

Rend. Lincei Mat. Appl. 19 (2008), 279[–292](#page-13-0)

Partial differential equations. — *Conformal metrics on* R ²^m *with constant* Q*curvature*, by LUCA MARTINAZZI.

ABSTRACT. — We study the conformal metrics on \mathbb{R}^{2m} with constant Q-curvature $Q \in \mathbb{R}$ having finite volume, particularly in the case $Q \le 0$. We show that when $Q < 0$ such metrics exist in \mathbb{R}^{2m} if and only if $m > 1$. Moreover, we study their asymptotic behavior at infinity, in analogy with the case $Q > 0$, which we treated in a recent paper. When $Q = 0$, we show that such metrics have the form $e^{2p}g_{\mathbb{R}^{2m}}$, where p is a polynomial such that $2 \le \deg p \le 2m-2$ and $\sup_{\mathbb{R}^{2m}} p < \infty$. In dimension 4, such metrics correspond to the polynomials p of degree 2 with $\lim_{|x| \to \infty} p(x) = -\infty$.

KEY WORDS: O-curvature; concentration-compactness; conformal geometry.

MATHEMATICS SUBJECT CLASSIFICATION (2000): Primary 35J60.

1. INTRODUCTION AND STATEMENT OF THE MAIN THEOREMS

Given a constant $Q \in \mathbb{R}$, we consider the solutions to the equation

$$
(1) \qquad \qquad (-\Delta)^m u = Q e^{2mu} \quad \text{on } \mathbb{R}^{2m}
$$

satisfying

(2)
$$
\alpha := \frac{1}{|S^{2m}|} \int_{\mathbb{R}^{2m}} e^{2mu(x)} dx < \infty.
$$

Geometrically, if u solves [\(1\)](#page-0-0) and [\(2\)](#page-0-1), then the conformal metric $g := e^{2u} g_{\mathbb{R}^{2m}}$ has Q-curvature $Q_g^{2m} \equiv Q$ and volume $\alpha |S^{2m}|$. For the definition of the Q-curvature and related remarks, we refer to [\[Mar1\]](#page-13-1). Notice that given a solution u to [\(1\)](#page-0-0) and $\lambda > 0$, the function $v := u - \frac{1}{2m} \log \lambda$ solves

$$
(-\Delta)^m v = \lambda Q e^{2mv} \quad \text{in } \mathbb{R}^{2m},
$$

hence what matters is just the sign of Q , and we can assume without loss of generality that $Q \in \{0, \pm (2m - 1)!\}.$

Every solution to [\(1\)](#page-0-0) is smooth. When $Q = 0$, that follows from standard elliptic estimates; when $Q \neq 0$ the proof is a bit more subtle (see [\[Mar1,](#page-13-1) Corollary 8]).

For $Q \geq 0$, some explicit solutions to [\(1\)](#page-0-0) are known. For instance, every polynomial of degree at most $2m - 2$ satisfies [\(1\)](#page-0-0) with $Q = 0$, and the function $u(x) = \log \frac{2}{1+|x|^2}$ satisfies [\(1\)](#page-0-0) with $Q = (2m-1)!$ and $\alpha = 1$. This latter solution has

the property that $e^{2u}g_{\mathbb{R}^{2m}} = (\pi^{-1})^*g_{S^{2m}}$, where $\pi : S^{2m} \to \mathbb{R}^{2m}$ is the stereographic projection.

For the negative case, we notice that the function $w(x) = \log \frac{2}{1-|x|^2}$ solves $(-\Delta)^m w = -(2m - 1)!e^{2mw}$ on the unit ball $B_1 \subset \mathbb{R}^{2m}$ (in dimension 2 this corresponds to the Poincaré metric on the disk). However, no explicit entire solution to [\(1\)](#page-0-0) with $Q < 0$ is known, hence one can ask whether such solutions actually exist. In dimension 2 ($m = 1$) it is easy to see that the answer is negative, but quite surprisingly the situation is different in dimension 4 and higher:

THEOREM 1. *Fix* $Q < 0$ *. For* $m = 1$ *there is no solution to* [\(1\)](#page-0-0)–[\(2\)](#page-0-1)*. For every* $m > 2$ *, there exist (several) radially symmetric solutions to* [\(1\)](#page-0-0)*–*[\(2\)](#page-0-1)*.*

Having now an existence result, we turn to the study of the asymptotic behavior at infinity of solutions to [\(1\)](#page-0-0)–[\(2\)](#page-0-1) when $m \ge 2$, $Q < 0$, having in mind applications to concentration-compactness problems in conformal geometry. To this end, given a solution u to [\(1\)](#page-0-0)–[\(2\)](#page-0-1), we define the auxiliary function

(3)
$$
v(x) := -\frac{(2m-1)!}{\gamma_m} \int_{\mathbb{R}^{2m}} \log \left(\frac{|y|}{|x-y|} \right) e^{2mu(y)} dy,
$$

where $\gamma_m := \omega_{2m} 2^{2m-2} [(m-1)!]^2$ is characterized by the following property:

$$
(-\Delta)^m \bigg(\frac{1}{\gamma_m} \log \frac{1}{|x|} \bigg) = \delta_0 \quad \text{in } \mathbb{R}^{2m}.
$$

Then $(-\Delta)^m v = -(2m-1)!e^{2mu}$. We prove

THEOREM 2. Let u be a solution of (1) – (2) with $Q = -(2m - 1)!$. Then

$$
(4) \t\t u(x) = v(x) + p(x),
$$

where p *is a non-constant polynomial of even degree at most* 2m − 2*. Moreover, there exist a constant* $a \neq 0$, an integer $1 \leq j \leq m-1$ and a closed set $Z \subset S^{2m-1}$ of Hausdorff dimension at most 2m $-$ 2 such that for every compact subset $K \subset S^{2m-1}\backslash Z$ *we have*

(5)
\n
$$
\lim_{t \to \infty} \Delta^{\ell} v(t\xi) = 0, \quad \ell = 1, ..., m - 1,
$$
\n
$$
v(t\xi) = 2\alpha \log t + o(\log t) \quad \text{as } t \to \infty,
$$
\n
$$
\lim_{t \to \infty} \Delta^j u(t\xi) = a,
$$

for every $\xi \in K$ *uniformly in* ξ . *If* $m = 2$, *then* $Z = \emptyset$ *and* $\sup_{\mathbb{R}^2}$ $u < \infty$ *. Finally,*

(6)
$$
\liminf_{|x| \to \infty} R_{g_u}(x) = -\infty,
$$

where R_{g_u} is the scalar curvature of $g_u := e^{2u} g_{\mathbb{R}^{2m}}$.

