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ABSTRACT. — Let b ≥ 2 be an integer and ξ be an irrational real number. Among other results, we
establish an explicit lower bound for the number of distinct blocks of n digits occurring in the b-ary
expansion of ξ .
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1. INTRODUCTION

Throughout the present note, b always denotes an integer at least equal to 2. Let ξ
be a real number. There exist a rational integer A and a unique infinite sequence a =
(aj )j≥1 of integers from {0, 1, . . . , b − 1} such that

ξ = A+
∑
j≥1

aj

bj

and a does not terminate in an infinite string of digits b − 1. Clearly, the sequence
a is ultimately periodic if, and only if, ξ is rational. With a slight abuse of notation,
we also denote by a the infinite word a1a2 . . . and call it the b-ary expansion of ξ .
A natural way to measure the complexity of ξ in base b is to count the number of
distinct blocks of given length in the infinite word a. To this end, for a finite or infinite
word w on the alphabet {0, 1, . . . , b − 1} and for a positive integer n, we let p(n,w)
denote the number of distinct blocks of n letters occurring in w. Furthermore, we set
p(n, ξ, b) = p(n, a) with a as above. Obviously, we have

1 ≤ p(n, ξ, b) ≤ bn,

and both inequalities are sharp.
Assume now that ξ is irrational and algebraic. Ferenczi and Mauduit [9] (see also

[5]) proved in 1997 that its complexity function n 7→ p(n, ξ, b) satisfies

(1.1) lim
n→+∞

(p(n, ξ, b)− n) = +∞.

This result was recently considerably improved in [3], where

(1.2) lim
n→+∞

p(n, ξ, b)

n
= +∞
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is established. The proof of (1.1) rests on the Ridout Theorem (that is, on a p-adic
extension of the Roth Theorem), while that of (1.2) uses a p-adic extension of the
Schmidt Subspace Theorem [11], worked out by Schlickewei. Consequently, (1.1) and
(1.2) are ineffective in the sense that, for a given positive c, their proofs do not yield
explicit values for n1 and n2 such that p(n, ξ, b) ≥ n+ c for n ≥ n1 and p(n, ξ, b) ≥
cn for n ≥ n2. The question whether (1.2) can be made effective was posed to me by
Sergei Konyagin at the conference on uniform distribution held in Luminy in January
2008. The purpose of the present note is to establish an effective (and explicit) version
of (1.1) and to discuss further related effective results.

2. RESULTS

Our first result asserts that if a long prefix of a real algebraic irrational number
has small complexity (this situation can obviously happen, since algebraic irrational
numbers form a dense subset of the real numbers), then its height and its degree cannot
be both very small. Throughout the present note, the height H(α) of an algebraic
number α is the maximum of the absolute values of the coefficients of its minimal
defining polynomial over the integers.

THEOREM 1. Let b ≥ 2 be an integer. Let ξ be a real algebraic irrational number of
degree d and height at most H with H ≥ ee. Denote by a its b-ary expansion viewed
as an infinite word on {0, 1, . . . , b − 1}. Let w be an infinite word whose complexity
function satisfies p(n,w) ≤ Cn for some integer C ≥ 2 and all n ≥ 1. Assume that
the first L digits of a coincide with the first L digits of w. Then

(2.1) H ≥ exp{10−2C−1L1/(8 log(4C))
}

or

(2.2) d ≥ exp{10−100C−11/2(logC)−1(logL)1/2(log logL)−1
}.

Theorem 1 gives an effective (but not very efficient!) procedure to test whether
some real numbers given by their b-ary expansion can be algebraic of small height
and small degree.

Our next statement implies an explicit version of the result of Ferenczi and
Mauduit.

THEOREM 2. Let b ≥ 2 be an integer. Let ξ be a real algebraic irrational number of
degree d and height at most H with H ≥ ee. Set

M = exp{10190(log(8d))2(log log(8d))2} + 232 log(240 log(4H)).

