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Partial differential equations. — Conformal metrics on R*™ with constant Q-
curvature, by LUCA MARTINAZZI.

ABSTRACT. — We study the conformal metrics on R?™ with constant Q-curvature Q € R having
finite volume, particularly in the case Q < 0. We show that when Q < 0 such metrics exist in R2m
if and only if m > 1. Moreover, we study their asymptotic behavior at infinity, in analogy with the
case Q0 > 0, which we treated in a recent paper. When Q0 = 0, we show that such metrics have
the form ¢2 gr2m, Where p is a polynomial such that 2 < deg p < 2m — 2 and supgom p < 00. In
dimension 4, such metrics correspond to the polynomials p of degree 2 with lim|y |, oo p(x) = —00.
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1. INTRODUCTION AND STATEMENT OF THE MAIN THEOREMS
Given a constant Q € R, we consider the solutions to the equation
m.. 2mu 2m
(D) (=A)"u = Qe on R
satisfying

1
|S2m| R2m

M) gy < 0.

) o=

Geometrically, if u solves (T) and @), then the conformal metric g := e ggon has
Q-curvature Qg,m = Q and volume «|S>"|. For the definition of the Q-curvature and
related remarks, we refer to [Marl]]. Notice that given a solution u to and A > O,
the function v := u — ﬁ log A solves

(—A)"v = 1Qe”™  in R,

hence what matters is just the sign of O, and we can assume without loss of generality
that Q € {0, =(2m — 1)!}.

Every solution to (1)) is smooth. When Q = 0, that follows from standard elliptic
estimates; when Q # 0 the proof is a bit more subtle (see [Marl, Corollary 8]).

For Q0 > 0, some explicit solutions to (I) are known. For instance, every
polynomial of degree at most 2m — 2 satisfies (I) with Q = 0, and the function
u(x) = log WZXIZ satisfies (T) with Q = (2m — 1)! and « = 1. This latter solution has
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the property that ¢ gR2m = (r~hH*g s2m, where 7 : §2m — R2™ is the stereographic
projection.
For the negative case, we notice that the function w(x) = logﬁ solves

(=A)"w = —2m — D'1e?¥ on the unit ball By C R*" (in dimension 2 this
corresponds to the Poincaré metric on the disk). However, no explicit entire solution to
with Q < 0 is known, hence one can ask whether such solutions actually exist. In
dimension 2 (m = 1) it is easy to see that the answer is negative, but quite surprisingly
the situation is different in dimension 4 and higher:

THEOREM 1. Fix Q < 0. Form = 1 there is no solution to (I)-@Q). For everym > 2,
there exist (several) radially symmetric solutions to (I)—2).

Having now an existence result, we turn to the study of the asymptotic behavior
at infinity of solutions to (I)-(2) when m > 2, 0 < 0, having in mind applications
to concentration-compactness problems in conformal geometry. To this end, given a
solution u to (I)—(2), we define the auxiliary function

2m —1)!
3) V(x) = _w/ 10g(L)ezmu<y> dy.
Vm R2m |x — yl

where y,, := w2, 22" 2[(m — 1)!]? is characterized by the following property:
(—A)" (L log i) =38y inR>.
Ym 1]
Then (—A)"v = —(2m — 1)!e?™*. We prove
THEOREM 2. Let u be a solution of (I)-@) with Q = —(2m — 1)!. Then
“4) u(x) = v(x) + px),

where p is a non-constant polynomial of even degree at most 2m — 2. Moreover, there
exist a constant a # 0, an integer 1 < j < m — 1 and a closed set Z C S~ of
Hausdorff dimension at most 2m—2 such that for every compact subset K C §*"~1\ 7
we have

lim Av@tgE) =0, £=1,....m—1,
[—00
&) v(t€) =2alogt + o(logt) ast — oo,
lim A/u(t§) = a,
—00
for every & € K uniformly in&. If m = 2, then Z = () and supgom u < co. Finally,

(6) liminf R, (x) = —o0,

|x]—o00

where Ry, is the scalar curvature of g, := et gRrom.
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Following the proof of Theorem |1} it can be shown that the estimate on the degree
of the polynomial is sharp. Recently J. Wei and D. Ye [WY]| showed the existence of
solutions to A%y = 6e* in R* with fR4 e* dx < oo which are not radially symmetric.
It is plausible that also in the negative case non-radially symmetric solutions exist.