Following the proof of Theorem [1,](#page-1-0) it can be shown that the estimate on the degree of the polynomial is sharp. Recently J. Wei and D. Ye [\[WY\]](#page-13-2) showed the existence of solutions to $\Delta^2 u = 6e^{4u}$ in \mathbb{R}^4 with $\int_{\mathbb{R}^4} e^{4u} dx < \infty$ which are not radially symmetric. It is plausible that also in the negative case non-radially symmetric solutions exist.

For the case $Q = 0$ we have

THEOREM 3. When $Q = 0$, any solution to [\(1\)](#page-0-0)–[\(2\)](#page-0-1) is a polynomial p with $2 \leq$ deg $p < 2m - 2$ *and with*

$$
\sup_{\mathbb{R}^{2m}} p < \infty.
$$

In particular, in dimension 2 *(case* m = 1*), there are no solutions. In dimension* 4 *the solutions are exactly the polynomials of degree* 2 *with* $\lim_{|x| \to \infty} p(x) = -\infty$ *. Finally, there exist* $1 \leq j \leq m-1$ *and* $a \leq 0$ *such that*

(7)
$$
\lim_{|x| \to \infty} \Delta^j p(x) = a.
$$

The case when $Q > 0$, say $Q = (2m - 1)!$, has been exhaustively treated. The problem

(8)
$$
(-\Delta)^m u = (2m-1)! e^{2mu}
$$
 on \mathbb{R}^{2m} , $\int_{\mathbb{R}^{2m}} e^{2mu} dx < \infty$,

admits *standard solutions*, i.e. solutions of the form $u(x) := \log \frac{2\lambda}{1 + \lambda^2 |x - x_0|^2}, \lambda > 0$, $x_0 \in \mathbb{R}^{2m}$, that arise from the stereographic projection and the action of the Möbius group of conformal diffeomorphisms on S^{2m} . In dimension 2, W. Chen and C. Li [\[CL\]](#page-12-0) showed that every solution to [\(8\)](#page-2-0) is standard. Already in dimension 4, however, as shown by A. Chang and W. Chen [\[CC\]](#page-12-1), [\(8\)](#page-2-0) admits non-standard solutions. In dimension 4, C.-S. Lin [\[Lin\]](#page-13-3) classified all solutions u to (8) and gave precise conditions in order for u to be a standard solution in terms of its asymptotic behavior at infinity.

In arbitrary even dimension, A. Chang and P. Yang [\[CY\]](#page-12-2) proved that solutions of the form

$$
u(x) = \log \frac{2}{1 + |x|^2} + \xi(\pi^{-1}(x))
$$

are standard, where $\pi : S^{2m} \to \mathbb{R}^{2m}$ is the stereographic projection and ξ is a smooth function on S^{2m} . J. Wei and X. Xu [\[WX\]](#page-13-4) showed that any solution u to [\(8\)](#page-2-0) is standard under the weaker assumption that $u(x) = o(|x|^2)$ as $|x| \to \infty$ (see also [\[Xu\]](#page-13-5)). We recently treated the general case (see [\[Mar1\]](#page-13-1)), generalizing the work of C.-S. Lin. In particular, we proved a decomposition $u = p + v$ as in Theorem [2](#page-1-1) and gave various analytic and geometric conditions which are equivalent to u being standard.

The classification of the solutions to [\(8\)](#page-2-0) has been applied in concentrationcompactness problems (see e.g. [\[LS\]](#page-13-6), [\[RS\]](#page-13-7), [\[Mal\]](#page-13-8), [\[MS\]](#page-13-9), [\[DR\]](#page-13-10), [\[Str1\]](#page-13-11), [\[Str2\]](#page-13-12), [\[Ndi\]](#page-13-13)). There is an interesting geometric consequence of Theorems [2](#page-1-1) and [3,](#page-2-1) with applications in concentration-compactness: In the case of a closed manifold, metrics of equibounded volumes and prescribed Q-curvatures *of possibly varying sign* cannot

concentrate at points of negative or zero Q-curvature. For instance we shall prove in a forthcoming paper [\[Mar2\]](#page-13-14)

THEOREM 4. *Let* (M, g) *be a* 2m*-dimensional closed Riemannian manifold with Paneitz operator* P_g^{2m} satisfying ker $P_g^{2m} = \{const\}$ *, and let* $u_k : M \to \mathbb{R}$ be a *sequence of solutions of*

(9)
$$
P_g^{2m}u_k + Q_g^{2m} = Q_k e^{2mu_k},
$$

where Q_g^{2m} is the Q-curvature of g (see e.g. [\[Cha\]](#page-12-3)), and where the Q_k 's are given *continuous functions with* $Q_k \rightarrow Q_0$ *in* C^0 . Assume also that there is a $\Lambda > 0$ such *that*

$$
\int_M e^{2mu_k} \, d\operatorname{vol}_g \le \Lambda
$$

for all k*. Then one of the following is true.*

- (i) *For every* $0 \leq \alpha < 1$, a subsequence is converging in $C^{2m-1,\alpha}(M)$.
- (ii) *There exists a finite (possibly empty) set* $S = \{x^{(i)} : 1 \le i \le I\}$ *such that* $u_k \to -\infty$ in $L^{\infty}_{loc}(M\backslash S)$ *. Moreover,*

