

Rend. Lincei Mat. Appl. 19 (2008), 293[–308](#page-15-0)

Algebra. — *Combinatorics and topology of toric arrangements defined by root systems*, by LUCA MOCI.

A Ilaria, e ai viaggi che ci aspettano

ABSTRACT. — Given the toric (or toral) arrangement defined by a root system Φ , we classify and count its components of each dimension. We show how to reduce to the case of 0-dimensional components, and in this case we give an explicit formula involving the maximal subdiagrams of the affine Dynkin diagram of Φ . Then we compute the Euler characteristic and the Poincaré polynomial of the complement of the arrangement, which is the set of regular points of the torus.

KEY WORDS: Affine Dynkin diagram; Poincare polynomial; regular points; root system; toric ´ arrangement.

MATHEMATICS SUBJECT CLASSIFICATION (2000): 14N10, 17B10, 20G20.

1. INTRODUCTION

Let g be a semisimple Lie algebra of rank *n* over $\mathbb C$, $\mathfrak h$ a Cartan subalgebra and $\Phi \subset \mathfrak h^*$ and $\Phi^{\vee} \subset \mathfrak{h}$ respectively its root and coroot systems. The equations $\{\alpha(h) = 0\}_{\alpha \in \Phi}$ define in h a family H of intersecting hyperplanes. Let $\langle \Phi^\vee \rangle$ be the lattice spanned by the coroots. Then the quotient $T = f/(\Phi^{\vee})$ is a complex torus of rank *n*. Each root α takes integer values on $\langle \Phi^{\vee} \rangle$, so it induces a map $T \to \mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^*$ that we denote by e^{α} . The conditions $\{\alpha(h) \in \mathbb{Z}\}_{\alpha \in \Phi}$ define in h a periodic family of hyperplanes, or equivalently the equations $\{e^{\alpha}(t) = 1\}_{\alpha \in \Phi}$ define in T a finite family T of hypersurfaces. H and T are called respectively the *hyperplane arrangement* and the *toric arrangement* defined by Φ (see for example [\[8\]](#page-14-0), [\[10\]](#page-15-1), [\[23\]](#page-15-2)). We define the *subspaces* of H to be the intersections of elements of H, and the *components* of T to be the connected components of the intersections of elements of T. We denote by $S(\Phi)$ the set of subspaces of H, by $\mathcal{C}(\Phi)$ the set of components of T, and by $\mathcal{S}_d(\Phi)$ and $C_d(\Phi)$ the sets of d-dimensional subspaces and components. Clearly if $\Phi = \Phi_1 \times \Phi_2$ then $S(\Phi) = S(\Phi_1) \times S(\Phi_2)$ and $C(\Phi) = C(\Phi_1) \times C(\Phi_2)$, so from now on we will suppose Φ to be irreducible.

 H is a classical object, whereas De Concini and Procesi [\[8\]](#page-14-0) recently showed that T provides a geometric way to compute the values of the Kostant partition function. This function counts in how many ways an element of the lattice $\langle \Phi \rangle$ can be written as a sum of positive roots, and plays an important role in representation theory, since (by Kostant's and Steinberg's formulae [\[18\]](#page-15-3), [\[25\]](#page-15-4)) it yields efficient computation of weight multiplicities and Littlewood–Richardson coefficients, as shown in [\[6\]](#page-14-1) using results from [\[1\]](#page-14-2), [\[3\]](#page-14-3), [\[7\]](#page-14-4), [\[26\]](#page-15-5). Values of the Kostant partition function can be computed as sums of contributions given by the elements of $C_0(\Phi)$ (see [\[6,](#page-14-1) Th. 3.2]).

Furthermore, let R be the complement in T of the union of all elements of T . Then R is called the set of *regular points* of the torus T and has been intensively studied (see in particular [\[8\]](#page-14-0), [\[19\]](#page-15-6), [\[20\]](#page-15-7)). The cohomology of R is the direct sum of contributions given by the elements of $C(\Phi)$ (see for example [\[8\]](#page-14-0)). Then by describing the action of W on $C(\Phi)$ we implicitly get a W-equivariant decomposition of the cohomology of R, and by counting and classifying the elements of $\mathcal{C}(\Phi)$ we can compute the Poincaré polynomial of R.

We say that a subset Θ of Φ is a *subsystem* if it satisfies the following conditions:

$$
\bullet \ \alpha \in \Theta \Rightarrow -\alpha \in \Theta,
$$

• $\alpha, \beta \in \Theta$ and $\alpha + \beta \in \Phi \Rightarrow \alpha + \beta \in \Theta$.