For the case QO = 0 we have

THEOREM 3. When Q = 0, any solution to (I)-@2) is a polynomial p with 2 <
deg p < 2m — 2 and with

sup p < oo.

R2m
In particular, in dimension 2 (case m = 1), there are no solutions. In dimension 4 the
solutions are exactly the polynomials of degree 2 with lim|y| s o0 p(x) = —00. Finally,
there exist 1 < j <m — 1 and a < 0 such that

(7 lim A/ p(x) =a.
|x|—o00
The case when Q > 0, say O = (2m — 1)!, has been exhaustively treated. The
problem

(8) (—=A)"u = 2m — 1)1e?™  on R¥™, f 2 dx < o0,
]RZm

admits standard solutions, i.e. solutions of the form u(x) := log szfﬁ, A >0,

xo € R?", that arise from the stereographic projection and the action of the Mobius
group of conformal diffeomorphisms on $?”*. In dimension 2, W. Chen and C. Li
[CL] showed that every solution to (8] is standard. Already in dimension 4, however,
as shown by A. Chang and W. Chen [CC], admits non-standard solutions. In
dimension 4, C.-S. Lin [Lin] classified all solutions u to (8)) and gave precise conditions
in order for u to be a standard solution in terms of its asymptotic behavior at infinity.

In arbitrary even dimension, A. Chang and P. Yang [CY]] proved that solutions of
the form

u(x) = log +E(@ (%)

1+ |x|?
are standard, where 7 : §2" — R?" is the stereographic projection and £ is a smooth
function on $2". J. Wei and X. Xu [WX] showed that any solution u to (8) is standard
under the weaker assumption that u(x) = o(]x]?) as |x| — oo (see also [Xul]). We
recently treated the general case (see [Marl]]), generalizing the work of C.-S. Lin. In
particular, we proved a decomposition # = p 4+ v as in Theorem [2| and gave various
analytic and geometric conditions which are equivalent to u being standard.

The classification of the solutions to has been applied in concentration-
compactness problems (see e.g. [LSI], [RS], [Mal], [MS], [DRIl, [Strll], [Str2],
[Ndi])). There is an interesting geometric consequence of Theorems [2] and [3] with
applications in concentration-compactness: In the case of a closed manifold, metrics
of equibounded volumes and prescribed Q-curvatures of possibly varying sign cannot
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concentrate at points of negative or zero Q-curvature. For instance we shall prove in a
forthcoming paper [Mar2|]

THEOREM 4. Let (M, g) be a 2m-dimensional closed Riemannian manifold with
Paneitz operator P;m satisfying ker Pg2m = {const}, and let up : M — R be a
sequence of solutions of

©) P+ Q7" = Que™™,

where Qém is the Q-curvature of g (see e.g. Chal), and where the Qy’s are given

continuous functions with Qx — Qo in C 0. Assume also that there is a A > 0 such
that

(10) / e d voly < A
M

for all k. Then one of the following is true.

(1) Forevery 0 < o < 1, a subsequence is converging in crm=Le(pr).
(ii) There exists a finite (possibly empty) set S = {x) : 1 < i < I} such that

up — —ooin L5 (M\S). Moreover,

(11) / Qg dvolg = I(2m — 1)!]5*"],
M

and

1
(12) Qre*™t dvolg = Y (2m — D![S*" 8,0
i=1

in the sense of measures. Finally, Qo(x(i)) >0forl <i<lI.

In sharp contrast with Theorem El, on an open domain £ C R?” (or a manifold
with boundary), m > 1, concentration is possible at points of negative or zero
curvature. Indeed, take any solution u of (I)-@2) with O < 0, whose existence is
given by Theorem|I] and consider the sequence

up(x) :=uk(x — xp)) +logk forx e £2

for some fixed xo € £2. Then (—A)"u; = Qe*™* and u; concentrates at xo in the
sense that as k — 0o we have uy(xg) — 00, uy — —oo a.e. in £2 and e dx —
o) §2m |6x, in the sense of measures.

