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Probability theory. — On the martingale problem associated to the 2D and
3D stochastic Navier–Stokes equations, by GIUSEPPE DA PRATO and ARNAUD
DEBUSSCHE.

ABSTRACT. — We consider a Markov semigroup (Pt )t≥0 associated to the 2D and 3D Navier–
Stokes equations. In the two-dimensional case Pt is unique, whereas in the three-dimensional case
(where uniqueness is not known) it is constructed as in [4] and [7].

For d = 2, we specify a core, identify the abstract generator of (Pt )t≥0 with the differential
Kolmogorov operator L on this core and prove existence and uniqueness for the corresponding
martingale problem. In dimension 3, we are not able to prove a similar result and we explain
the difficulties encountered. Nonetheless, we specify a core for the generator of the transformed
semigroup (St )t≥0, obtained by adding a suitable potential and then using the Feynman–Kac
formula. Then we identify the abstract generator (St )t≥0 with a differential operator N on this core
and prove uniqueness for the stopped martingale problem.
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uniqueness.
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1. INTRODUCTION

We consider the stochastic Navier–Stokes equations on a bounded domain O of Rd ,
d = 2 or 3, with Dirichlet boundary conditions, the unknowns being the velocity
X(t, ξ) and the pressure p(t, ξ) defined for t > 0 and ξ ∈ O :

(1.1)

 dX(t, ξ) = [∆X(t, ξ)− (X(t, ξ) · ∇)X(t, ξ)] dt
−∇p(t, ξ) dt + f (ξ) dt +

√
QdW,

divX(t, ξ) = 0,

with Dirichlet boundary conditions

X(t, ξ) = 0, t > 0, ξ ∈ ∂O,

and supplemented with the initial condition

X(0, ξ) = x(ξ), ξ ∈ O .

We have taken the viscosity equal to 1 since it plays no particular role in this work.
The understanding of the stochastic Navier–Stokes equations has recently

progressed considerably. In dimension two, impressive progress has been obtained
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and difficult ergodic properties have been proved (see [1], [8], [10], [13], [14]–[19]).
In dimension three, the theory is not so advanced. Uniqueness is still an open problem.
However, Markov solutions have been constructed and ergodic properties have been
proved (see [2]–[4], [7], [9], [11], [12], [22], [25], [26]). In [20], [21], a general form of
the stochastic Navier–Stokes equations is derived from the assumptions that the fluid
particles are subject to turbulent diffusion. These equations are studied theoretically in
the martingale and strong sense. Also, in dimension two, it is shown that the equations
are equivalent to an infinite system of deterministic PDEs obtained by Wiener chaos
decomposition.

In this article, our aim is to try to improve the understanding of the martingale
problems associated to these equations. Let us first set some notations. Let

H = {x ∈ (L2(O))d : div x = 0 in O, x · n = 0 on ∂O},

where n is the outward normal to ∂O, and V = (H 1
0 (O))

d
∩ H. The norm and

inner product in H will be denoted by | · | and (·, ·) respectively. Moreover, W is a
cylindrical Wiener process on H and the covariance of the noise Q is trace class and
nondegenerate (see (1.3) and (1.4) below for more precise assumptions).

We also denote by A the Stokes operator in H :

A = P∆, D(A) = (H 2(O))d ∩ V,

where P is the orthogonal projection of (L2(O))3 onto H , and by b the operator

b(x, y) = −P((x · ∇)y), b(x) = b(x, x), x, y ∈ V.

With these notations we rewrite the equations as

(1.2)

{
dX = (AX + b(X)) dt +

√
QdW,

X(0) = x.

We assume that

(1.3) Tr((−A)1+gQ) <∞ for some g > 0

and

(1.4) |Q−1/2x| ≤ c|(−A)rx| for some r ∈ (1, 3/2).

In dimension d = 3, it is well known that there exists a solution to the martingale
problem, but weak or strong uniqueness is an open problem (see [9] for a survey).
However, it has been proved in [4], [7] (see also [11]) that the above assumptions
allow constructing a transition semigroup (Pt )t≥0 associated to a Markov family of
solutions

((X(t, x))t≥0,Ωx,Fx,Px)
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for x ∈ D(A). Moreover, for sufficiently regular ϕ defined on D(A), Ptϕ is a solution
of the Kolmogorov equation associated to (1.2),

(1.5)


du

dt
= Lu, t > 0, x ∈ D(A),

u(0, x) = ϕ(x), x ∈ D(A),

where the Kolmogorov operator L is defined by

Lϕ(x) =
1
2

Tr{QD2ϕ(x)} + (Ax + b(x),Dϕ(x))

for sufficiently smooth functions ϕ on D(A).
In all the article, we choose ((X(t, x))t≥0,Ωx,Fx,Px) to be the Markov family

constructed in [7].
The fundamental idea in [4] is to introduce a modified semigroup (St )t≥0 defined

by

(1.6) Stϕ(x) = E(e−K
∫ t

0 |AX(s,x)|
2 dsϕ(X(t, x))).