Then

(2.3) p(n, ξ, b) ≥

(
1+

1
M

)
n for n ≥ 1.
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Unfortunately, the present methods do not seem to be powerful enough to get an
effective version of (1.2).

No importance should be attached to the numerical constants occurring in
Theorems 1 and 2. They can be slightly reduced.

Roughly speaking, the Subspace Theorem asserts that the set of integer solutions
(x1, . . . , xn) to some given system of inequalities lies in finitely many proper
subspaces of Qn. It is ineffective in the sense that we do not have an effective upper
bound for max{|x1|, . . . , |xn|}. However, the Quantitative Subspace Theorem [12, 7]
does provide us with an explicit upper bound for the number of exceptional proper
subspaces in which all these solutions are contained. To our knowledge, this is the
only available tool to get effective results in our context, and we use it in the proofs of
Theorems 1 and 2.

We stress that the lower bounds (2.1)–(2.3) do not depend on the base b. This is a
consequence of the use of the Parametric Subspace Theorem, as in [6].

The proof of Theorem 2 uses the fact that the function n 7→ p(n, ξ, b) is strictly
increasing when ξ is irrational. Actually, not much can be said on the behaviour of this
function. Indeed, Ferenczi [8] established the existence of an infinite word w over a
finite alphabet whose complexity function satisfies

lim inf
n→+∞

p(n,w)
n

= 2 and lim sup
n→+∞

p(n,w)
nt

= +∞ for any t > 1.

We stress that not every increasing function satisfying some obvious necessary
conditions can be the block-complexity function of some infinite sequence.

Recall that the infinite word w is called quasi-Sturmian if there exist positive
integers k and n0 such that p(n,w) = n + k for all integers n ≥ n0. Besides that
collection of infinite words, there also exist infinite words w with the property that

p(n,w)− n→+∞ and lim
n→+∞

p(n,w)
n

= 1,

as established by Aberkane [2]. Furthermore, Aberkane [1] proved that for any real
number δ > 1 there exists an infinite word w satisfying

1 < lim inf
n→+∞

p(n,w)
n

< lim sup
n→+∞

p(n,w)
n

≤ δ.

Both results show that our Theorem 2 gives in fact a stronger result than just an explicit
version of (1.1).

3. PROOFS

We begin with an auxiliary, combinatorial lemma. Throughout this section, we denote
by b·c the integer part function.

LEMMA 1. Let b ≥ 2 be an integer. Let ξ be a real number with 0 < ξ < 1 and
denote by a its b-ary expansion viewed as an infinite word on {0, 1, . . . , b−1}. Assume
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that there are positive integers m0, m1 and c ≥ 2 such that, for every integer n with
m0 ≤ n < m1, there is a word of length n having two occurrences in the prefix of
length cn of a. Setting

N = blog(m1/m0)/log(4c + 4)c,

there exist non-negative integers p1, . . . , pN , r1, . . . , rN and positive integers
s1, . . . , sN such that r1 + s1 ≥ m0/2, s1 < . . . < sN , and

(i) rj ≤ (2c + 1)sj (j = 1, . . . , N);
(ii) if rj ≥ 1, then b does not divide pj (j = 1, . . . , N);

(iii) 2(rj + sj ) ≤ rj+1 + sj+1 ≤ 8c2(rj + sj ) (j = 1, . . . , N − 1);

(iv)
∣∣∣∣ξ − pj

brj (bsj − 1)

∣∣∣∣ < 1
b(1+1/(5c))(rj+sj )

(j = 1, . . . , N).

PROOF. This follows from an easy modification of the proof of Proposition 10.1 from
[4]. We omit the details. 2

Now, we discuss consequences of Lemma 1 and the Parametric Subspace Theorem
[7]. We content ourselves with sketching the proofs of our theorems, since they are
very similar to that of Theorem 2.1 from [6].