The 2-dimensional case (m = 1) is different and concentration at points of non-
positive curvature can also be ruled out on open domains, because otherwise a standard
blowing-up procedure would yield a solution to (I)-(2) with Q@ < 0, contradicting
Theorem[11

An immediate consequence of Theorem 4 and the Gauss—Bonnet—Chern formula
is the following compactness result (see [Mar2]):



CONFORMAL METRICS ON R?" WITH CONSTANT Q-CURVATURE 283

COROLLARY 5. [In the hypothesis of Theorem |4 assume that vol(gr) - 0 and that
either

1. x(M) <0anddimM € {2,4}, or
2. x(M) <0, dimM > 6 and (M, g) is locally conformally flat,

where x (M) is the Euler—Poincaré characteristic of M. Then only case (i) in
Theorem[d occurs.

The paper is organized as follows. The proofs of Theorems [[H3] are given in the
following three sections; in the last section we collect some open questions. In the
following, the letter C denotes a generic constant, which may change from line to line
and even within the same line.

2. PROOF OF THEOREMII]
Theorem|I] follows from Propositions [6| and [8] below.

PROPOSITION 6. Form = 1 and Q < 0 there are no solutions to (I)—(2).

PROOF. Assume that such a solution u exists. Then, by the maximum principle and
Jensen’s inequality,

][ udo > u(0), / e do > 2w Re* O,
3BR aBR

Integrating in R on [1, 00), we get
/ e dx = oo,
RZ

LEMMA 7. Let u(r) be a smooth radial function on R", n > 1. Then there are
positive constants by, depending only on n such that

contradiction. a

(13) A™u(0) = byu*™(0),

where u®m .= 82mu/8r2m. In particular, A"™u(0) has the sign ofu(zm)(()).
For a proof see [Marl]].

PROPOSITION 8. Form > 2 and Q < 0 there exist radial solutions to (I)—(2).

PROOF. We consider separately the cases when m is even and when m is odd.

CASE 1: m even. Letu = u(r) be the unique solution of the following ODE:

A"u(r) = —(2m — 1)1e2mu()
u@+D ) = 0, 0<j<m-—1,
u®(0)=a; <0, 0<j<m—1,
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where g = 0 and ;1 < 0. We claim that the solution exists for all » > 0. To see that,
we shall use barriers (cf. [CC|, Theorem 2]). Let us define

(03] 2
w+(r):?r, g+ = Wi — U

Then A” g, > 0. By the divergence theorem,

; dai=!
/ Alg,dx = / 2 8+ 4o
Br aBg  dr

Moreover, from Lemma([7] we infer
Algi(0)=0 for0<j<m—1,

hence we see inductively that A/ g, (r) > 0 for every r such that g (r) is defined and
for 0 < j < m — 1. In particular, g+ > 0 as long as it exists.
Let us now define

g—=u—w_,

m—1
2i
_ = ret — Al ,
w_(r) ?:o: Bir ¢T3

where the §;’s and A will be chosen later. Notice that

2
A"w_(r) = A™| —Alog 2 =—0C2m—1!A 2 m.
1472 1472

Since ] < 0,

( 2 )2m
. 7

lim 1“—2
r—oo emor

= 00,

and taking into account that u < w., we can choose A large enough to have

2 2m )
A"g_(r) = (2m — 1)!|:A<1 = r2> —e mu(r)}

2 m 2
Z(Zm—l)!|:A<1+r2> —e’"""]zo.

We now choose each S; so that

Alg (0)=0, 0<j=m—1,
and proceed by induction as above to prove that g_ > 0. Hence
w_(r) < u(r) < wi(r)

as long as u exists, and by standard ODE theory, that implies that u(r) exists for all

r > 0. Finally,
[ 2l gy < / M gy < o0
RZm RZm
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CASE2:m >3 o0dd. Letu = u(r) solve

Amu(r) — (zm _ 1)!€2mu(r),
u@+H ) = 0, O0<j<m-—1,
uCD0)=0; <0, 0<j<m-—1,

where the «;’s have to be chosen. Set

2
2
=B —-r°—log——=, = —u,
wy(r)=p—r 0T 8T we U
. 2 2
where 8 < 0 is such that e™" P < (Tzrz) , hence
2 1 +r2

e =0 forallr>o.
p

Then, as long as g4+ > 0, we have

A g+(r):(2m—1)!|:(1+r2) — e ]

muw r
2(2m—1)![(1+r2) —e + :|ZO.