It can be seen that for K large enough, this semigroup has very nice smoothing
properties and various estimates can be proved. Note that, thanks to the Feynman–Kac
formula, this semigroup is formally associated to the following equation:

(1.7)


dv

dt
= Nv, t > 0, x ∈ D(A),

v(0, x) = ϕ(x), x ∈ D(A),

where N is defined by

Nϕ(x) =
1
2

Tr{QD2ϕ(x)} + (Ax + b(x),Dϕ(x))−K|Ax|2ϕ(x),

for sufficiently smooth functions ϕ on D(A).
In [4], [7], this semigroup is defined only on the Galerkin approximations of (1.2).

Let Pm denote the projector associated to the firstm eigenvalues of A. We consider the
following equation in PmH :

(1.8)

{
dXm = (AXm + bm(Xm)) dt +

√
Qm dW,

Xm(0) = Pmx,

where bm(x) = Pmb(Pmx) and Qm = PmQPm. This defines, with obvious notations,
(Pmt )t≥0 and (Smt )t≥0. The following formula holds by a standard argument:

Pmt ϕ = S
m
t ϕ +K

∫ t

0
Smt−s(|A · |

2Pms ϕ) ds, ϕ ∈ Cb(PmH).

Various estimates are proved on (Smt )t≥0 and transferred to (Pmt )t≥0 thanks to
this identity. A compactness argument allows one to construct (Pt )t≥0. Moreover,
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a subsequence mk can be constructed so that for any x ∈ D(A), (Xmk (·, x))t≥0
converges in law to (X(·, x))t≥0.

Note also that similar arguments to those in [4] may be used to prove that for
smooth ϕ, (Stϕ)t≥0 is a strict solution to (1.7).

In dimension 2 this result also holds with exactly the same proofs since all
arguments for d = 3 are still valid. Note that it is well known that for d = 2 conditions
(1.3)–(1.4) imply that, for x ∈ H , there exists a unique strong solution to (1.2), and
the proof of the above facts can be simplified.

In the following, we give some properties of the generator of (Pt )t≥0 and (St )t≥0.
For d = 2, we specify a core, identify the abstract generator with the differential
operator L on this core and prove existence and uniqueness for the corresponding
martingale problem. (See [24] for a similar result.) Again, this follows from strong
uniqueness but we think that it is interesting to have a direct proof. Moreover, it can be
very useful to have a better knowledge of the Kolmogorov generator and we think that
this work is a contribution in this direction. In dimension 3, we are not able to prove
a similar result. We explain the difficulties encountered. We hope that this article will
help the reader to get a better insight into the problem of weak uniqueness for the three-
dimensional Navier–Stokes equations. Nonetheless, we specify a core for the generator
of the transformed semigroup (St )t≥0, identify it with the differential operator N on
this core and prove uniqueness for the stopped martingale problem. In other words, we
prove weak uniqueness up to the time when solutions are smooth. Again, this could be
proved directly thanks to local strong uniqueness.

2. THE GENERATORS

The space of continuous functions on D(A) is denoted by Cb(D(A)). Its norm is
denoted by ‖ · ‖0. For k ∈ N, Ck(D(A)) is the space of Ck functions on D(A). We
need several other function spaces on D(A).

Let us introduce the set E1 ⊂ Cb(D(A)) of C3 functions on D(A) such that there
exists a constant c satisfying

|(−A)−1Df (x)|H ≤ c(|Ax|
2
+ 1),

|(−A)−1D2f (x)(−A)−1
|L (H) ≤ c(|Ax|

4
+ 1),

|(−A)−1/2D2f (x)(−A)−1/2
|L (H) ≤ c(|Ax|

6
+ 1),

‖D3f (x)((−A)−1
·, (−A)−1

·, (−A)−1
·)‖ ≤ c(|Ax|6 + 1),

‖D3f (x)((−A)−γ ·, (−A)−γ ·, (−A)−γ ·)‖ ≤ c(|Ax|8 + 1),

|Df (x)|H ≤ c(|Ax|
4
+ 1),

for all γ ∈ (1/2, 1], and

E2 =

{
f ∈ Cb(D(A)) : sup

x,y∈D(A)

|f (x)− f (y)|

|A(x − y)|(1+ |Ax|2 + |Ay|2)
< +∞

}
.
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Note that we identify the gradient and the differential of a real-valued function. Also,
the second differential is identified with a function with values in L (H). The third
differential is a trilinear operator on D(A), and the norm ‖ · ‖ above is the norm of
such operators.

Slightly improving the arguments in [4], it can be proved† that Pt maps Ei into
itself and that there exists a constant c > 0 such that

(2.1) ‖Ptf ‖Ei ≤ c‖f ‖Ei .

Moreover, for f ∈ E1, Ptf is a strict solution of (1.5) in the sense that it is satisfied
for any x ∈ D(A) and t ≥ 0. Again, the result of [4] has to be slightly improved to get
this result. In fact, using an interpolation argument, Proposition 5.9 and various other
estimates in [4], it is easy to deduce that, for any x ∈ D(A), LPtf (x) is continuous
on [0, T ].

For f ∈ E2, Ptf is still a solution of (1.5), but in the mild sense. We define the
Ornstein–Uhlenbeck semigroup associated to the linear equation by

Rtϕ(x) = ϕ

(
etAx +

∫ t

0
eA(t−s)

√
QdW(s)

)
, t ≥ 0, ϕ ∈ Cb(D(A)).

