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Partial differential equations. — Conformal metrics on R2m with constant Q-
curvature, by LUCA MARTINAZZI.

ABSTRACT. — We study the conformal metrics on R2m with constant Q-curvature Q ∈ R having
finite volume, particularly in the case Q ≤ 0. We show that when Q < 0 such metrics exist in R2m

if and only if m > 1. Moreover, we study their asymptotic behavior at infinity, in analogy with the
case Q > 0, which we treated in a recent paper. When Q = 0, we show that such metrics have
the form e2pgR2m , where p is a polynomial such that 2 ≤ degp ≤ 2m − 2 and supR2m p < ∞. In
dimension 4, such metrics correspond to the polynomials p of degree 2 with lim|x|→∞ p(x) = −∞.
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1. INTRODUCTION AND STATEMENT OF THE MAIN THEOREMS

Given a constant Q ∈ R, we consider the solutions to the equation

(1) (−∆)mu = Qe2mu on R2m

satisfying

(2) α :=
1
|S2m|

∫
R2m

e2mu(x) dx <∞.

Geometrically, if u solves (1) and (2), then the conformal metric g := e2ugR2m has
Q-curvature Q2m

g ≡ Q and volume α|S2m
|. For the definition of the Q-curvature and

related remarks, we refer to [Mar1]. Notice that given a solution u to (1) and λ > 0,
the function v := u− 1

2m log λ solves

(−∆)mv = λQe2mv in R2m,

hence what matters is just the sign ofQ, and we can assume without loss of generality
that Q ∈ {0,±(2m− 1)!}.

Every solution to (1) is smooth. When Q = 0, that follows from standard elliptic
estimates; when Q 6= 0 the proof is a bit more subtle (see [Mar1, Corollary 8]).

For Q ≥ 0, some explicit solutions to (1) are known. For instance, every
polynomial of degree at most 2m − 2 satisfies (1) with Q = 0, and the function
u(x) = log 2

1+|x|2 satisfies (1) withQ = (2m− 1)! and α = 1. This latter solution has
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the property that e2ugR2m = (π−1)∗gS2m , where π : S2m
→ R2m is the stereographic

projection.
For the negative case, we notice that the function w(x) = log 2

1−|x|2 solves

(−∆)mw = −(2m − 1)!e2mw on the unit ball B1 ⊂ R2m (in dimension 2 this
corresponds to the Poincaré metric on the disk). However, no explicit entire solution to
(1) with Q < 0 is known, hence one can ask whether such solutions actually exist. In
dimension 2 (m = 1) it is easy to see that the answer is negative, but quite surprisingly
the situation is different in dimension 4 and higher:

THEOREM 1. FixQ < 0. Form = 1 there is no solution to (1)–(2). For everym ≥ 2,
there exist (several) radially symmetric solutions to (1)–(2).

Having now an existence result, we turn to the study of the asymptotic behavior
at infinity of solutions to (1)–(2) when m ≥ 2, Q < 0, having in mind applications
to concentration-compactness problems in conformal geometry. To this end, given a
solution u to (1)–(2), we define the auxiliary function

(3) v(x) := −
(2m− 1)!

γm

∫
R2m

log
(
|y|

|x − y|

)
e2mu(y) dy,

where γm := ω2m22m−2[(m− 1)!]2 is characterized by the following property:

(−∆)m
(

1
γm

log
1
|x|

)
= δ0 in R2m.

Then (−∆)mv = −(2m− 1)!e2mu. We prove

THEOREM 2. Let u be a solution of (1)–(2) with Q = −(2m− 1)!. Then

(4) u(x) = v(x)+ p(x),

where p is a non-constant polynomial of even degree at most 2m− 2. Moreover, there
exist a constant a 6= 0, an integer 1 ≤ j ≤ m − 1 and a closed set Z ⊂ S2m−1 of
Hausdorff dimension at most 2m−2 such that for every compact subsetK ⊂ S2m−1

\Z

we have

(5)

lim
t→∞

∆`v(tξ) = 0, ` = 1, . . . , m− 1,

v(tξ) = 2α log t + o(log t) as t →∞,

lim
t→∞

∆ju(tξ) = a,

for every ξ ∈ K uniformly in ξ . If m = 2, then Z = ∅ and supR2m u <∞. Finally,

(6) lim inf
|x|→∞

Rgu(x) = −∞,

where Rgu is the scalar curvature of gu := e2ugR2m .
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Following the proof of Theorem 1, it can be shown that the estimate on the degree
of the polynomial is sharp. Recently J. Wei and D. Ye [WY] showed the existence of
solutions to∆2u = 6e4u in R4 with

∫
R4 e

4u dx <∞which are not radially symmetric.
It is plausible that also in the negative case non-radially symmetric solutions exist.