Choose now the «;’s so that u?)(0) < wfi)(O) for0 <i <m — 1. From Lemma ,
we infer that

Algy(0) 20, 0<i<m—1,
and we see by induction that g4 > 0 as long as it is defined. As lower barrier, define

m—1

w_(r) = Z,B[rZi, g—=u—w_,
i=0

where the §;’s are chosen so that Aig_ (0) = 0. Then, observing that
A"g_(r) = 2m — D1e¥™0) 5 0,

as long as u is defined, we conclude as before that g_ > 0 as long as it is defined.
Then u is defined for all times.
Let R > 0 be such that, forevery r > R, wy(r) < —r2/2. Then

/ e2mu(x) gy < / 2D gy —|—/ e gy < oo, O
R2m Bg R2Zm\ Bg

3. PROOF OF THEOREM[2]

The proof of Theorem [2is divided into several lemmas. The following Liouville-type
theorem will prove very useful.
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THEOREM 9. Consider h : R" — R with A™h = Qand h < u — v, where eP* ¢
L' (R") for some p > 0, and (—v)* € L'(R"). Then h is a polynomial of degree at
most 2m — 2.

PROOF. Asin [Marl, Theorem 5], for any x € R?" we have

C
(14) D" h(x)| < —— ][ lh(y)|dy
R2m—l Br(x)

c ][ 20
- h(y)dy—i——][ h*dy
R2m=1 ) By S )

A

and
][ h(y)dy = O(R*™7%) as R — oo.
Bg(x)

Then

1 C
][ h+dy§][ u+dy+C][ (—v)+dy§—][ ePdy + ——,
Br(x) BRr(x) Br(x) P J Brw) R

and both terms in divided by R?"~! goto 0 as R — oc. O
LEMMA 10. Let u be a solution of (I)—@2). Then, for |x| > 4,

(15) v(x) <2alog|x| + C.

PROOF. Asin [Marl, Lemma 9], changing v with —v. |

LEMMA 11. Forany e > 0, there is R > 0 such that for |x| > R,

2m — 1)!
(16) ’U(x) > <2o{ — E) log |X| + w/‘ 10g |.X _ y| eZmu(y) dy
2 Vm Bi(x)
Moreover,
(17) (—v)T e L'R™™).

PROOE. To prove (I6) we follow [Lin, Lemma 2.4]. Choose Ry > 0 such that

! / ezm"dxzoc—i,
|§2m| Bg, 16

and decompose
Ay = {y e R :2lx — y| < Ix], |y| = Ro}.
A2 = {y c RZm N 2|.x _yl > |x|’ |y| > RO}
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lx—yl
[yl
— ¢&. Then, observing that 2m — 1)!|Sz’”|/ym = 2, we have, for |x| > R,

Next choose R > 2 such that for |x| > R and |y| < Ry, we have log > log |x|

2m —1)! -
g EmT DU g K i gy

Vm BRO |)7|

2m — 1)!
> 10g|x|—i w/‘ M dy > 2 — & log |x| — Ce.
16)  vm Ja, 8

Observing that log|x — y| > 0 for y ¢ Bi(x), log|y] < log(2|x|) for y € Ay,
'[Al e dy < g|5?™|/16 and log(2|x|) < 2log |x| for |x| > R, we infer that

(19) /10g—|x_y|e2m”(y)dy
A [yl

= [ togle =y ay— [ toglyl e ay
Ay Al

> / log [x — y|e*™*Y dy — log(2]x|) f e dy
B (x) A

2 eS|
By (x)
Finally, for y € A, |x| > R we have |x — y[/|y| > 1/4, hence
X — I 2mu(y) 2mu
(20) log———e dy > —log4) | €™ dy > —Ce.
Ay |)7| Ao

Putting together (I8), (T9) and (20), and possibly taking R even larger, we obtain (T6).
From (T6) and Fubini’s theorem,

1
/ (—ntdx<cC / Xjx—y|<1 log 2O gy dx
RZ”’\BR R2m JR2m |x — y|

1
=C [ ey / log dx dy
R2 Bi(y) X —Yl

C/ 2O gy < oo.
R2m

IA

Since v € C*®(R?™), we conclude that fBR (—v)T dx < oo and (7)) follows. O

LEMMA 12. Let u be a solution of (I)-@2) withm > 2. Then u = v + p, where p is
a polynomial of degree at most 2m — 2.