(11)
$$
\int_M Q_g d\text{ vol}_g = I(2m-1)! |S^{2m}|,
$$

and

(12)
$$
Q_k e^{2mu_k} d \operatorname{vol}_g \rightharpoonup \sum_{i=1}^I (2m-1)! |S^{2m}| \delta_{x^{(i)}}
$$

in the sense of measures. Finally, $Q_0(x^{(i)}) > 0$ *for* $1 \le i \le I$ *.*

In sharp contrast with Theorem [4,](#page-3-0) on an open domain $\Omega \subset \mathbb{R}^{2m}$ (or a manifold with boundary), $m > 1$, concentration is possible at points of negative or zero curvature. Indeed, take any solution u of [\(1\)](#page-0-0)–[\(2\)](#page-0-1) with $Q \le 0$, whose existence is given by Theorem [1,](#page-1-0) and consider the sequence

$$
u_k(x) := u(k(x - x_0)) + \log k \quad \text{for } x \in \Omega
$$

for some fixed $x_0 \in \Omega$. Then $(-\Delta)^m u_k = Qe^{2mu_k}$ and u_k concentrates at x_0 in the sense that as $k \to \infty$ we have $u_k(x_0) \to \infty$, $u_k \to -\infty$ a.e. in Ω and $e^{2mu_k} dx \to \infty$ $\alpha |S^{2m}|\delta_{x_0}$ in the sense of measures.

The 2-dimensional case $(m = 1)$ is different and concentration at points of nonpositive curvature can also be ruled out on open domains, because otherwise a standard blowing-up procedure would yield a solution to $(1)-(2)$ $(1)-(2)$ $(1)-(2)$ with $Q \le 0$, contradicting Theorem [1.](#page-1-0)

An immediate consequence of Theorem [4](#page-3-0) and the Gauss–Bonnet–Chern formula is the following compactness result (see [\[Mar2\]](#page-13-14)):

COROLLARY 5. *In the hypothesis of Theorem* [4](#page-3-0) *assume that* $vol(g_k) \rightarrow 0$ *and that either*

1. $\chi(M) \leq 0$ *and* dim $M \in \{2, 4\}$ *, or*

2. $\chi(M) \leq 0$, dim $M \geq 6$ *and* (M, g) *is locally conformally flat,*

where $\chi(M)$ *is the Euler–Poincaré characteristic of M. Then only case* (i) *in Theorem* [4](#page-3-0) *occurs.*

The paper is organized as follows. The proofs of Theorems [1–](#page-1-0)[3](#page-2-1) are given in the following three sections; in the last section we collect some open questions. In the following, the letter C denotes a generic constant, which may change from line to line and even within the same line.

2. PROOF OF THEOREM [1](#page-1-0)

Theorem [1](#page-1-0) follows from Propositions [6](#page-4-0) and [8](#page-4-1) below.

PROPOSITION 6. *For* $m = 1$ *and* $Q < 0$ *there are no solutions to* [\(1\)](#page-0-0)–[\(2\)](#page-0-1)*.*

PROOF. Assume that such a solution u exists. Then, by the maximum principle and Jensen's inequality,

$$
\int_{\partial B_R} u \, d\sigma \ge u(0), \quad \int_{\partial B_R} e^{2u} \, d\sigma \ge 2\pi R e^{2u(0)}.
$$

Integrating in R on [1, ∞), we get

$$
\int_{\mathbb{R}^2} e^{2u} \, dx = \infty,
$$

contradiction. \Box

LEMMA 7. Let $u(r)$ be a smooth radial function on \mathbb{R}^n , $n \geq 1$. Then there are positive *constants* b^m *depending only on* n *such that*

(13)
$$
\Delta^m u(0) = b_m u^{(2m)}(0),
$$

where $u^{(2m)} := \partial^{2m} u / \partial r^{2m}$. In particular, $\Delta^m u(0)$ has the sign of $u^{(2m)}(0)$.

For a proof see [\[Mar1\]](#page-13-1).

PROPOSITION 8. *For* $m \geq 2$ *and* $Q < 0$ *there exist radial solutions to* [\(1\)](#page-0-0)–[\(2\)](#page-0-1)*.*

PROOF. We consider separately the cases when m is even and when m is odd.

CASE 1: *m even.* Let $u = u(r)$ be the unique solution of the following ODE:

$$
\begin{cases} \Delta^m u(r) = -(2m-1)! e^{2mu(r)}, \\ u^{(2j+1)}(0) = 0, & 0 \le j \le m-1, \\ u^{(2j)}(0) = \alpha_j \le 0, & 0 \le j \le m-1, \end{cases}
$$

where $\alpha_0 = 0$ and $\alpha_1 < 0$. We claim that the solution exists for all $r \ge 0$. To see that, we shall use barriers (cf. [\[CC,](#page-12-1) Theorem 2]). Let us define

$$
w_{+}(r) = \frac{\alpha_1}{2}r^2
$$
, $g_{+} := w_{+} - u$.

Then $\Delta^m g_+ \geq 0$. By the divergence theorem,

$$
\int_{B_R} \Delta^j g_+ dx = \int_{\partial B_R} \frac{d \Delta^{j-1} g_+}{dr} d\sigma.
$$

Moreover, from Lemma [7,](#page-4-2) we infer

$$
\Delta^j g_+(0) \ge 0 \quad \text{for } 0 \le j \le m-1,
$$

hence we see inductively that $\Delta^{j} g_{+}(r) \ge 0$ for every r such that $g_{+}(r)$ is defined and for $0 \le j \le m - 1$. In particular, $g_+ \ge 0$ as long as it exists.