For each $t \in T$ let us define the following subsystem of Φ :

$$
\Phi(t) \doteq \{ \alpha \in \Phi \mid e^{\alpha}(t) = 1 \}.
$$

The aim of Section 2 is to describe $C_0(\Phi)$, the set of points $t \in T$ such that $\Phi(t)$ has rank n. Let $\alpha_1, \ldots, \alpha_n$ be the simple roots of Φ , α_0 the lowest root (i.e. the opposite of the highest root), and Φ_p the subsystem of Φ generated by $\{\alpha_i\}_{0 \le i \le n, i \ne p}$. Let Γ be the affine Dynkin diagram of Φ and $V(\Gamma)$ the set of its vertices (a list of such diagrams can be found for example in [\[12\]](#page-15-8) or [\[17\]](#page-15-9)). $V(\Gamma)$ is in bijection with $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$, so we can identify each vertex p with an integer from 0 to n. The diagram Γ_p that we get by removing from Γ the vertex p (and all adjacent edges) is the (genuine) Dynkin diagram of Φ_p . Let W be the Weyl group of Φ and W_p the Weyl group of Φ_p , i.e. the subgroup of W generated by all the reflections $s_{\alpha_0}, \ldots, s_{\alpha_n}$ except s_{α_p} . Notice that Γ_0 is the Dynkin diagram of Φ and $W_0 = W$. Since W permutes the roots, its natural action on T restricts to an action on $C_0(\Phi)$. We denote by $W(t)$ the stabilizer of a point $t \in C_0(\Phi)$. We prove

THEOREM 1. *There is a bijection between the W-orbits of* $C_0(\Phi)$ *and the vertices of* Γ *, having the property that for every point* t *in the orbit* O^p *corresponding to the vertex* p, $\Phi(t)$ *is* W-conjugate to Φ_p and $W(t)$ *is* W-conjugate to W_p .

As a corollary we get the formula

(1)
$$
|\mathcal{C}_0(\Phi)| = \sum_{p \in V(\Gamma)} \frac{|W|}{|W_p|}.
$$

In Section 3 we deal with components of arbitrary dimension. For each component U of T we consider the subsystem of Φ ,

$$
\Theta_U \doteq \{ \alpha \in \Phi \mid e^{\alpha}(t) = 1 \; \forall t \in U \},
$$

and its *completion* $\overline{\Theta_U} \doteq \langle \Theta_U \rangle_{\mathbb{R}} \cap \Phi$.

Let \mathcal{K}_d be the set of subsystems Θ of Φ of rank $n - d$ that are *complete* (i.e. such that $\Theta = \overline{\Theta}$), and let $\mathcal{C}_{\Theta}^{\Phi}$ be the set of components U such that $\overline{\Theta_U} = \Theta$. This gives a partition of the components:

$$
\mathcal{C}_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_{\Theta}^{\Phi}.
$$

Notice that the subsystem of roots vanishing on a subspace of H is always complete; then \mathcal{K}_d is in bijection with \mathcal{S}_d . The elements of \mathcal{S}_d are classified and counted in [\[22\]](#page-15-10), [\[23\]](#page-15-2). Thus the description of the sets $\mathcal{C}_{\Theta}^{\Phi}$ that we give in Theorem 11 yields a classification of the components of T. In particular, we show that $|\mathcal{C}_{\Theta}^{\Phi}| = n_{\Theta}^{-1} |\mathcal{C}_{0}(\Theta)|$, where n_{Θ} is an integer depending only on the conjugacy class of Θ , and so

(2)
$$
|\mathcal{C}_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |\mathcal{C}_0(\Theta)|.
$$

In Section 4, using results of [\[8\]](#page-14-0) and [\[9\]](#page-14-5), we deduce from Theorem 1 that the Euler characteristic of R is equal to $(-1)^n |W|$. Moreover, Corollary 12 yields a formula for the Poincaré polynomial of R :

(3)
$$
P_{\Phi}(q) = \sum_{d=0}^{n} (-1)^{d} (q+1)^{d} q^{n-d} \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |W^{\Theta}|.
$$

This formula allows one to compute $P_{\Phi}(q)$ explicitly.