PROOF. Let p := u — v. Then A™p = 0. Apply and Theorem 9} O
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LEMMA 13. Let p be the polynomial of Lemma(12} If m = 2, then there exists § > 0
such that

e2)) p(x) < —dlx* + C.

In particular, lim|y|, o p(x) = —00 and deg p = 2. For m > 3 there is a (possibly
empty) closed set Z C S*"~' of Hausdorff dimension dim™(Z) < 2m — 2 such that
for every K C §?"=1'\ Z closed, there exists § = §(K) > 0 such that

22) p(x) < —8lx2+C  for ﬁ e K.
X
Consequently, deg p is even.
PROOF. From (I7), we infer that there is a set A of finite measure such that
(23) v(x) > —C inR¥\ Ay.

CASEm = 2. Up to arotation, we can write

(bix? + ¢ix;) + bo.

4
p(x) =

i=1
Assume that b;, > 0 for some 1 < iy < 4. Then on the set
A= {x e R*: |x;| < 1fori # ig, ciyxiy > 0}

we have p(x) > —C. Moreover, |A;| = co. Then from (23)) we infer that
(24) / eMdx > / VTP dx > ClA; \ Ag| = oo,
R4 A1\Ao

contradicting (2)). Therefore b; < 0 for every i and (ZI)) follows at once.

CASEm > 3. From (2) and (23) we infer that p cannot be constant. Write

d
ptg) =Y ai)t', d:=degp.
i=0

where foreach 0 < i < d, a; is a homogeneous polynomial of degree i or a; = 0. With
a computation similar to (24)), (2) and imply that a4(£) < 0 for each & € §?"~1,
Moreover d is even, otherwise ag(§) = —ay(—&) < 0 for every & € §2m=1 " which
would imply a4z = 0. Set
Z={5e5 " as6) =0}
We claim that dimH(Z) < 2m — 2. To see that, set
Vi={x eR™:aqy(x) =0} ={té :1 >0, & € Z).

Since Visaconeand Z = VN S¥"~1 we only need to show that dimH(V) <2m-—1.
Set
Vii={x e R™ :a4(x) =--- = Viag(x) =0, ViTlay(x) £ 0}.
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Noticing that V; = @ for i > d (otherwise ag = 0), we find V = U?;ol V;. By the
implicit function theorem, dim"™ (Vi) <2m—1foreveryi > 0and the claim is proved.

Finally, for every compact set K C $2"~!\ Z, there is a constant § > 0 such that
aq(§) < —38/2, and since d > 2, (22) follows. O

COROLLARY 14. Any solution u of (I)-@) withm = 2 and Q < 0 is bounded from
above.

PROOF. Indeed, u = v + p and, for some § > O,
v(x) <2alog|x|+C, p)<—8x>+C. 0

LEMMA 15. Letv: R¥ — R be defined as in @) and Z as in Lemma Then for
every K C §?"~1'\ Z compact we have

(25) lim A" Ju@g) =0, j=1,....m—1,
=00

for every & € K uniformly in &; and for every ¢ > 0 there is R = R(e, K) > 0 such
that, fort > Rand & € K,

(26) v(t€) > 2 — ¢) logt.

PROOF. Fix K € $?"~!\ Z compact and set Cx = {t§ : t > 0, £ € K}. For any
oc>0and1<j<2m-—1,

2mu(y)
227 / —z.dy—>0 as |x| — oo
R2m\ B, (x) |X — ¥|7/

by dominated convergence. Choose a compact set K c §¥n-1 Z such that K C
1nt(K) c 8§21 Since u < C(K) on Cg by Lemmas O and |13| we can choose
o = o(¢) > 0 so small that

2mu - 1 -
f L dy=c® | ——5dy=c®s forxelx, Ixllarge,
Bo(x) [x — yI¥/ By(x) |x — yI¥/
where |x| is so large that B, (x) C Cg. Therefore
) ) eZmu
(—1)j+1A]v(x)=C/ ——dy— 0 forx e€Cg as |x| — oo,
Ron % — y|

We have seen in Lemma [T 1|that for any & > O there is R > 0 such that for |x| > R,