For the case Q = 0 we have

THEOREM 3. When Q = 0, any solution to (1)–(2) is a polynomial p with 2 ≤
degp ≤ 2m− 2 and with

sup
R2m

p <∞.

In particular, in dimension 2 (case m = 1), there are no solutions. In dimension 4 the
solutions are exactly the polynomials of degree 2 with lim|x|→∞ p(x) = −∞. Finally,
there exist 1 ≤ j ≤ m− 1 and a < 0 such that

(7) lim
|x|→∞

∆jp(x) = a.

The case when Q > 0, say Q = (2m − 1)!, has been exhaustively treated. The
problem

(8) (−∆)mu = (2m− 1)!e2mu on R2m,

∫
R2m

e2mu dx <∞,

admits standard solutions, i.e. solutions of the form u(x) := log 2λ
1+λ2|x−x0|2

, λ > 0,

x0 ∈ R2m, that arise from the stereographic projection and the action of the Möbius
group of conformal diffeomorphisms on S2m. In dimension 2, W. Chen and C. Li
[CL] showed that every solution to (8) is standard. Already in dimension 4, however,
as shown by A. Chang and W. Chen [CC], (8) admits non-standard solutions. In
dimension 4, C.-S. Lin [Lin] classified all solutions u to (8) and gave precise conditions
in order for u to be a standard solution in terms of its asymptotic behavior at infinity.

In arbitrary even dimension, A. Chang and P. Yang [CY] proved that solutions of
the form

u(x) = log
2

1+ |x|2
+ ξ(π−1(x))

are standard, where π : S2m
→ R2m is the stereographic projection and ξ is a smooth

function on S2m. J. Wei and X. Xu [WX] showed that any solution u to (8) is standard
under the weaker assumption that u(x) = o(|x|2) as |x| → ∞ (see also [Xu]). We
recently treated the general case (see [Mar1]), generalizing the work of C.-S. Lin. In
particular, we proved a decomposition u = p + v as in Theorem 2 and gave various
analytic and geometric conditions which are equivalent to u being standard.

The classification of the solutions to (8) has been applied in concentration-
compactness problems (see e.g. [LS], [RS], [Mal], [MS], [DR], [Str1], [Str2],
[Ndi]). There is an interesting geometric consequence of Theorems 2 and 3, with
applications in concentration-compactness: In the case of a closed manifold, metrics
of equibounded volumes and prescribed Q-curvatures of possibly varying sign cannot
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concentrate at points of negative or zero Q-curvature. For instance we shall prove in a
forthcoming paper [Mar2]

THEOREM 4. Let (M, g) be a 2m-dimensional closed Riemannian manifold with
Paneitz operator P 2m

g satisfying kerP 2m
g = {const}, and let uk : M → R be a

sequence of solutions of

(9) P 2m
g uk +Q

2m
g = Qke

2muk ,

where Q2m
g is the Q-curvature of g (see e.g. [Cha]), and where the Qk’s are given

continuous functions with Qk → Q0 in C0. Assume also that there is a Λ > 0 such
that

(10)
∫
M

e2muk d volg ≤ Λ

for all k. Then one of the following is true.

(i) For every 0 ≤ α < 1, a subsequence is converging in C2m−1,α(M).
(ii) There exists a finite (possibly empty) set S = {x(i) : 1 ≤ i ≤ I } such that

uk →−∞ in L∞loc(M\S). Moreover,

(11)
∫
M

Qg d volg = I (2m− 1)!|S2m
|,

and

(12) Qke
2muk d volg ⇀

I∑
i=1

(2m− 1)!|S2m
|δx(i)

in the sense of measures. Finally, Q0(x
(i)) > 0 for 1 ≤ i ≤ I .