2. ZERO-DIMENSIONAL COMPONENTS

2.1. *Statements*

For all facts about Lie algebras and root systems we refer to [\[14\]](#page-15-11). Let

$$
\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{\alpha\in\Phi}\mathfrak{g}_{\alpha}
$$

be the Cartan decomposition of g, and let us choose nonzero elements X_0, X_1, \ldots, X_n in the 1-dimensional subalgebras $\mathfrak{g}_{\alpha_0}, \mathfrak{g}_{\alpha_1}, \ldots, \mathfrak{g}_{\alpha_n}$; since $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha'}] = \mathfrak{g}_{\alpha+\alpha'}$ whenever $\alpha, \alpha', \alpha + \alpha' \in \Phi$, we know that X_0, X_1, \ldots, X_n generate g. Let $a_0 = 1$ and for $p = 1, \ldots, n$ let a_p be the coefficient of α_p in $-\alpha_0$. For each $p = 0, \ldots, n$ we define an automorphism σ_p of g by

$$
\sigma_p(X_p) \doteq e^{2\pi i a_p^{-1}} X_p, \quad \sigma_p(X_i) = X_i \ \forall i \neq p.
$$

Let G be the semisimple and simply connected algebraic group having root system Φ ; g and T are respectively the Lie algebra and a maximal torus of G (see for example [\[13\]](#page-15-12)). G acts on itself by conjugacy, i.e. for each $g \in G$ the map $k \mapsto gkg^{-1}$ is an automorphism of G. Its differential $Ad(g)$ is an automorphism of g.

REMARK 2. Let $t \in C_0(\Phi)$ and let $\mathfrak{g}^{\text{Ad}(t)}$ be the subalgebra consisting of the elements fixed by Ad(t). For each $\alpha \in \Phi$ and for each $X_{\alpha} \in \mathfrak{g}_{\alpha}$ we have Ad(t)(X_{α}) = $e^{\alpha}(t)X_{\alpha}$, thus

$$
\mathfrak{g}^{\mathrm{Ad}(t)}=\mathfrak{h}\oplus\bigoplus_{\alpha\in\Phi(t)}\mathfrak{g}_{\alpha}.
$$

Moreover, \mathfrak{g}^{σ_p} is generated by the subalgebras $\{\mathfrak{g}_{\alpha_i}\}_{0 \le i \le n, i \ne p}$. Then $\mathfrak{g}^{\text{Ad}(t)}$ and \mathfrak{g}^{σ_p} are semisimple algebras with root systems respectively $\Phi(t)$ and Φ_p . Our strategy will be to prove that for each $t \in C_0(\Phi)$, Ad(t) is conjugate to some σ_p . This implies that $\mathfrak{g}^{\text{Ad}(t)}$ is conjugate to \mathfrak{g}^{σ_p} and then $\Phi(t)$ to Φ_p , as claimed in Theorem 1.

Then we want to give a bijection between vertices of Γ and W-orbits of $C_0(\Phi)$ showing that, for every t in the orbit \mathcal{O}_p , Ad(t) is conjugate to σ_p . However, since some of the σ_p (as well as the corresponding Φ_p) are themselves conjugate, this bijection is not going to be canonical. To make it canonical we should merge the orbits corresponding to conjugate automorphisms; for this we consider the action of a larger group.

Let $\Lambda(\Phi) \subset \mathfrak{h}$ be the lattice of coweights of Φ , i.e.

$$
\Lambda(\Phi) \doteq \{ h \in \mathfrak{h} \mid \alpha(h) \in \mathbb{Z} \,\forall \alpha \in \Phi \}.
$$

The lattice spanned by the coroots $\langle \Phi^{\vee} \rangle$ is a sublattice of $\Lambda(\Phi)$; set

$$
Z(\Phi) \doteq \Lambda(\Phi)/\langle \Phi^{\vee} \rangle.
$$

This finite subgroup of T coincides with $Z(G)$, the *center* of G. It is well known ([\[13,](#page-15-12) 13.4]) that

(4)
$$
Ad(g) = id_g \Leftrightarrow g \in Z(\Phi).
$$

Notice that

$$
Z(\Phi) = \{t \in T \mid \Phi(t) = \Phi\}
$$

thus $Z(\Phi) \subseteq C_0(\Phi)$. Moreover, for each $z \in Z(\Phi)$, $t \in T$, $\alpha \in \Phi$,

$$
e^{\alpha}(zt) = e^{\alpha}(z)e^{\alpha}(t) = e^{\alpha}(t),
$$

and therefore $\Phi(zt) = \Phi(t)$. In particular, $Z(\Phi)$ acts by multiplication on $C_0(\Phi)$. Clearly this action commutes with that of W and we get an action of $W \times Z(\Phi)$ on $C_0(\Phi)$.