Then it is shown in [4] that

(2.2) Ptf (x) = Rtf (x)+

∫ t

0
Rt−s(b,DPsf ) ds, t ≥ 0, f ∈ E2.

For any λ > 0 we set

Fλf =

∫
∞

0
e−λtPtf dt, f ∈ Cb(D(A)).

Then since ‖Ptf ‖0 ≤ ‖f ‖0, we have

‖Fλf ‖0 ≤
1
λ
‖f ‖0.

Moreover, since Pt is Feller, by dominated convergence we have

Fλf ∈ Cb(D(A)).

It can be easily deduced that

Fλf − Fµf = (µ− λ)FλFµf, µ, λ > 0,

and

lim
λ→∞

λFλf (x) = lim
λ→∞

∫
∞

0
e−τPτ/λ(x) dτ = f (x), x ∈ D(A).

† In fact, only Lemma 5.3 there has to be improved. In that lemma, the term L1 can in fact be
estimated in a single step by using Proposition 3.5 of [7] instead of Proposition 5.1 of [4].
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It follows classically (see for instance [23]) that there exists a unique maximal
dissipative operator L̄ on Cb(D(A)) with domain D(L̄) such that

Fλf = (λ− L̄)
−1f.

We recall the following well known characterization of D(L̄): f ∈ D(L̄) if and only
if

(i) f ∈ Cb(D(A)),
(ii) t−1

‖Ptf − f ‖0 is bounded for t ∈ [0, 1],
(iii) t−1(Ptf (x)− f (x)) has a limit as t → 0 for any x ∈ D(A).

Moreover, in this case we have

L̄f (x) = lim
t→0

1
t
(Ptf (x)− f (x)).

Recall also that

(λ− L̄)−1f =

∫
∞

0
e−λtPtf dt, f ∈ Cb(D(A)).

By (2.1) we deduce that

(2.3) ‖(λ− L̄)−1f ‖Ei ≤
c

λ
‖f ‖Ei .

Similarly, we may define, for k ≥ 0, E k
3 as the space of C3 functions onD(A) such

that there exists a constant c satisfying

|(−A)−1Df (x)|H ≤ c(|Ax|
k
+ 1),

|(−A)−1D2f (x)(−A)−1
|L (H) ≤ c(|Ax|

k
+ 1),

|(−A)−1/2D2f (x)(−A)−1/2
|L (H) ≤ c(|Ax|

k
+ 1),

‖D3f (x)((−A)−1
·, (−A)−1

·, (−A)−1
·)‖ ≤ c(|Ax|k + 1),

‖D3f (x)((−A)−γ ·, (−A)−γ ·, (−A)−γ ·)‖ ≤ c(|Ax|k + 1),

|Df (x)|H ≤ c(|Ax|
k
+ 1),

for all γ ∈ (1/2, 1]. By various estimates given in [4], it is easy to check that, provided
K is chosen large enough, St maps E k

3 into itself and there exists a constant c > 0 such
that

(2.4) ‖Stf ‖E k3
≤ c‖f ‖E k3

.

Moreover, for f ∈ E k
3 , Stf is a strict solution of (1.7) in the sense that it satisfies (1.7)

for any x ∈ D(A) and t ≥ 0.
For any λ > 0 we set

F̃λf =

∫
∞

0
e−λtStf dt, f ∈ Cb(D(A)),
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and prove that there exists a unique maximal dissipative operator N̄ on Cb(D(A))with
domain D(N̄) such that

F̃λf = (λ− N̄)
−1f,

and f ∈ D(N̄) if and only if

(i) f ∈ Cb(D(A)),
(ii) t−1

‖Stf − f ‖0 is bounded for t ∈ [0, 1],
(iii) t−1(Stf (x)− f (x)) has a limit as t → 0 for any x ∈ D(A).

Finally, by (2.4), we see that

(2.5) ‖(λ− N̄)−1f ‖E k3
≤
c

λ
‖f ‖E k3

.

3. CONSTRUCTION OF CORES AND IDENTIFICATION OF THE GENERATORS

In this section, we analyse the generators defined in the preceding section. We start
with the following definition.

DEFINITION 3.1. Let K be an operator with domain D(K). A set D ⊂ D(K) is
a π -core for K if for any ϕ ∈ D(K), there exists a sequence (ϕn)n∈N in D which
π -converges‡ to ϕ and such that (Kϕn)n∈N π -converges to Kϕ.

Let us set G1 = (λ − L̄)−1E1 for some λ > 0. Clearly, for any ϕ ∈ G1 we have
ϕ ∈ D(L̄), and by (2.3), ϕ ∈ E1. Moreover,

Ptϕ(x)− ϕ(x) =

∫ t

0
LPsϕ(x) ds,

since (Ptϕ)t≥0 is a strict solution of the Kolmogorov equation. By (2.1) and the
definition of E1, for any x ∈ D(A) we have

|LPsϕ(x)| ≤ c(1+ |Ax|6)‖Psϕ‖E1 ≤ c(1+ |Ax|
6)‖ϕ‖E1 .

Moreover, since t 7→ LPtϕ(x) is continuous, we have

lim
t→0

1
t
(Ptϕ(x)− ϕ(x)) = Lϕ(x).