In sharp contrast with Theorem 4, on an open domain Ω ⊂ R2m (or a manifold
with boundary), m > 1, concentration is possible at points of negative or zero
curvature. Indeed, take any solution u of (1)–(2) with Q ≤ 0, whose existence is
given by Theorem 1, and consider the sequence

uk(x) := u(k(x − x0))+ log k for x ∈ Ω

for some fixed x0 ∈ Ω . Then (−∆)muk = Qe2muk and uk concentrates at x0 in the
sense that as k → ∞ we have uk(x0) → ∞, uk → −∞ a.e. in Ω and e2muk dx ⇀

α|S2m
|δx0 in the sense of measures.

The 2-dimensional case (m = 1) is different and concentration at points of non-
positive curvature can also be ruled out on open domains, because otherwise a standard
blowing-up procedure would yield a solution to (1)–(2) with Q ≤ 0, contradicting
Theorem 1.

An immediate consequence of Theorem 4 and the Gauss–Bonnet–Chern formula
is the following compactness result (see [Mar2]):
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COROLLARY 5. In the hypothesis of Theorem 4 assume that vol(gk) 9 0 and that
either

1. χ(M) ≤ 0 and dimM ∈ {2, 4}, or
2. χ(M) ≤ 0, dimM ≥ 6 and (M, g) is locally conformally flat,

where χ(M) is the Euler–Poincaré characteristic of M . Then only case (i) in
Theorem 4 occurs.

The paper is organized as follows. The proofs of Theorems 1–3 are given in the
following three sections; in the last section we collect some open questions. In the
following, the letter C denotes a generic constant, which may change from line to line
and even within the same line.

2. PROOF OF THEOREM 1

Theorem 1 follows from Propositions 6 and 8 below.

PROPOSITION 6. For m = 1 and Q < 0 there are no solutions to (1)–(2).

PROOF. Assume that such a solution u exists. Then, by the maximum principle and
Jensen’s inequality,∫

∂BR

u dσ ≥ u(0),
∫
∂BR

e2u dσ ≥ 2πRe2u(0).

Integrating in R on [1,∞), we get∫
R2
e2u dx = ∞,

contradiction. 2

LEMMA 7. Let u(r) be a smooth radial function on Rn, n ≥ 1. Then there are
positive constants bm depending only on n such that

(13) ∆mu(0) = bmu(2m)(0),

where u(2m) := ∂2mu/∂r2m. In particular, ∆mu(0) has the sign of u(2m)(0).

For a proof see [Mar1].

PROPOSITION 8. For m ≥ 2 and Q < 0 there exist radial solutions to (1)–(2).

PROOF. We consider separately the cases when m is even and when m is odd.

CASE 1: m even. Let u = u(r) be the unique solution of the following ODE:
∆mu(r) = −(2m− 1)!e2mu(r),

u(2j+1)(0) = 0, 0 ≤ j ≤ m− 1,
u(2j)(0) = αj ≤ 0, 0 ≤ j ≤ m− 1,
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where α0 = 0 and α1 < 0. We claim that the solution exists for all r ≥ 0. To see that,
we shall use barriers (cf. [CC, Theorem 2]). Let us define

w+(r) =
α1

2
r2, g+ := w+ − u.

Then ∆mg+ ≥ 0. By the divergence theorem,∫
BR

∆jg+ dx =

∫
∂BR

d∆j−1g+

dr
dσ.

Moreover, from Lemma 7, we infer

∆jg+(0) ≥ 0 for 0 ≤ j ≤ m− 1,

hence we see inductively that ∆jg+(r) ≥ 0 for every r such that g+(r) is defined and
for 0 ≤ j ≤ m− 1. In particular, g+ ≥ 0 as long as it exists.

Let us now define

w−(r) :=
m−1∑
i=0

βir
2i
− A log

2
1+ r2 , g− := u− w−,

where the βi’s and A will be chosen later. Notice that

∆mw−(r) = ∆
m

(
−A log

2
1+ r2

)
= −(2m− 1)!A

(
2

1+ r2

)2m

.

Since α1 < 0,

lim
r→∞

( 2
1+r2

)2m
emα1r2 = ∞,

and taking into account that u ≤ w+, we can choose A large enough to have

∆mg−(r) = (2m− 1)!
[
A

(
2

1+ r2

)2m

− e2mu(r)
]

≥ (2m− 1)!
[
A

(
2

1+ r2

)2m

− emα1r
2
]
≥ 0.