Let Q be the set of Aut(Γ)-orbits of $V(\Gamma)$. If p, $p' \in V(\Gamma)$ are two representatives of $q \in Q$, then $\Gamma_p \simeq \Gamma_{p'}$, thus $W_p \simeq W_{p'}$. Moreover we will see (Corollary 7(ii)) that σ_p is conjugate to $\sigma_{p'}$. Then we can restate Theorem 1 as follows.

THEOREM 3. *There is a canonical bijection between* Q *and the set of* $W \times Z(\Phi)$ *orbits in* $C_0(\Phi)$ *, having the property that if* $p \in V(\Gamma)$ *is a representative of* $q \in Q$ *, then:*

- (i) every point *t* in the corresponding orbit O_q induces an automorphism conjugate *to* σ_p *;*
- (ii) *the stabilizer of* $t \in \mathcal{O}_q$ *is isomorphic to* $W_p \times \text{Stab}_{\text{Aut}(\Gamma)} p$.

This theorem immediately implies the formula

(5)
$$
|\mathcal{C}_0(\Phi)| = \sum_{q \in \mathcal{Q}} |q| \frac{|W|}{|W_p|}
$$

where p is any representative of q. This is clearly equivalent to formula (1).

REMARK 4. If we view the elements of $\Lambda(\Phi)$ as translations, we can define a group of isometries of h by

$$
\widetilde{W} \doteq W \ltimes \Lambda(\varPhi).
$$

 \widetilde{W} is called the *extended affine Weyl group* of Φ and contains the affine Weyl group $\widehat{W} \doteq W \ltimes \langle \Phi^{\vee} \rangle$ (see for example [\[15\]](#page-15-13), [\[24\]](#page-15-14)).

The action of $W \times Z(\Phi)$ on $C_0(\Phi)$ can be lifted to an action of \widetilde{W} . Indeed, \widetilde{W} preserves the lattice $\langle \Phi^\vee \rangle$ of h, and thus acts on $T = \frac{\hbar}{\langle \Phi^\vee \rangle}$ and on $C_0(\Phi) \subset T$. Since the semidirect factor $\langle \Phi^{\vee} \rangle$ acts trivially, W acts as its quotient,

$$
\widetilde{W}/\langle \Phi^{\vee} \rangle \simeq W \times Z(\Phi).
$$

2.2. *Examples*

In the following examples we denote by \mathfrak{S}_n , \mathfrak{D}_n , \mathfrak{C}_n respectively the symmetric, dihedral and cyclic group on n letters.

CASE C_n . The roots $2\alpha_i + \cdots + 2\alpha_{n-1} + \alpha_n$ $(i = 1, \ldots, n)$ take integer values at the points $\overline{[\alpha_1^{\vee}]}$ $\binom{1}{1}$ /2], ..., $[\alpha_n^{\vee}/2] \in \mathfrak{h}/\langle \Phi^{\vee} \rangle$, and thus at their sums, for a total of 2^n points of $C_0(\Phi)$. Indeed, let us introduce the following notation. For a fixed basis h_1^* i_1^*, \ldots, h_n^* of h^* , the simple roots of C_n can be written as

(6)
$$
\alpha_i = h_i^* - h_{i+1}^* \quad \text{for } i = 1, ..., n-1, \quad \alpha_n = 2h_n^*.
$$

Then $\Phi = \{h_i^* - h_j^*\}$ $\{h_i^*\}\cup\{h_i^*+h_j^*\}$ $\{e_i^*\}\cup \{\pm 2h_i^*\}$ $i[*]_i$ (*i*, *j* = 1, ..., *n*, *i* \neq *j*), and writing *t_i* for $e^{h_i^*}$, we have

$$
e^{\Phi} \doteq \{e^{\alpha} \mid \alpha \in \Phi\} = \{t_i t_j^{-1}\} \cup \{t_i t_j\} \cup \{t_i^{\pm 2}\}.
$$

The system of *n* independent equations $t_1^2 = 1, \ldots, t_n^2 = 1$ has 2^n solutions: $(\pm 1, \ldots, \pm 1)$, and it is easy to see that the other systems do not have other solutions. The group $W \simeq \mathfrak{S}_n \ltimes (\mathfrak{C}_2)^n$ acts on $T = (\mathbb{C}^*)^n$ by permuting and inverting its coordinates; the second operation is trivial on $C_0(\Phi)$. Two elements of $C_0(\Phi)$ are in the same W-orbit if and only if they have the same number of negative coordinates. So we can define the p-th W-orbit \mathcal{O}_p as the set of points with p negative coordinates. (This choice is not canonical: we may choose the set of points with p positive coordinates as well.) Clearly, if $t \in \mathcal{O}_p$ then

$$
W(t) \simeq (\mathfrak{S}_p \times \mathfrak{S}_{n-p}) \ltimes (\mathfrak{C}_2)^n.
$$