Let us now define

$$
w_{-}(r) := \sum_{i=0}^{m-1} \beta_i r^{2i} - A \log \frac{2}{1+r^2}, \quad g_{-} := u - w_{-},
$$

where the β_i 's and A will be chosen later. Notice that

$$
\Delta^m w_{-}(r) = \Delta^m \left(-A \log \frac{2}{1+r^2} \right) = -(2m-1)! A \left(\frac{2}{1+r^2} \right)^{2m}.
$$

Since $\alpha_1 < 0$,

$$
\lim_{r \to \infty} \frac{\left(\frac{2}{1+r^2}\right)^{2m}}{e^{m\alpha_1 r^2}} = \infty,
$$

and taking into account that $u \leq w_+$, we can choose A large enough to have

$$
\Delta^{m} g_{-}(r) = (2m - 1)! \left[A \left(\frac{2}{1 + r^{2}} \right)^{2m} - e^{2m u(r)} \right]
$$

\n
$$
\geq (2m - 1)! \left[A \left(\frac{2}{1 + r^{2}} \right)^{2m} - e^{m \alpha_{1} r^{2}} \right] \geq 0.
$$

We now choose each β_i so that

$$
\Delta^j g_{-}(0) \ge 0, \quad 0 \le j \le m-1,
$$

and proceed by induction as above to prove that $g_-\geq 0$. Hence

$$
w_{-}(r) \le u(r) \le w_{+}(r)
$$

as long as u exists, and by standard ODE theory, that implies that $u(r)$ exists for all $r \geq 0$. Finally,

$$
\int_{\mathbb{R}^{2m}} e^{2mu(|x|)} dx \leq \int_{\mathbb{R}^{2m}} e^{m\alpha_1|x|^2} dx < \infty.
$$

CASE 2: $m \ge 3$ *odd.* Let $u = u(r)$ solve

$$
\begin{cases}\n\Delta^m u(r) = (2m - 1)!e^{2mu(r)},\\ \n u^{(2j+1)}(0) = 0, \quad 0 \le j \le m - 1,\\ \n u^{(2j)}(0) = \alpha_j \le 0, \quad 0 \le j \le m - 1,\n\end{cases}
$$

where the α_i 's have to be chosen. Set

$$
w_{+}(r) := \beta - r^2 - \log \frac{2}{1+r^2}, \quad g_{+} := w_{+} - u,
$$

where $\beta < 0$ is such that $e^{-r^2 + \beta} \leq \left(\frac{2}{1+r^2}\right)^2$, hence

$$
\frac{2}{1+r^2} - \frac{1+r^2}{2}e^{-r^2+\beta} \ge 0 \quad \text{for all } r > 0.
$$

Then, as long as $g_+ \geq 0$, we have

$$
\Delta^{m} g_{+}(r) = (2m - 1)! \left[\left(\frac{2}{1 + r^{2}} \right)^{2m} - e^{2mu(r)} \right]
$$

\n
$$
\geq (2m - 1)! \left[\left(\frac{2}{1 + r^{2}} \right)^{2m} - e^{2mw_{+}(r)} \right] \geq 0.
$$

Choose now the α_i 's so that $u^{(2i)}(0) < w^{(2i)}_+(0)$ for $0 \le i \le m - 1$. From Lemma [7,](#page-4-2) we infer that

$$
\Delta^i g_+(0) \ge 0, \quad 0 \le i \le m-1,
$$

and we see by induction that $g_+ \geq 0$ as long as it is defined. As lower barrier, define

$$
w_{-}(r) = \sum_{i=0}^{m-1} \beta_i r^{2i}, \quad g_{-} := u - w_{-},
$$

where the β_i 's are chosen so that $\Delta^i g_-(0) \geq 0$. Then, observing that

$$
\Delta^m g_{-}(r) = (2m - 1)! e^{2mu(r)} > 0,
$$

as long as u is defined, we conclude as before that $g_-\geq 0$ as long as it is defined. Then u is defined for all times.

Let $R > 0$ be such that, for every $r \ge R$, $w_{+}(r) \le -r^2/2$. Then

$$
\int_{\mathbb{R}^{2m}} e^{2mu(|x|)} dx \le \int_{B_R} e^{2mu(|x|)} dx + \int_{\mathbb{R}^{2m} \setminus B_R} e^{-m|x|^2} dx < \infty.
$$

3. PROOF OF THEOREM [2](#page-1-1)

The proof of Theorem [2](#page-1-1) is divided into several lemmas. The following Liouville-type theorem will prove very useful.

THEOREM 9. *Consider* $h : \mathbb{R}^n \to \mathbb{R}$ *with* $\Delta^m h = 0$ *and* $h \le u - v$ *, where* $e^{pu} \in$ $L^1(\mathbb{R}^n)$ for some $p > 0$, and $(-v)^+ ∈ L^1(\mathbb{R}^n)$. Then *h* is a polynomial of degree at *most* 2m − 2*.*

PROOF. As in [\[Mar1,](#page-13-1) Theorem 5], for any $x \in \mathbb{R}^{2m}$ we have

(14)
$$
|D^{2m-1}h(x)| \leq \frac{C}{R^{2m-1}} \int_{B_R(x)} |h(y)| dy
$$

$$
= -\frac{C}{R^{2m-1}} \int_{B_R(x)} h(y) dy + \frac{2C}{R^{2m-1}} \int_{B_R(x)} h^+ dy
$$

and

$$
\oint_{B_R(x)} h(y) dy = O(R^{2m-2}) \quad \text{as } R \to \infty.
$$

Then

$$
\int_{B_R(x)} h^+ dy \le \int_{B_R(x)} u^+ dy + C \int_{B_R(x)} (-v)^+ dy \le \frac{1}{p} \int_{B_R(x)} e^{pu} dy + \frac{C}{R^{2m}},
$$

and both terms in [\(14\)](#page-7-0) divided by R^{2m-1} go to 0 as $R \to \infty$. \Box