We now choose each βi so that

∆jg−(0) ≥ 0, 0 ≤ j ≤ m− 1,

and proceed by induction as above to prove that g− ≥ 0. Hence

w−(r) ≤ u(r) ≤ w+(r)

as long as u exists, and by standard ODE theory, that implies that u(r) exists for all
r ≥ 0. Finally, ∫

R2m
e2mu(|x|) dx ≤

∫
R2m

emα1|x|
2
dx <∞.



CONFORMAL METRICS ON R2m WITH CONSTANT Q-CURVATURE 285

CASE 2: m ≥ 3 odd. Let u = u(r) solve
∆mu(r) = (2m− 1)!e2mu(r),

u(2j+1)(0) = 0, 0 ≤ j ≤ m− 1,
u(2j)(0) = αj ≤ 0, 0 ≤ j ≤ m− 1,

where the αi’s have to be chosen. Set

w+(r) := β − r2
− log

2
1+ r2 , g+ := w+ − u,

where β < 0 is such that e−r
2
+β
≤
( 2

1+r2

)2, hence

2
1+ r2 −

1+ r2

2
e−r

2
+β
≥ 0 for all r > 0.

Then, as long as g+ ≥ 0, we have

∆mg+(r) = (2m− 1)!
[(

2
1+ r2

)2m

− e2mu(r)
]

≥ (2m− 1)!
[(

2
1+ r2

)2m

− e2mw+(r)
]
≥ 0.

Choose now the αi’s so that u(2i)(0) < w
(2i)
+ (0) for 0 ≤ i ≤ m − 1. From Lemma 7,

we infer that
∆ig+(0) ≥ 0, 0 ≤ i ≤ m− 1,

and we see by induction that g+ ≥ 0 as long as it is defined. As lower barrier, define

w−(r) =

m−1∑
i=0

βir
2i, g− := u− w−,

where the βi’s are chosen so that ∆ig−(0) ≥ 0. Then, observing that

∆mg−(r) = (2m− 1)!e2mu(r) > 0,

as long as u is defined, we conclude as before that g− ≥ 0 as long as it is defined.
Then u is defined for all times.

Let R > 0 be such that, for every r ≥ R, w+(r) ≤ −r2/2. Then∫
R2m

e2mu(|x|) dx ≤

∫
BR

e2mu(|x|) dx +

∫
R2m\BR

e−m|x|
2
dx <∞. 2

3. PROOF OF THEOREM 2

The proof of Theorem 2 is divided into several lemmas. The following Liouville-type
theorem will prove very useful.
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THEOREM 9. Consider h : Rn → R with ∆mh = 0 and h ≤ u − v, where epu ∈
L1(Rn) for some p > 0, and (−v)+ ∈ L1(Rn). Then h is a polynomial of degree at
most 2m− 2.

PROOF. As in [Mar1, Theorem 5], for any x ∈ R2m we have

|D2m−1h(x)| ≤
C

R2m−1

∫
BR(x)

|h(y)| dy(14)

= −
C

R2m−1

∫
BR(x)

h(y) dy +
2C

R2m−1

∫
BR(x)

h+ dy

and ∫
BR(x)

h(y) dy = O(R2m−2) as R→∞.

Then∫
BR(x)

h+ dy ≤

∫
BR(x)

u+ dy + C

∫
BR(x)

(−v)+ dy ≤
1
p

∫
BR(x)

epu dy +
C

R2m ,

and both terms in (14) divided by R2m−1 go to 0 as R→∞. 2

LEMMA 10. Let u be a solution of (1)–(2). Then, for |x| ≥ 4,

(15) v(x) ≤ 2α log |x| + C.

PROOF. As in [Mar1, Lemma 9], changing v with −v. 2

LEMMA 11. For any ε > 0, there is R > 0 such that for |x| ≥ R,

(16) v(x) ≥

(
2α −

ε

2

)
log |x| +

(2m− 1)!
γm

∫
B1(x)

log |x − y| e2mu(y) dy.

Moreover,

(17) (−v)+ ∈ L1(R2m).