We deduce that
L̄ϕ(x) = Lϕ(x), x ∈ D(A).

Since E1 is π -dense in Cb(D(A)), we deduce that G1 is a π -core for L̄.
Also E1 ⊂ E2 so that

G1 ⊂ G2 = (λ− L̄)
−1E2

and G2 is also a π -core for L̄.

‡ Recall that the π -convergence (also called b.p. convergence) is defined by: (fn)n∈N
π -converges to f iff fn(x)→ f (x) for any x ∈ D(A) and supn∈N ‖fn‖0 <∞.



254 G. DA PRATO - A. DEBUSSCHE

These results hold both in dimension 2 and 3. The problem is that these cores are
abstract and strongly depend on the semigroup (Pt )t≥0. In dimension 3, this is a real
problem since we do not know if the transition semigroup is unique. If we were able
to construct a core in terms of the differential operator L, this would certainly imply
uniqueness of this transition semigroup.

In dimension 2, we are able to construct such a core. Of course, in this case,
uniqueness is well known. However, we think that it is important to have explicit cores,
as they give much information on the transition semigroup (Pt )t≥0.

THEOREM 3.2. Set
H = {f ∈ E1 : Lf ∈ E1}.

Then, in dimension d = 2, H ⊂ D(L̄) and it is a π -core for L̄. Moreover, for any
f ∈H , we have

L̄f = Lf.

The crucial point is to prove the following result.

PROPOSITION 3.3. Let d = 2. For any f ∈H we have

Pt1f − Pt2f =

∫ t2

t1

PsLf ds, 0 ≤ t1 ≤ t2.

PROOF. Let f ∈ H . By the Itô formula applied to the Galerkin equation (1.8), we
have, for ε > 0,

d(e−ε
∫ t

0 |(−A)
1/2Xm(s,x)|

6 dsf (Xm(t, x)))

= (−ε|(−A)1/2Xm(t, x)|
6f (Xm(t, x))+Lmfm(X(t, x)))e

−ε
∫ t

0 |(−A)
1/2Xm(s,x)|

6 ds dt

+ e−ε
∫ t

0 |(−A)
1/2Xm(s,x)|

6 ds(Dfm(Xm(t, x)),
√
Qm dW)

and

(3.1) E(e−ε
∫ t2

0 |(−A)
1/2Xm(s,x)|

6 dsf (Xm(t2, x)))

− E(e−ε
∫ t1

0 |(−A)
1/2Xm(s,x)|

6 dsf (Xm(t1, x)))

= E
(∫ t2

t1

(
−ε|(−A)1/2Xm(s, x)|

6f (Xm(s, x))

+ Lmf (Xm(s, x))
)
e−ε

∫ s
0 |(−A)

1/2Xm(σ,x)|
6 dσ ds

)
.

We have denoted by Lm the Kolmogorov operator associated to (1.8). Since f ∈ H ,
we have

|Lfm(x)| ≤ c(1+ |Ax|6).

By Proposition 5.4 and Lemma 5.3, the right hand side of (3.1) is uniformly integrable
on Ω × [t1, t2] with respect to m. Thus, we can take the limit as m → ∞ in (3.1) to
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obtain

(3.2) Ex(e−ε
∫ t2

0 |(−A)
1/2X(s,x)|6 dsf (X(t2, x)))

− Ex(e−ε
∫ t1

0 |(−A)
1/2X(s,x)|6 dsf (X(t1, x)))

= Ex
(∫ t2

t1

(
−ε|(−A)1/2X(s, x)|6f (X(s, x))

+ Lf (X(s, x))
)
e−ε

∫ s
0 |(−A)

1/2X(σ,x)|6 dσ ds

)
.

It is easy to prove by dominated convergence that

Ex(e−ε
∫ ti

0 |X(s,x)|
6
1 dsf (X(ti, x)))→ Ptif (x),

Ex
∫ t2

t1

Lf (X(s, x))e−ε
∫ s

0 |X(σ,x)|
6
1 dσ ds → Ex

∫ t2

t1

PsLf (x) ds,

as ε → 0. Indeed, by Lemma 5.3 below, we have∫ ti

0
|X(s, x)|61 ds <∞ P-a.s.

Moreover,∣∣∣∣Ex ∫ t2

t1

(
ε|X(s, x)|61f (X(s, x))e

−ε
∫ s

0 |X(σ,x)|
6
1 dσ

)
ds

∣∣∣∣
≤ ‖f ‖0Ex(e−ε

∫ t1
0 |X(σ,x)|

6
1 dσ − e−ε

∫ t2
0 |X(σ,x)|

6
1 dσ )→ 0

as ε → 0. The result follows. 2

It is now easy to conclude the proof of Theorem 3.2. Indeed, by Proposition 3.3,
for f ∈H we have, since ‖PsLf ‖0 ≤ ‖Lf ‖0,

‖Ptf − f ‖0 ≤ t‖Lf ‖0.

Moreover, since s 7→ PsLf (x) is continuous, for any x ∈ D(A) we have

1
t
(Ptf (x)− f (x))→ Lf (x) as t → 0.

It follows that f ∈ D(L̄) and L̄f = Lf . Finally,

G1 ⊂H ,

and since G1 is a π -core we deduce that H is also a π -core.