LEMMA 10. Let u be a solution of [\(1\)](#page-0-0)–[\(2\)](#page-0-1). Then, for $|x| \geq 4$,

(15)
$$
v(x) \leq 2\alpha \log|x| + C.
$$

PROOF. As in [\[Mar1,](#page-13-1) Lemma 9], changing v with $-v$. \Box

LEMMA 11. *For any* $\varepsilon > 0$ *, there is* $R > 0$ *such that for* $|x| \ge R$ *,*

(16)
$$
v(x) \ge \left(2\alpha - \frac{\varepsilon}{2}\right) \log|x| + \frac{(2m-1)!}{\gamma_m} \int_{B_1(x)} \log|x-y| \, e^{2mu(y)} \, dy.
$$

Moreover,

(17)
$$
(-v)^{+} \in L^{1}(\mathbb{R}^{2m}).
$$

PROOF. To prove [\(16\)](#page-7-1) we follow [\[Lin,](#page-13-3) Lemma 2.4]. Choose $R_0 > 0$ such that

$$
\frac{1}{|S^{2m}|}\int_{B_{R_0}}e^{2mu}\,dx\geq \alpha-\frac{\varepsilon}{16},
$$

and decompose

$$
\mathbb{R}^{2m} = B_{R_0} \cup A_1 \cup A_2,
$$

\n
$$
A_1 := \{ y \in \mathbb{R}^{2m} : 2|x - y| \le |x|, |y| \ge R_0 \},
$$

\n
$$
A_2 := \{ y \in \mathbb{R}^{2m} : 2|x - y| > |x|, |y| \ge R_0 \}.
$$

Next choose $R \ge 2$ such that for $|x| > R$ and $|y| \le R_0$, we have $\log \frac{|x-y|}{|y|} \ge \log |x|$ $-\varepsilon$. Then, observing that $(2m - 1)! |S^{2m}|/\gamma_m = 2$, we have, for $|x| > R$,

$$
(18) \quad \frac{(2m-1)!}{\gamma_m} \int_{B_{R_0}} \log \frac{|x-y|}{|y|} e^{2mu(y)} dy
$$

$$
\geq \left(\log |x| - \frac{\varepsilon}{16} \right) \frac{(2m-1)!}{\gamma_m} \int_{B_{R_0}} e^{2mu} dy \geq \left(2\alpha - \frac{\varepsilon}{8} \right) \log |x| - C\varepsilon.
$$

Observing that $\log |x - y| \ge 0$ for $y \notin B_1(x)$, $\log |y| \le \log(2|x|)$ for $y \in A_1$, $\int_{A_1} e^{2mu} dy \leq \varepsilon |S^{2m}|/16$ and $\log(2|x|) \leq 2 \log |x|$ for $|x| \geq R$, we infer that

(19)
$$
\int_{A_1} \log \frac{|x - y|}{|y|} e^{2mu(y)} dy = \int_{A_1} \log |x - y| e^{2mu(y)} dy - \int_{A_1} \log |y| e^{2mu(y)} dy
$$

$$
\geq \int_{B_1(x)} \log |x - y| e^{2mu(y)} dy - \log(2|x|) \int_{A_1} e^{2mu} dy
$$

$$
\geq \int_{B_1(x)} \log |x - y| e^{2mu(y)} dy - \log |x| \frac{\varepsilon |S^{2m}|}{8}.
$$

Finally, for $y \in A_2$, $|x| > R$ we have $|x - y|/|y| \ge 1/4$, hence

(20)
$$
\int_{A_2} \log \frac{|x - y|}{|y|} e^{2mu(y)} dy \ge -\log(4) \int_{A_2} e^{2mu} dy \ge -C\varepsilon.
$$

Putting together [\(18\)](#page-8-0), [\(19\)](#page-8-1) and [\(20\)](#page-8-2), and possibly taking R even larger, we obtain [\(16\)](#page-7-1). From (16) and Fubini's theorem,

$$
\int_{\mathbb{R}^{2m}\setminus B_R} (-v)^+ dx \le C \int_{\mathbb{R}^{2m}} \int_{\mathbb{R}^{2m}} \chi_{|x-y|<1} \log \frac{1}{|x-y|} e^{2mu(y)} dy dx
$$

= $C \int_{\mathbb{R}^{2m}} e^{2mu(y)} \int_{B_1(y)} \log \frac{1}{|x-y|} dx dy$
 $\le C \int_{R^{2m}} e^{2mu(y)} dy < \infty.$

Since $v \in C^{\infty}(\mathbb{R}^{2m})$, we conclude that $\int_{B_R} (-v)^+ dx < \infty$ and [\(17\)](#page-7-2) follows. \Box

LEMMA 12. Let u be a solution of [\(1\)](#page-0-0)–[\(2\)](#page-0-1) with $m \ge 2$. Then $u = v + p$, where p is *a polynomial of degree at most* 2m − 2*.*

PROOF. Let $p := u - v$. Then $\Delta^m p = 0$. Apply [\(17\)](#page-7-2) and Theorem [9.](#page-7-3) \Box

LEMMA 13. Let p be the polynomial of Lemma [12](#page-8-3). If $m = 2$, then there exists $\delta > 0$ *such that*

$$
(21) \t\t\t\t p(x) \le -\delta |x|^2 + C.
$$

In particular, $\lim_{|x| \to \infty} p(x) = -\infty$ *and* deg $p = 2$ *. For* $m \geq 3$ *there is a (possibly empty)* closed set $Z ⊂ S^{2m-1}$ of Hausdorff dimension dim^{H}(Z) ≤ 2m – 2 such that *for every* $K \subset S^{2m-1} \setminus Z$ *closed, there exists* $\delta = \delta(K) > 0$ *such that*