PROOF. To prove (16) we follow [Lin, Lemma 2.4]. Choose R0 > 0 such that

1
|S2m|

∫
BR0

e2mu dx ≥ α −
ε

16
,

and decompose

R2m
= BR0 ∪ A1 ∪ A2,

A1 := {y ∈ R2m : 2|x − y| ≤ |x|, |y| ≥ R0},

A2 := {y ∈ R2m : 2|x − y| > |x|, |y| ≥ R0}.
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Next choose R ≥ 2 such that for |x| > R and |y| ≤ R0, we have log |x−y|
|y|
≥ log |x|

− ε. Then, observing that (2m− 1)!|S2m
|/γm = 2, we have, for |x| > R,

(18)
(2m− 1)!

γm

∫
BR0

log
|x − y|

|y|
e2mu(y) dy

≥

(
log |x| −

ε

16

)
(2m− 1)!

γm

∫
BR0

e2mu dy ≥

(
2α −

ε

8

)
log |x| − Cε.

Observing that log |x − y| ≥ 0 for y /∈ B1(x), log |y| ≤ log(2|x|) for y ∈ A1,∫
A1
e2mu dy ≤ ε|S2m

|/16 and log(2|x|) ≤ 2 log |x| for |x| ≥ R, we infer that

(19)
∫
A1

log
|x − y|

|y|
e2mu(y) dy

=

∫
A1

log |x − y| e2mu(y) dy −

∫
A1

log |y| e2mu(y) dy

≥

∫
B1(x)

log |x − y| e2mu(y) dy − log(2|x|)
∫
A1

e2mu dy

≥

∫
B1(x)

log |x − y| e2mu(y) dy − log |x|
ε|S2m

|

8
.

Finally, for y ∈ A2, |x| > R we have |x − y|/|y| ≥ 1/4, hence

(20)
∫
A2

log
|x − y|

|y|
e2mu(y) dy ≥ − log(4)

∫
A2

e2mu dy ≥ −Cε.

Putting together (18), (19) and (20), and possibly taking R even larger, we obtain (16).
From (16) and Fubini’s theorem,∫

R2m\BR

(−v)+ dx ≤ C

∫
R2m

∫
R2m

χ|x−y|<1 log
1

|x − y|
e2mu(y) dy dx

= C

∫
R2m

e2mu(y)
∫
B1(y)

log
1

|x − y|
dx dy

≤ C

∫
R2m

e2mu(y) dy <∞.

Since v ∈ C∞(R2m), we conclude that
∫
BR
(−v)+ dx <∞ and (17) follows. 2

LEMMA 12. Let u be a solution of (1)–(2) with m ≥ 2. Then u = v + p, where p is
a polynomial of degree at most 2m− 2.

PROOF. Let p := u− v. Then ∆mp = 0. Apply (17) and Theorem 9. 2
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LEMMA 13. Let p be the polynomial of Lemma 12. If m = 2, then there exists δ > 0
such that

(21) p(x) ≤ −δ|x|2 + C.

In particular, lim|x|→∞ p(x) = −∞ and degp = 2. For m ≥ 3 there is a (possibly
empty) closed set Z ⊂ S2m−1 of Hausdorff dimension dimH(Z) ≤ 2m − 2 such that
for every K ⊂ S2m−1

\ Z closed, there exists δ = δ(K) > 0 such that

(22) p(x) ≤ −δ|x|2 + C for
x

|x|
∈ K.

Consequently, degp is even.

PROOF. From (17), we infer that there is a set A0 of finite measure such that

(23) v(x) ≥ −C in R2m
\ A0.

CASE m = 2. Up to a rotation, we can write

p(x) =

4∑
i=1

(bix
2
i + cixi)+ b0.

Assume that bi0 ≥ 0 for some 1 ≤ i0 ≤ 4. Then on the set

A1 := {x ∈ R4 : |xi | ≤ 1 for i 6= i0, ci0xi0 ≥ 0}

we have p(x) ≥ −C. Moreover, |A1| = ∞. Then from (23) we infer that

(24)
∫

R4
e4u dx ≥

∫
A1\A0

e4(v+p) dx ≥ C|A1 \ A0| = ∞,

contradicting (2). Therefore bi < 0 for every i and (21) follows at once.