REMARK 3.4. We do not use the fact that Ptf is a strict solution of the Kolmogorov
equation to prove that H ⊂ D(L̄) and L̄f = Lf . But we do not know if there is a
direct proof of H being a π -core. We have used the inclusion G1 ⊂ H and the fact
that G1 is a π -core. The proof of G1 ⊂H requires (2.1), which is almost as strong as
the construction of a strict solution.
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REMARK 3.5. For d = 3, using Lemma 3.1 in [4], it is easy to prove a formula
similar to (3.2) with |(−A)1/2X(s, x)|6 replaced by |AX(s, x)|4 in the exponential
terms. The problem is that

lim
ε→0

e−ε
∫ t

0 |AX(s,x)|
4 ds
= 1l[0,τ∗(x))(t),

where τ ∗(x) is the life time of the solution in D(A). Thus we are not able to prove
Proposition 3.3 in this case.

We have the following result on the operator N̄ .

THEOREM 3.6. Let d = 2 or 3 and k ∈ N, and define

H̃k = {f ∈ E k
3 : Nf ∈ E k

3 }.

Then H̃k ⊂ D(N̄) and it is a π -core for N̄ . Moreover, for any f ∈ H̃k we have

N̄f = Nf.

The proof follows the one above. Indeed, it is easy to use similar arguments to
those in [4] and prove that for f ∈ E k

3 , (Stf )t≥0 is a strict solution to (1.7). Arguing
as above, we deduce that (λ− N̄)−1E k

3 is a π -core for N̄ .
Moreover, applying the Itô formula to the Galerkin approximations and letting

m → ∞ along a subsequence mk (to get uniform integrability by Lemma 3.1 of [4])
we prove, for f ∈ H̃k ,

Ex(e−K
∫ t2

0 |AX(s,x)|
2 dsf (X(t2, x)))− Ex(e−K

∫ t1
0 |AX(s,x)|

2 dsf (X(t1, x)))

= Ex
(∫ t2

t1

(
−K|AX(s, x)|2f (X(s, x))+ Lf (X(s, x))

)
e−K

∫ s
0 |AX(σ,x)|

2 dσ ds

)
.

We rewrite this as

St2f (x)− St1f (x) =

∫ t2

t1

SsNf (x) ds,

and deduce as above that f ∈ D(N̄) and N̄f = Nf . Finally, since (λ−N̄)−1E k
3 ⊂ H̃k ,

we conclude that H̃k is also a π -core.

4. UNIQUENESS FOR THE MARTINGALE PROBLEM

Let us study the following martingale problem.

DEFINITION 4.1. We say that a probability measure Px on C([0, T ];D((−A)−ε)),
ε > 0, is a solution of the martingale problem associated to (1.2) if

Px(η(t) ∈ D(A)) = 1, t ≥ 0, Px(η(0) = x) = 1
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and for any f ∈H ,

f (η(t))−

∫ t

0
Lf (η(s)) ds

is a martingale with respect to the natural filtration.

REMARK 4.2. In general, the existence of a solution is only proved for a different
martingale problem, where f is required to be in a smaller class. In particular, it
is required that f ∈ Cb(D((−A)

−ε)) for some ε > 0. However, in all concrete
constructions of solutions, it can be shown that a solution of our martingale problem
is in fact obtained.

THEOREM 4.3. Let d = 2. Then for any x ∈ D(A), there exists a unique solution to
the martingale problem.

PROOF. By a similar proof to that of Proposition 3.3, we know that there exists a
solution to the martingale problem.

Uniqueness follows from a classical argument. Let f ∈ E1 and, for λ > 0, set
ϕ = (λ− L̄)−1f. Then ϕ ∈ G1 ⊂H and

ϕ(η(t))− ϕ(x)−

∫ t

0
Lϕ(η(s)) ds

is a martingale. Thus, for any solution P̃x of the martingale problem,

Ẽx
(
ϕ(η(t))− ϕ(x)−

∫ t

0
Lϕ(η(s)) ds

)
= ϕ(x).

We multiply by λe−λt and integrate over [0,∞) to obtain, since L̄ϕ = Lϕ,

Ẽx
∫
∞

0
e−λtf (η(t)) dt = ϕ(x) = (λ− L̄)−1f (x) =

∫
∞

0
e−λtPtf (x) dt.

By inversion of the Laplace transform we deduce that

Ẽx(f (η(t))) = Ptf (x).

Thus the law at a fixed time t is uniquely defined. A standard argument proves that
this implies uniqueness for the martingale problem. 2

For d = 3 the proof of uniqueness still works. The problem is that we cannot
prove existence of a solution of the martingale problem. More precisely, we cannot
prove Proposition 3.3.

We can prove existence and uniqueness in d = 3 for the martingale problem with
H replaced by G1, but since the definition of G1 depends on the semigroup, this does
not give any real information.

We have the following weaker result on a stopped martingale problem.
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DEFINITION 4.4. We say that a probability measure Px on C([0, T ];D(A)) is a
solution of the stopped martingale problem associated to (1.2) if

Px(η(0) = 1) = 1,

and for any f ∈ H̃k ,

f (η(t ∧ τ ∗))−

∫ t∧τ∗

0
Lf (η(s)) ds

is a martingale with respect to the natural filtration and

η(t) = η(τ ∗), t ≥ τ ∗.