(22)
$$
p(x) \leq -\delta |x|^2 + C \quad \text{for } \frac{x}{|x|} \in K.
$$

Consequently, deg p *is even.*

PROOF. From [\(17\)](#page-7-2), we infer that there is a set A_0 of finite measure such that

(23)
$$
v(x) \geq -C \quad \text{in } \mathbb{R}^{2m} \setminus A_0.
$$

CASE $m = 2$. Up to a rotation, we can write

$$
p(x) = \sum_{i=1}^{4} (b_i x_i^2 + c_i x_i) + b_0.
$$

Assume that $b_{i_0} \ge 0$ for some $1 \le i_0 \le 4$. Then on the set

$$
A_1 := \{x \in \mathbb{R}^4 : |x_i| \le 1 \text{ for } i \ne i_0, \ c_{i_0} x_{i_0} \ge 0\}
$$

we have $p(x) \geq -C$. Moreover, $|A_1| = \infty$. Then from [\(23\)](#page-9-0) we infer that

(24)
$$
\int_{\mathbb{R}^4} e^{4u} dx \ge \int_{A_1 \setminus A_0} e^{4(v+p)} dx \ge C|A_1 \setminus A_0| = \infty,
$$

contradicting [\(2\)](#page-0-1). Therefore $b_i < 0$ for every i and [\(21\)](#page-9-1) follows at once.

CASE $m \geq 3$. From [\(2\)](#page-0-1) and [\(23\)](#page-9-0) we infer that p cannot be constant. Write

$$
p(t\xi) = \sum_{i=0}^{d} a_i(\xi)t^i
$$
, $d := \deg p$,

where for each $0 \le i \le d$, a_i is a homogeneous polynomial of degree i or $a_i \equiv 0$. With a computation similar to [\(24\)](#page-9-2), [\(2\)](#page-0-1) and [\(23\)](#page-9-0) imply that $a_d(\xi) \le 0$ for each $\xi \in S^{2m-1}$. Moreover d is even, otherwise $a_d(\xi) = -a_d(-\xi) \leq 0$ for every $\xi \in S^{2m-1}$, which would imply $a_d \equiv 0$. Set

$$
Z = \{ \xi \in S^{2m-1} : a_d(\xi) = 0 \}.
$$

We claim that dim^{$H(Z)$} < 2m – 2. To see that, set

$$
V := \{x \in \mathbb{R}^{2m} : a_d(x) = 0\} = \{t\xi : t \ge 0, \xi \in Z\}.
$$

Since V is a cone and $Z = V \cap S^{2m-1}$, we only need to show that $\dim^{\mathcal{H}}(V) \leq 2m-1$. Set

$$
V_i := \{ x \in \mathbb{R}^{2m} : a_d(x) = \dots = \nabla^i a_d(x) = 0, \ \nabla^{i+1} a_d(x) \neq 0 \}.
$$

Noticing that $V_i = \emptyset$ for $i \ge d$ (otherwise $a_d \equiv 0$), we find $V = \bigcup_{i=0}^{d-1} V_i$. By the implicit function theorem, dim^H(V_i) ≤ 2m – 1 for every $i \ge 0$ and the claim is proved.

Finally, for every compact set $K \subset S^{2m-1} \setminus Z$, there is a constant $\delta > 0$ such that $a_d(\xi) < -\delta/2$, and since $d > 2$, [\(22\)](#page-9-3) follows. \Box

COROLLARY 14. *Any solution* u of [\(1\)](#page-0-0)–[\(2\)](#page-0-1) with $m = 2$ and $Q < 0$ is bounded from *above.*

PROOF. Indeed, $u = v + p$ and, for some $\delta > 0$,

$$
v(x) \le 2\alpha \log|x| + C, \quad p(x) \le -\delta |x|^2 + C. \quad \Box
$$

LEMMA 15. Let $v : \mathbb{R}^{2m} \to \mathbb{R}$ be defined as in [\(3\)](#page-1-2) and Z as in Lemma [13](#page-8-4). Then for *every* K ⊂ S^{2m-1} \setminus *Z compact we have*

(25)
$$
\lim_{t \to \infty} \Delta^{m-j} v(t\xi) = 0, \quad j = 1, ..., m-1,
$$

for every $\xi \in K$ *uniformly in* ξ ; *and for every* $\varepsilon > 0$ *there is* $R = R(\varepsilon, K) > 0$ *such that, for* $t > R$ *and* $\xi \in K$ *,*

$$
(26) \t\t v(t\xi) \ge (2\alpha - \varepsilon) \log t.
$$

PROOF. Fix $K \in S^{2m-1} \setminus Z$ compact and set $\mathcal{C}_K := \{t\xi : t \geq 0, \xi \in K\}$. For any $\sigma > 0$ and $1 \leq j \leq 2m - 1$,

(27)
$$
\int_{\mathbb{R}^{2m}\setminus B_{\sigma}(x)} \frac{e^{2mu(y)}}{|x-y|^{2j}} dy \to 0 \text{ as } |x| \to \infty
$$

by dominated convergence. Choose a compact set $\widetilde{K} \subset S^{2m-1} \setminus Z$ such that $K \subset$ $\text{int}(\widetilde{K}) \subset S^{2m-1}$. Since $u \leq C(\widetilde{K})$ on $\mathcal{C}_{\widetilde{K}}$ by Lemmas [10](#page-7-4) and [13,](#page-8-4) we can choose $\sigma = \sigma(\varepsilon) > 0$ so small that

$$
\int_{B_{\sigma}(x)} \frac{e^{2mu}}{|x - y|^{2j}} dy \le C(\widetilde{K}) \int_{B_{\sigma}(x)} \frac{1}{|x - y|^{2j}} dy \le C(\widetilde{K})\varepsilon \quad \text{for } x \in \mathcal{C}_K, \ |x| \text{ large},
$$

where |x| is so large that $B_{\sigma}(x) \subset C_{\widetilde{K}}$. Therefore

$$
(-1)^{j+1} \Delta^j v(x) = C \int_{\mathbb{R}^{2m}} \frac{e^{2mu}}{|x - y|^{2j}} dy \to 0 \quad \text{for } x \in \mathcal{C}_K \text{ as } |x| \to \infty,
$$