CASE m ≥ 3. From (2) and (23) we infer that p cannot be constant. Write

p(tξ) =

d∑
i=0

ai(ξ)t
i, d := degp,

where for each 0 ≤ i ≤ d , ai is a homogeneous polynomial of degree i or ai ≡ 0. With
a computation similar to (24), (2) and (23) imply that ad(ξ) ≤ 0 for each ξ ∈ S2m−1.
Moreover d is even, otherwise ad(ξ) = −ad(−ξ) ≤ 0 for every ξ ∈ S2m−1, which
would imply ad ≡ 0. Set

Z = {ξ ∈ S2m−1 : ad(ξ) = 0}.

We claim that dimH(Z) ≤ 2m− 2. To see that, set

V := {x ∈ R2m : ad(x) = 0} = {tξ : t ≥ 0, ξ ∈ Z}.

Since V is a cone and Z = V ∩S2m−1, we only need to show that dimH(V ) ≤ 2m−1.
Set

Vi := {x ∈ R2m : ad(x) = · · · = ∇iad(x) = 0, ∇i+1ad(x) 6= 0}.



CONFORMAL METRICS ON R2m WITH CONSTANT Q-CURVATURE 289

Noticing that Vi = ∅ for i ≥ d (otherwise ad ≡ 0), we find V =
⋃d−1
i=0 Vi . By the

implicit function theorem, dimH(Vi) ≤ 2m−1 for every i ≥ 0 and the claim is proved.
Finally, for every compact set K ⊂ S2m−1

\ Z, there is a constant δ > 0 such that
ad(ξ) ≤ −δ/2, and since d ≥ 2, (22) follows. 2

COROLLARY 14. Any solution u of (1)–(2) with m = 2 and Q < 0 is bounded from
above.

PROOF. Indeed, u = v + p and, for some δ > 0,

v(x) ≤ 2α log |x| + C, p(x) ≤ −δ|x|2 + C. 2

LEMMA 15. Let v : R2m
→ R be defined as in (3) and Z as in Lemma 13. Then for

every K ⊂ S2m−1
\ Z compact we have

(25) lim
t→∞

∆m−jv(tξ) = 0, j = 1, . . . , m− 1,

for every ξ ∈ K uniformly in ξ ; and for every ε > 0 there is R = R(ε,K) > 0 such
that, for t > R and ξ ∈ K ,

(26) v(tξ) ≥ (2α − ε) log t.

PROOF. Fix K ∈ S2m−1
\ Z compact and set CK := {tξ : t ≥ 0, ξ ∈ K}. For any

σ > 0 and 1 ≤ j ≤ 2m− 1,

(27)
∫

R2m\Bσ (x)

e2mu(y)

|x − y|2j
dy → 0 as |x| → ∞

by dominated convergence. Choose a compact set K̃ ⊂ S2m−1
\ Z such that K ⊂

int(K̃) ⊂ S2m−1. Since u ≤ C(K̃) on CK̃ by Lemmas 10 and 13, we can choose
σ = σ(ε) > 0 so small that∫
Bσ (x)

e2mu

|x − y|2j
dy ≤ C(K̃)

∫
Bσ (x)

1
|x − y|2j

dy ≤ C(K̃)ε for x ∈ CK , |x| large,

where |x| is so large that Bσ (x) ⊂ CK̃ . Therefore

(−1)j+1∆jv(x) = C

∫
R2m

e2mu

|x − y|2j
dy → 0 for x ∈ CK as |x| → ∞,

We have seen in Lemma 11 that for any ε > 0 there is R > 0 such that for |x| ≥ R,

(28) v(x) ≥

(
2α −

ε

2

)
log |x| +

(2m− 1)!
γm

∫
B1(x)

log |x − y| e2mu(y) dy,

and (26) follows easily by choosing K̃ as above and observing that u ≤ C(K̃) on CK̃ ,
hence on B1(x) for x ∈ CK with |x| large enough. 2

PROOF OF THEOREM 2. The decomposition u = v + p and the properties of v and
p follow at once from Lemmas 10, 12, 13 and 15; (6) follows as in [Mar1, Theorem 2].
As for (5), let j be the largest integer such that ∆jp 6≡ 0. Then ∆j+1p ≡ 0 and from
Theorem 9 we infer that degp = 2j , hence ∆jp ≡ a 6= 0. 2
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4. THE CASE Q = 0