2m — 1)!
28)  wx) > <2a - —) log x| + w/ log [x — y| e¥™O gy,
2 Ym Bi(x)
and follows easily by choosing K as above and observing thatu < C (E )yonCgz,
hence on B (x) for x € Cx with |x| large enough. O

PROOF OF THEOREM The decomposition # = v + p and the properties of v and
p follow at once from Lemmas|[I0} [12] [I3]and[15} @) follows as in [Mar1| Theorem 2].
As for (3)), let j be the largest integer such that A/ p # 0. Then A/+! p = 0 and from
Theorem@]we infer that deg p = 2, hence A/ p =a # 0. O
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4. THECASE Q =0

PROOF OF THEOREM[3]  From Theorem[9] with v = 0, we see that u is a polynomial
of degree at most 2m — 2. Then, as in [Marl, Lemma 11], we have

supu < 0o,
R2m

and, since u cannot be constant, we infer that degu > 2 is even. The proof of is
analogous to the case Q < 0, as long as we do not care about the sign of a. To show
that a < 0, one proceeds as in [Marll, Theorem 2]. For the case m = 2 one proceeds
as in Lemma|I3] setting v = 0 and Ag = @. O

EXAMPLE. One might believe that every polynomial p on R?" of degree at most

2m — 2 with fRM e2MP dx < oo satisfies lim|y|— 00 p(x) = —00, as in the case m = 2.
Consider on R?” with m > 3 the polynomial u(x) = —(1 + x%)lf |2, where ¥ =
(x2,...,x0m). Then A™u = 0 and

eZmu dx — ef2m(l+)c12)|f|2 dX dx;
RZm R RZm—]

dx ~aml3P gy
=) — . d )
/R (1 + x7)@m=/2 /Rzml ‘ re

On the other hand, limsup,,|_, o, u(x) = 0.

5. OPEN QUESTIONS

OPEN QUESTION 1. Does the claim of Corollary[14hold for m > 2? In other words,
is any solution u to (I)-@2) with Q < 0 bounded from above?

This is an important regularity issue, in particular with regard to the behavior at
infinity of the function v defined in (3). If supg2n u < 00, then one can take Z = ¥} in
Theorem[2] as in the case Q > 0 (see [Marll Theorem 1]).

DEFINITION 16. Let 773’" be the set of polynomials p of degree at most 2m — 2 on
R?™ such that e™? e L' (R>™). Let 73_%_’" be the set of polynomials p of degree at most

2m — 2 on R¥ such that there exists a solution u = v + p to (I)—@) with Q > 0.
Similarly for P> with Q < 0.

Related to the first question is the following

OPEN QUESTION 2. What are the sets pm Pim ? Is it true that 773'" C 77_%_'” and
2m 2m
Py cpan?
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J. Wei and D. Ye [WY]] proved that 733 C 771 (and actually more). Consider now
on R?" m > 3, the polynomial

p(x) = —(1+xDHXP =2, ..., %m).

As seen above, e e L'(R®"), hence p € Pg’”. Assume that p € P?" as well,
i.e. there is a function u = v + p satisfying (I)-(2) and Q0 < 0. Then we claim that
Supg2m 4 = 00. Assume by contradiction that u is bounded from above. Then (15) and

(L6) imply that
v(x) =2« log|x| + o(log|x]) as x| — oo.

Therefore,

lim #(x1,0,...,0) = lim 2alogx; = oo,
X1—>0Q X1—>00

contradiction.

OPEN QUESTION 3. [In the case where u is not bounded from above, is it true that
one can still take Z = { in Theorem[2|for m > 3 also?

For instance, in order to show that v(x) = 2« log|x| + o(log|x]) as |x] — oo,
thanks to (16), it is enough to show that

/ log |x — y| ™ gy = o(log |x]) as |x| — oo,
Bi(x)

which is true if suppam u < 00, but it might also be true if suppom u = oo.
OPEN QUESTION 4. What values can the o given by (I)-2)) assume for a fixed Q?

As usual, it is enough to consider Q € {0, =2m — 1)!}. It m = 1, Q = 1, then
o =1 (see [CL]). If m = 2, Q = 6, then « can take any value in (0, 1], as shown in
[CC]. Moreover, a cannot be greater than 1 and the case « = 1 corresponds to standard
solutions, as proved in [Lin]. For the trivial case Q = 0, @ can take any positive value,
and for the other cases we have no answer.
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