We have seen in Lemma [11](#page-7-5) that for any $\varepsilon > 0$ there is $R > 0$ such that for $|x| \ge R$,

(28)
$$
v(x) \ge \left(2\alpha - \frac{\varepsilon}{2}\right) \log|x| + \frac{(2m-1)!}{\gamma_m} \int_{B_1(x)} \log|x-y| \, e^{2mu(y)} \, dy,
$$

and [\(26\)](#page-10-0) follows easily by choosing \widetilde{K} as above and observing that $u \leq C(\widetilde{K})$ on $\mathcal{C}_{\widetilde{K}}$, hence on $B_1(x)$ for $x \in \mathcal{C}_K$ with $|x|$ large enough. hence on $B_1(x)$ for $x \in C_K$ with $|x|$ large enough.

PROOF OF THEOREM [2.](#page-1-1) The decomposition $u = v + p$ and the properties of v and p follow at once from Lemmas [10,](#page-7-4) [12,](#page-8-3) [13](#page-8-4) and [15;](#page-10-1) [\(6\)](#page-1-3) follows as in [\[Mar1,](#page-13-1) Theorem 2]. As for [\(5\)](#page-1-4), let j be the largest integer such that $\Delta^{j} p \neq 0$. Then $\Delta^{j+1} p \equiv 0$ and from Theorem [9](#page-7-3) we infer that deg $p = 2j$, hence $\Delta^{j} p \equiv a \neq 0$.

4. THE CASE
$$
Q = 0
$$

PROOF OF THEOREM [3.](#page-2-1) From Theorem [9,](#page-7-3) with $v \equiv 0$, we see that u is a polynomial of degree at most $2m - 2$. Then, as in [\[Mar1,](#page-13-1) Lemma 11], we have

$$
\sup_{\mathbb{R}^{2m}}u<\infty,
$$

and, since u cannot be constant, we infer that deg $u > 2$ is even. The proof of [\(7\)](#page-2-2) is analogous to the case $Q < 0$, as long as we do not care about the sign of a. To show that $a < 0$, one proceeds as in [\[Mar1,](#page-13-1) Theorem 2]. For the case $m = 2$ one proceeds as in Lemma [13,](#page-8-4) setting $v \equiv 0$ and $A_0 = \emptyset$.

EXAMPLE. One might believe that every polynomial p on \mathbb{R}^{2m} of degree at most 2m – 2 with $\int_{\mathbb{R}^{2m}} e^{2mp} dx < \infty$ satisfies $\lim_{|x| \to \infty} p(x) = -\infty$, as in the case $m = 2$. Consider on \mathbb{R}^{2m} with $m \geq 3$ the polynomial $u(x) = -(1 + x_1^2) |\tilde{x}|^2$, where $\tilde{x} = (x_2, y_1)$. Then $A^m u = 0$ and (x_2, \ldots, x_{2m}) . Then $\Delta^m u \equiv 0$ and

$$
\int_{\mathbb{R}^{2m}} e^{2mu} dx = \int_{\mathbb{R}} \int_{\mathbb{R}^{2m-1}} e^{-2m(1+x_1^2)|\widetilde{x}|^2} d\widetilde{x} dx_1
$$

=
$$
\int_{\mathbb{R}} \frac{dx_1}{(1+x_1^2)^{(2m-1)/2}} \cdot \int_{\mathbb{R}^{2m-1}} e^{-2m|\widetilde{y}|^2} d\widetilde{y} < \infty.
$$

On the other hand, $\limsup_{|x| \to \infty} u(x) = 0$.

5. OPEN QUESTIONS

OPEN QUESTION 1. *Does the claim of Corollary* [14](#page-10-2) *hold for* m > 2*? In other words, is any solution u to* [\(1\)](#page-0-0)–[\(2\)](#page-0-1) *with* $Q < 0$ *bounded from above?*

This is an important regularity issue, in particular with regard to the behavior at infinity of the function v defined in [\(3\)](#page-1-2). If $\sup_{\mathbb{R}^{2m}} u < \infty$, then one can take $Z = \emptyset$ in Theorem [2,](#page-1-1) as in the case $Q > 0$ (see [\[Mar1,](#page-13-1) Theorem 1]).

DEFINITION 16. Let \mathcal{P}_0^{2m} be the set of polynomials p of degree at most $2m-2$ on \mathbb{R}^{2m} such that $e^{2mp} \in L^1(\mathbb{R}^{2m})$. Let \mathcal{P}_+^{2m} be the set of polynomials p of degree at most $2m - 2$ *on* \mathbb{R}^{2m} *such that there exists a solution* $u = v + p$ *to* [\(1\)](#page-0-0)–[\(2\)](#page-0-1) *with* $Q > 0$ *. Similarly for* \mathcal{P}_{-}^{2m} *with* $Q < 0$ *.*

Related to the first question is the following

OPEN QUESTION 2. *What are the sets* \mathcal{P}_0^{2m} , \mathcal{P}_\pm^{2m} ? *Is it true that* $\mathcal{P}_0^{2m} \subset \mathcal{P}_+^{2m}$ and $\mathcal{P}_0^{2m} \subset \mathcal{P}_-^{2m}$?

