is
(cf. Abramowitz–Stegun [1, 15])

F(α + 1, β + 1, 2, ξ) = 1+
∞∑
n

(α + 1)n(β + 1)n
(2)n

ξn

n!
, (16)

where (x + 1)n = (x + 1)(x + 2) . . . (x + n). Since α and β are complex coniugate
the products (α + 1)n(β + 1)n are real. Hence η(ξ) is real and its explicit expression
arrested at the first four terms is

η(ξ) = C1ξ

(
1+

3
2
ξ +

5
4
ξ2
+

15
16
ξ3
+ · · ·

)
. (17)

Re-introducing the variable t = − 3
b
ξ and exploiting the initial condition y′(0) = v1

in order to determine C1, we obtain

y(t) = v1t

(
1−

1
2
(bt)+

5
36
(bt)2 −

5
144

(bt)3 + · · ·

)
. (18)

The time t1 of the end of the impact is given by the first root of the expression inside the
parenthesis, namely t1 ' 2.6578/b. Note that this time is shorter than that calculated
in the first case where the inertia of the rod has been neglected.
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