Let ξ be a real, algebraic irrational number of degree d with 0 < ξ < 1. Let
H ≥ ee be an upper bound for its height. Let m0, m1 and c be as in the statement of
Lemma 1, and set N = blog(m1/m0)/ log(4c + 4)c.

PREPARATION FOR THE PROOFS OF THEOREMS 1 AND 2. We assume that the
hypotheses of Lemma 1 are satisfied. It follows from (iv) that, for n = bN/2c, . . . , N ,
the vector

xn := (btn, brn, pn),

where we have set tn = rn + sn, satisfies a system of inequalities to which we can
apply the Parametric Subspace Theorem with ε = 1/(5c), exactly as in [6]. We use
an explicit estimate for the number of subspaces that contain all the solutions having
a sufficiently large height. For this reason, we need to consider only points with large
height. Thus, we assume that

(3.1) N ≥ 3 log(80c log(4H)).

Arguing as in [6], we establish that all the vectors xn, bN/2c ≤ n ≤ N , lie in the
union of at most

10160c8 log(8d) log log(8d)

proper rational linear subspaces of Q3.
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Let then z1X1 + z2X2 + z3X3 = 0 be such a subspace H, where (z1, z2, z3) is a
non-zero primitive triple of rational integers. Let

N = {i1 < · · · < ir}

be the set of n with bN/2c ≤ n ≤ N such that xn is inH. Arguing again as in [6] and
using (3.1), it follows that

r ≤ 1020c3(log c) log(8d) log log(8d).

Consequently, we get the bound

(3.2) N ≤ 10180c11(log c)(log(8d))2(log log(8d))2,

provided that (3.1) holds. Combining (3.1) and (3.2), we have proved that

(3.3) blog(m1/m0)/ log(4c + 4)c ≤ max{3 log(80c log(4H)),

10180c11(log c)(log(8d))2(log log(8d))2}.

We are now in a position to establish our theorems.

PROOF OF THEOREM 1. Assume that m0 = 1. Then either

m1 ≤ (4c + 4)4 log(80c log(4H)),

or
m1 ≤ exp{10181c11(log c)2(log(8d))2(log log(8d))2}.

By Dirichlet’s Schubfachprinzip, an infinite word whose complexity functon is
bounded by Cn satisfies the assumption of Lemma 1 with c = C + 1, m0 = 1 and m1
arbitrary. This gives Theorem 1. 2

PROOF OF THEOREM 2. Set c = 3 and

T = exp{10180c11(log c)2(log(8d))2(log log(8d))2} + (4c + 4)4 log(80c log(4H))

≤ exp{10188(log(8d))2(log log(8d))2} + 164 log(240 log(4H)).

Let k be a non-negative integer. Set m0 = T k and m1 = T k+1. Our choice for T
contradicts (3.3). This shows that the assumptions of Lemma 1 cannot be satisfied.
Consequently, there exists an integer nk with T k ≤ nk < T k+1 such that no block
of nk digits occurs twice in the prefix of length 3nk of the b-ary expansion of ξ . This
implies that

p(nk, ξ, b) ≥ 2nk.

Let n > n0 be a positive integer that does not belong to the sequence (nk)k≥0. Let k
be the integer determined by the inequalities

T k ≤ nk < n < nk+1 < T k+2.
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As proved in [10], since ξ is irrational, the function m 7→ p(m, ξ, b) is strictly
increasing and

(3.4) p(m, ξ, b) ≥ m+ 1 for m ≥ 1.

Consequently, the function g : m 7→ p(m, ξ, b) − m is non-decreasing (to see this,
just compute g(m+ 1)− g(m)), and we get

p(n, ξ, b)− n ≥ p(nk, ξ, b)− nk ≥ nk ≥ T
k
≥

n

T 2 ,

hence,

(3.5) p(n, ξ, b) ≥

(
1+

1
T 2

)
n.

We infer from (3.4) that inequality (3.5) remains true for every n ≤ n0. This concludes
the proof of Theorem 2. 2
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