J. Wei and D. Ye [\[WY\]](#page-13-2) proved that $\mathcal{P}_0^4 \subset \mathcal{P}_+^4$ (and actually more). Consider now on \mathbb{R}^{2m} , $m \geq 3$, the polynomial

$$
p(x) = -(1 + x_1^2)|\tilde{x}|^2
$$
, $\tilde{x} = (x_2, ..., x_{2m})$.

As seen above, $e^{2mp} \in L^1(\mathbb{R}^{2m})$, hence $p \in \mathcal{P}_0^{2m}$. Assume that $p \in \mathcal{P}_-^{2m}$ as well, i.e. there is a function $u = v + p$ satisfying [\(1\)](#page-0-0)–[\(2\)](#page-0-1) and $Q < 0$. Then we claim that sup_{R2m} $u = \infty$. Assume by contradiction that u is bounded from above. Then [\(15\)](#page-7-6) and [\(16\)](#page-7-1) imply that

$$
v(x) = 2\alpha \log|x| + o(\log|x|) \quad \text{as } |x| \to \infty.
$$

Therefore,

$$
\lim_{x_1 \to \infty} u(x_1, 0, \dots, 0) = \lim_{x_1 \to \infty} 2\alpha \log x_1 = \infty,
$$

contradiction.

OPEN QUESTION 3. *In the case where* u *is not bounded from above, is it true that one can still take* $Z = \emptyset$ *in Theorem* [2](#page-1-1) *for* $m \geq 3$ *also?*

For instance, in order to show that $v(x) = 2\alpha \log|x| + o(\log|x|)$ as $|x| \to \infty$, thanks to [\(16\)](#page-7-1), it is enough to show that

$$
\int_{B_1(x)} \log |x - y| e^{2mu(y)} dy = o(\log |x|) \quad \text{as } |x| \to \infty,
$$

which is true if $\sup_{\mathbb{R}^{2m}} u < \infty$, but it might also be true if $\sup_{\mathbb{R}^{2m}} u = \infty$.

OPEN QUESTION 4. *What values can the* α *given by* [\(1\)](#page-0-0)–[\(2\)](#page-0-1) *assume for a fixed* Q?

As usual, it is enough to consider $Q \in \{0, \pm(2m-1)!\}$. If $m = 1, Q = 1$, then $\alpha = 1$ (see [\[CL\]](#page-12-0)). If $m = 2$, $Q = 6$, then α can take any value in (0, 1], as shown in [\[CC\]](#page-12-1). Moreover, α cannot be greater than 1 and the case $\alpha = 1$ corresponds to standard solutions, as proved in [\[Lin\]](#page-13-3). For the trivial case $Q = 0$, α can take any positive value, and for the other cases we have no answer.

REFERENCES

- [Cha] S-Y. A. CHANG, *Non-linear Elliptic Equations in Conformal Geometry*. Zurich Lectures Adv. Math., Eur. Math. Soc., 2004.
- [CC] S-Y. A. CHANG - W. CHEN, *A note on a class of higher order conformally covariant equations*. Discrete Contin. Dynam. Systems 63 (2001), 275–281.
- [CY] S-Y. A. CHANG - P. YANG, *On uniqueness of solutions of* n*th order differential equations in conformal geometry*. Math. Res. Lett. 4 (1997), 91–102.
- [CL] W. CHEN - C. LI, *Classification of solutions of some nonlinear elliptic equations*. Duke Math. J. 63 (1991), 615–622.
- [DR] O. DRUET - F. ROBERT, *Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth*. Proc. Amer. Math. Soc. 3 (2006), 897–908.
- [LS] Y. L^I - I. SHAFRIR, *Blow-up analysis for solutions of* −∆u = V e^u *in dimension two*. Indiana Univ. Math. J. 43 (1994), 1255–1270.
- [Lin] C.-S. LIN, *A classification of solutions of conformally invariant fourth order* equations in \mathbb{R}^n . Comment. Math. Helv. 73 (1998), 206-231.
- [Mal] A. MALCHIODI, *Compactness of solutions to some geometric fourth-order equations*. J. Reine Angew. Math. 594 (2006), 137–174.
- [MS] A. MALCHIODI - M. STRUWE, *Q-curvature flow on* $S⁴$. J. Differential Geom. 73 (2006), 1–44.
- [Mar1] L. MARTINAZZI, *Classifications of solutions to the higher order Liouville's equation in* \mathbb{R}^{2m} . Math. Z., to appear.
- [Mar2] L. MARTINAZZI, *Concentration-compactness phenomena in higher order Liouville's equation*. Preprint, 2008.
- [Ndi] C. B. NDIAYE, *Constant* Q*-curvature metrics in arbitrary dimension*. J. Funct. Anal. 251 (2007), 1–58.
- [RS] F. ROBERT - M. STRUWE, *Asymptotic profile for a fourth order PDE with critical exponential growth in dimension four*. Adv. Nonlinear Stud. 4 (2004), 397–415.
- [Str1] M. STRUWE, *A flow approach to Nirenberg's problem*. Duke Math. J. 128 (2005), 19–64.
- [Str2] M. STRUWE, *Quantization for a fourth order equation with critical exponential growth*. Math. Z. 256 (2007), 397–424.
- [WX] J. WEI - X.-W. XU, *Classification of solutions of higher order conformally invariant equations*. Math. Ann. 313 (1999), 207-228.
- [WY] J. WEI - D. YE, *Nonradial solutions for a conformally invariant fourth order* equation in \mathbb{R}^4 . Calc. Var. Partial Differential Equations 32 (2008), 373-386.
- [Xu] X.-W. XU, *Uniqueness theorem for integral equations and its application*. J. Funct. Anal. 247 (2007), 95–109.

Received 13 May 2008.

Department of Mathematics ETH Zürich Rämistrasse 101 CH-8092 ZÜRICH, Switzerland luca@math.ethz.ch