PROOF OF THEOREM 3. From Theorem 9, with v ≡ 0, we see that u is a polynomial
of degree at most 2m− 2. Then, as in [Mar1, Lemma 11], we have

sup
R2m

u <∞,

and, since u cannot be constant, we infer that deg u ≥ 2 is even. The proof of (7) is
analogous to the case Q < 0, as long as we do not care about the sign of a. To show
that a < 0, one proceeds as in [Mar1, Theorem 2]. For the case m = 2 one proceeds
as in Lemma 13, setting v ≡ 0 and A0 = ∅. 2

EXAMPLE. One might believe that every polynomial p on R2m of degree at most
2m−2 with

∫
R2m e

2mp dx <∞ satisfies lim|x|→∞ p(x) = −∞, as in the casem = 2.
Consider on R2m with m ≥ 3 the polynomial u(x) = −(1 + x2

1)|̃x|
2, where x̃ =

(x2, . . . , x2m). Then ∆mu ≡ 0 and∫
R2m

e2mu dx =

∫
R

∫
R2m−1

e−2m(1+x2
1 )|̃x|

2
dx̃ dx1

=

∫
R

dx1

(1+ x2
1)
(2m−1)/2

·

∫
R2m−1

e−2m|̃y|2 dỹ <∞.

On the other hand, lim sup|x|→∞ u(x) = 0.

5. OPEN QUESTIONS

OPEN QUESTION 1. Does the claim of Corollary 14 hold form > 2? In other words,
is any solution u to (1)–(2) with Q < 0 bounded from above?

This is an important regularity issue, in particular with regard to the behavior at
infinity of the function v defined in (3). If supR2m u <∞, then one can take Z = ∅ in
Theorem 2, as in the case Q > 0 (see [Mar1, Theorem 1]).

DEFINITION 16. Let P2m
0 be the set of polynomials p of degree at most 2m − 2 on

R2m such that e2mp
∈ L1(R2m). Let P2m

+ be the set of polynomials p of degree at most
2m − 2 on R2m such that there exists a solution u = v + p to (1)–(2) with Q > 0.
Similarly for P2m

− with Q < 0.

Related to the first question is the following

OPEN QUESTION 2. What are the sets P2m
0 , P2m

± ? Is it true that P2m
0 ⊂ P2m

+ and
P2m

0 ⊂ P
2m
− ?
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J. Wei and D. Ye [WY] proved that P4
0 ⊂ P4

+ (and actually more). Consider now
on R2m, m ≥ 3, the polynomial

p(x) = −(1+ x2
1)|̃x|

2, x̃ = (x2, . . . , x2m).

As seen above, e2mp
∈ L1(R2m), hence p ∈ P2m

0 . Assume that p ∈ P2m
− as well,

i.e. there is a function u = v + p satisfying (1)–(2) and Q < 0. Then we claim that
supR2m u = ∞. Assume by contradiction that u is bounded from above. Then (15) and
(16) imply that

v(x) = 2α log |x| + o(log |x|) as |x| → ∞.

Therefore,
lim
x1→∞

u(x1, 0, . . . , 0) = lim
x1→∞

2α log x1 = ∞,

contradiction.

OPEN QUESTION 3. In the case where u is not bounded from above, is it true that
one can still take Z = ∅ in Theorem 2 for m ≥ 3 also?

For instance, in order to show that v(x) = 2α log |x| + o(log |x|) as |x| → ∞,
thanks to (16), it is enough to show that∫

B1(x)
log |x − y| e2mu(y) dy = o(log |x|) as |x| → ∞,

which is true if supR2m u <∞, but it might also be true if supR2m u = ∞.

OPEN QUESTION 4. What values can the α given by (1)–(2) assume for a fixed Q?

As usual, it is enough to consider Q ∈ {0,±(2m − 1)!}. If m = 1, Q = 1, then
α = 1 (see [CL]). If m = 2, Q = 6, then α can take any value in (0, 1], as shown in
[CC]. Moreover, α cannot be greater than 1 and the case α = 1 corresponds to standard
solutions, as proved in [Lin]. For the trivial caseQ = 0, α can take any positive value,
and for the other cases we have no answer.
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