The stopping time τ ∗ is defined by

τ ∗ = lim
R→∞

τR, τR = inf{t ∈ [0, T ] : |Aη(t)| ≥ R}.

THEOREM 4.5. For any x ∈ D(A), there exists a unique solution to the stopped
martingale problem.

PROOF. Existence of a solution is classical. The proof follows the proofs of
Proposition 3.3 and Theorem 3.6 (see also Remark 3.5, and [9] for more details).
In fact, we may choose the Markov family ((X(t, x))t≥0,Ωx,Fx,Px) constructed in
[7]. It is easy to see that X(t, x) is continuous up to τ ∗. We slightly change notation
and set X(t, x) = X(t ∧ τ ∗, x).

Uniqueness follows from a similar argument to that for Theorem 4.3. For ε > 0,
we define (Sε(t))t≥0 just as (St )t≥0 but we replace e−K

∫ t
0 |Aη(s)|

2 ds by e−ε
∫ t

0 |Aη(s)|
4 ds

in (1.6). Proceeding as above, we then define Nε , N̄ε , H̃ ε
k , and prove that H̃ ε

k is a
π -core for N̄ε and Nεϕ = N̄εϕ for ϕ ∈ H̃ ε

k .
Let P̃x be a solution to the martingale problem and f ∈ E k

3 . For λ, ε > 0, we set
ϕ = (λ− N̄ε)

−1; then ϕ ∈ H̃ ε
k .

By the Itô formula (note that in Definition 4.4 it is required that the measure is
supported by C([0, T ];D(A))) we prove that

e−ε
∫ t

0 |Aη(s)|
4 dsϕ(η(t))−

∫ t

0

(
−ε|Aη(s)|4ϕ(η(s))+Lϕ(η(s))

)
e−ε

∫ s
0 |Aη(σ)|

4 dσ ds

= e−ε
∫ t

0 |Aη(s)|
4 dsϕ(η(t))−

∫ t

0
Nεϕ(η(s))e

−ε
∫ s

0 |Aη(σ)|
4 dσ ds

is also a martingale. We have used the fact that

e−ε
∫ t

0 |Aη(s)|
4 ds
= 0, t ≥ τ ∗.

Thus

Ẽx
(
e−ε

∫ t
0 |Aη(s)|

4 dsϕ(η(t))−

∫ t

0
Nεϕ(η(s))e

−ε
∫ s

0 |Aη(σ)|
4 dσ ds

)
= ϕ(x).
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We multiply by e−λt and integrate over [0,∞) to obtain, since N̄εϕ = Nεϕ,

Ẽx
(∫
∞

0
e−λt−ε

∫ t
0 |Aη(s)|

4 dsf (η(t)) dt

)
= ϕ(x) = (λ− N̄ε)

−1f (x)

=

∫
∞

0
e−λtSεt f (x) dt.

By dominated convergence, we may let ε → 0 to obtain

Ẽx
(∫
∞

0
e−λt1It≤τ∗f (η(t)) dt

)
=

∫
∞

0
e−λtS0

t f (x) dt,

where S0
t f (x) = limε→0 S

ε
t f (x) = Ex(1It≤τ∗f (X(t, x))). The conclusion

follows. 2

5. TECHNICAL RESULTS

Throughout this section, we assume that d = 2. Also, for s ∈ R, we set | · |s =
|(−A)s · |.

LEMMA 5.1. There exists c depending on T , Q, A such that

E
(

sup
t∈[0,T ]

|X(t, x)|2 +

∫ T

0
|X(s, x)|21 ds

)
≤ c(1+ |x|2),

E
(

sup
t∈[0,T ]

|X(t, x)|4 +

∫ T

0
|X(s, x)|2|X(s, x)|21 ds

)
≤ c(1+ |x|4).

PROOF. We first apply Itô’s formula to 1
2 |x|

2 (as usual the computation is formal and
it should be justified by Galerkin approximations):

1
2
d|X(t, x)|2 + |X(t, x)|21 dt = (X(t, x),

√
QdW)+

1
2

TrQdt.

We deduce, thanks to a classical martingale inequality,

E
(

1
2

sup
t∈[0,T ]

|X(t, x)|2 +

∫ T

0
|X(s, x)|21 ds

)
≤ E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0
(X(s, x),

√
QdW(s))

∣∣∣∣)+ 1
2
(|x|2 + (TrQ)T )

≤ 2E
((∫ T

0
|

√
QX(s, x)|2 ds

)1/2)
+

1
2
(|x|2 + (TrQ)T )

≤
1
2
E
∫ T

0
|X(s, x)|2 ds + C +

1
2
|x|2,
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where C depends on T , Q, A. It follows that

(5.1) E
(

sup
t∈[0,T ]

|X(t, x)|2 +

∫ T

0
|X(s, x)|21 ds

)
≤ C + |x|2.

We now apply Itô’s formula to 1
4 |x|

4:

1
4
d|X(t, x)|4 + |X(t, x)|2|X(t, x)|21 dt

= |X(t, x)|2(X(t, x),
√
QdW)+

(
1
2
(TrQ)|X(t, x)|2 + |

√
QX(t, x)|2

)
dt

≤ |X(t, x)|2(X(t, x),
√
QdW)+ c|X(t, x)|2 dt.

We deduce

E
(

1
4

sup
t∈[0,T ]

|X(t, x)|2 +

∫ T

0
|X(s, x)|2|X(s, x)|21 ds

)
≤ E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0
|X(s, x)|2(X(s, x),

√
QdW(s))

∣∣∣∣)+ cE ∫ T

0
|X(s, x)|2 ds +

1
4
|x|4

≤ 2E
((∫ T

0
|X(s, x)|4|

√
QX(s, x)|2 ds

)1/2)
+ c(1+ |x|4)

≤ 2E
(

sup
t∈[0,T ]

|X(s, x)|2
(∫ T

0
|

√
QX(s, x)|2 ds

)1/2)
+ c(1+ |x|4)

≤
1
8
E
(

sup
t∈[0,T ]

|X(t, x)|4
)
+ cE

(∫ T

0
|

√
QX(s, x)|2 ds

)
+ c(1+ |x|4).

Since
√
Q is a bounded operator, using (5.1) we deduce that

E
(

sup
t∈[0,T ]

|X(t, x)|4 +

∫ T

0
|X(s, x)|2|X(s, x)|21 ds

)
≤ (1+ |x|4). 2

LEMMA 5.2. There exists c depending on T , Q, A such that

E
(

sup
t∈[0,T ]

e−c
∫ t

0 |X(s,x)|
2
|X(s,x)|21 ds |X(t, x)|21

)
+ E

(∫ T

0
e−c

∫ s
0 |X(σ,x)|

2
|X(σ,x)|21 dσ |X(s, x)|22 ds

)
≤ c(1+ |x|21).

PROOF. We apply Itô’s formula to

e−c
∫ t

0 |X(s,x)|
2
|X(s,x)|21 ds |X(t, x)|21,
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and obtain

1
2
d(e−c

∫ t
0 |X(s,x)|

2
|X(s,x)|21 ds |X(t, x)|21)+ e

−c
∫ t

0 |X(s,x)|
2
|X(s,x)|21 ds |X(t, x)|22 dt

= e−c
∫ t

0 |X(s,x)|
2
|X(s,x)|21 ds

(
−c|X(t, x)|2|X(t, x)|41 + (b(X(t, x)), AX(t, x))

)
dt

+ (Ax,
√
QdW)−

1
2

Tr(AQ) dt.

We have

(b(x), Ax) ≤ |b(x)| |Ax| ≤ c̃|x|L4 |∇x|L4 |Ax| ≤ c̃|x|
1/2
|x|1|x|

3/2
2

≤
1
2
|x|22 + c̃|x|

2
|x|41.

We deduce that if c ≥ c̃, then

1
2
d(e−c

∫ t
0 |X(s,x)|

2
|X(s,x)|21 ds |X(t, x)|21)+

1
2
e−c

∫ t
0 |X(s,x)|

2
|X(s,x)|21 ds |X(t, x)|22 dt

≤ e−c
∫ t

0 |X(s,x)|
2
|X(s,x)|21 ds(AX(t, x),

√
QdW)+ c dt

and

E
(

sup
t∈[0,T ]

e−c
∫ t

0 |X(s,x)|
2
|X(s,x)|21 ds |X(t, x)|21

)
+ E

(∫ T

0
e−c

∫ s
0 |X(σ,x)|

2
|X(σ,x)|21 dσ |AX(s, x)|2 ds

)
≤ 2E

((∫ T

0
e−2c

∫ s
0 |X(σ,x)|

2
|X(σ,x)|21 dσ |

√
QX(s, x)|2 ds

)1/2)
+ cT + |x|21.

Since Tr(QA) <∞, we know that QA is a bounded operator and

E
((∫ T

0
e−2c

∫ s
0 |X(σ,x)|

2
|X(σ,x)|21 dσ |

√
QX(s, x)|2 ds

)1/2)
≤ cE

((∫ T

0
|X(s, x)|21 ds

)1/2)
≤ |x| + 1,

by Lemma 5.1. The result follows. 2

LEMMA 5.3. For any k ∈ N, there exists c depending on k, T , Q, A such that

E
(

sup
t∈[0,T ]

e−c
∫ t

0 |X(s,x)|
2
|X(s,x)|21 ds |X(t, x)|k1

)
≤ c(1+ |x|k1).

The proof of this lemma follows the same argument as above. It is left to the reader.

PROPOSITION 5.4. For any k ∈ N and ε > 0, there exists C(ε, k, T ,Q,A) such that
for any m ∈ N, x ∈ D(A), t ∈ [0, T ],

E(e−ε
∫ t

0 |(−A)
1/2Xm(s,x)|

6 ds
|AXm(t, x)|

k) ≤ C(ε, k, T ,Q,A)(1+ |Ax|k).
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PROOF. Let us set

Z(t) =

∫ t

0
e(t−s)A

√
QdW(s), Y (t) = X(t, x)− z(t).

Then, by the factorization method (see [5]),

(5.2) E
(

sup
t∈[0,T ]

|Z(t)|h2+ε

)
≤ C

for any ε < g, and we have

dY

dt
= AY + b(Y + Z).

We take the scalar product with A2Y :

1
2
d

dt
|Y |22 + |Y |

2
3 = (b(Y + Z),A

2Y ) = ((−A)1/2b(Y + Z), (−A)3/2Y ).

We have

|(−A)1/2b(Y + Z)| = |∇b(Y + Z)| ≤ c(|Y + Z|2
W 1,4 + |Y + Z|Lp |Y + Z|W 2,q ),

where 1/p + 1/q = 1/2.
By the Gagliardo–Nirenberg inequality

|Y + Z|2
W 1,4 ≤ c|Y + Z|1|Y + Z|2.

Setting 1/p = 1/2− s/2 we have, by Sobolev’s embedding,

|Y + Z|Lp |Y + Z|W 2,q ≤ c|Y + Z|s/2|Y + Z|3−s/2.

Therefore

((−A)1/2b(Y + Z), (−A)3/2Y ) ≤ c|Y + Z|1|Y + Z|2|Y |3

≤ c|Y + Z|s/2|Y + Z|3−s/2|Y |3

≤
1
4
|Y |23 + c|Y + Z|

2
1|Z|

2
2 + c|Y + Z|

2
1|Y |

2
2

+ c|Y + Z|s/2|Y |3−s/2|Y |3 + c|Y + Z|
2
s/2|Z|

2
3−s/2.

Since

|Y + Z|s/2|Y |3−s/2|Y |3 ≤ |Y + Z|s/2|Y |
s/4
1 |Y |

2−s/4
3 ≤ c|Y + Z|

8/s
s/2|Y |

2
1 +

1
4
|Y |23,

we finally get

d

dt
|Y |22 ≤ c|Y + Z|

2
1|Y |

2
2 + c(|Y + Z|

2
1|Z|

2
2 + |Y + Z|

2
s/2|Z|

2
3−s/2 + |Y + Z|

8/s
s/2|Y |

2
1)
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and

|Y (t)|22 ≤ e
c
∫ t

0 |Y+Z|
2
1 ds

×

(
|x|22 + c

∫ t

0
(|Y +Z|21|Z|

2
2 + |Y +Z|

2
s/2|Z|

2
3−s/2 + |Y +Z|

8/s
1 |Y |

2
1/2) ds

)
.

We then obtain, by the Hölder and Poincaré inequalities,

e−ε
∫ t

0 |Y+Z|
6
1 ds |Y (t)|k2 ≤ cke

−ε
∫ t

0 |Y+Z|
6
1 ds+ck

∫ t
0 |Y+Z|

2
1 ds

×

(
|x|k2 +

∫ t

0
(|Y + Z|41 + |Z|

4
2+g + |Y + Z|

16/s
1 ) ds

)
(we choose 3− s/2 < 2+ g and set ε = 1− s/2).

The conclusion follows from Lemma 5.3 and the boundedness of the function x 7→
−εx6

+ cx4. 2

REFERENCES

[1] J. BRICMONT - A. KUPIAINEN - R. LEFEVERE, Exponential mixing for the 2D
Navier–Stokes dynamics, Comm. Math. Phys. 230 (2002), 87–132.

[2] I. CHUESHOV - S. B. KUKSIN, Random kick-forced 3D Navier–Stokes equations in
a thin domain. Arch. Ration. Mech. Anal. 188 (2008), 117–153.

[3] I. CHUESHOV - S. B. KUKSIN, Stochastic 3D Navier–Stokes equations in a thin
domain and its α-approximation. Preprint (2007).

[4] G. DA PRATO - A. DEBUSSCHE, Ergodicity for the 3D stochastic Navier–Stokes
equations. J. Math. Pures Appl. 82 (2003), 877–947.

[5] G. DA PRATO - J. ZABCZYK, Stochastic Equations in Infinite Dimensions.
Encyclopedia Math. Appl. 44, Cambridge Univ. Press, 1992.

[6] G. DA PRATO - J. ZABCZYK, Ergodicity for Infinite Dimensional Systems. London
Math. Soc. Lecture Note Ser. 229, Cambridge Univ. Press, 1996.

[7] A. DEBUSSCHE - C. ODASSO, Markov solutions for the 3D stochastic Navier–
Stokes equations with state dependent noise. J. Evol. Equations 6 (2006), 305–324.

[8] W. E - J. C. MATTINGLY - Y. G. SINAI, Gibbsian dynamics and ergodicity for
the stochastically forced Navier–Stokes equation. Comm. Math. Phys. 224 (2001),
83–106.

[9] F. FLANDOLI, An Introduction to 3D Stochastic Fluid Dynamics. CIME lecture
notes, 2005.

[10] F. FLANDOLI - B. MASLOWSKI, Ergodicity of the 2D Navier–Stokes equations
under random perturbations. Comm. Math. Phys. 172 (1995), 119–141.

[11] F. FLANDOLI - M. ROMITO, Markov selections for the 3D stochastic Navier–Stokes
equation. Probab. Theory Related Fields 140 (2008), 407–458.
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École Normale Supérieure de Cachan

antenne de Bretagne
Campus de Ker Lann
35170 BRUZ, France


	Introduction
	The generators
	Construction of cores and identification of the generators 
	Uniqueness for the martingale problem
	Technical results