Thus $|\mathcal{O}_p| = \binom{n}{p}$ $\binom{n}{p}$ and we get

$$
|\mathcal{C}_0(\Phi)| = \sum_{p=0}^n \binom{n}{p} = 2^n.
$$

Notice that if $t \in \mathcal{O}_p$ then $-t \in \mathcal{O}_{n-p}$, and $\text{Ad}(t) = \text{Ad}(-t)$ since $Z(\Phi) =$ $\{\pm (1, \ldots, 1)\}\.$ In fact, Γ has a symmetry exchanging the vertices p and $n - p$. Finally, notice that $C_0(\Phi)$ is a subgroup of T isomorphic to $(\mathfrak{C}_2)^n$ and generated by the elements

 $\delta_i \doteq (1, \ldots, 1, -1, 1, \ldots, 1)$ (with the -1 at the *i*-th place).

Then we can return to the original coordinates observing that δ_i is the nontrivial solution of the system $t_i^2 = 1$, $t_j = 1$ for $j \neq i$, and using (6) to get

$$
\delta_i \leftrightarrow \Big[\sum_{k=i}^n \alpha_k^\vee/2\Big].
$$

CASE D_n . We can write $\alpha_n = h_{n-1}^* + h_n^*$ and the other α_i as before, so e^{Φ} = $\{t_i t_j^{-1}\} \cup \{t_i t_j\}$. Then each system of *n* independent equations is *W*-conjugate to

$$
t_1 = t_2, \ldots, t_{p-1} = t_p, t_{p-1} = t_p^{-1}, t_{p+1}^{\pm 1} = t_{p+2}, \ldots, t_{n-1} = t_n, t_{n-1} = t_n^{-1}
$$

for some $p \neq 1, n - 1$. Thus we get the subset of $(\mathfrak{C}_2)^n$ consisting of the following n-ples: $\{(\pm 1, \ldots, \pm 1)\}\setminus {\{\pm \delta_i\}_{i=1,\ldots,n}}, 2^n - 2n$ in number. However, reasoning as before we see that each such *n*-ple represents two points in $h/\langle \Phi^{\vee} \rangle$. Namely, the correspondence is given by

$$
\left\{ \left[\sum_{k=i}^{n-1} \frac{\alpha_k^{\vee}}{2} \pm \frac{\alpha_{n-1}^{\vee} - \alpha_n^{\vee}}{4} \right] \right\} \to \delta_i.
$$

From the geometric point of view, the t_i s are coordinates of a maximal torus of the orthogonal group, while $T = \hbar/\langle \Phi^{\vee} \rangle$ is a maximal torus of its two-sheet universal covering. Each W-orbit corresponding to the four extremal vertices of Γ is a singleton consisting of one of the four points over $\pm(1,\ldots, 1)$, all inducing the identity automorphism: indeed, $Aut(\Gamma)$ acts transitively on these points. The other orbits are defined as in the case C_n .

CASE B_n . This case is very similar to the previous one, but now $\alpha_n = h_n^*$, e^{Φ} = $\{t_i t_j^{-1}\} \cup \{t_i t_j\} \cup \{t_i^{\pm 1}\}$, and hence we get the points $\{(\pm 1, \ldots, \pm 1)\}\setminus \{\delta_i\}_{i=1,\ldots,n}$. Here the projection is

$$
\left\{ \left[\sum_{k=i}^{n-1} \frac{\alpha_k^{\vee}}{2} \pm \frac{\alpha_n^{\vee}}{4} \right] \right\} \to \delta_i
$$

so we have $2^n - n$ pairs of points in $C_0(\Phi)$.

CASE A_n . If we view \mathfrak{h}^* as the subspace of $\langle h_1^* \rangle$ $\lambda_1^*, \ldots, h_{n+1}^* \rangle$ of equation $\sum h_i^* = 0$, and T as the subgroup of $(\mathbb{C}^*)^{n+1}$ of equation $\prod t_i = 1$, we can write all the simple roots as $\alpha_i = h_i^* - h_{i+1}^*$; then $e^{\Phi} = \{t_i t_j^{-1}\}\$. In this case Φ has no proper subsystem of the same rank, so all the coordinates must be equal. Therefore

$$
C_0(\Phi) = Z(\Phi) = \{(\zeta, \ldots, \zeta) \mid \zeta^{n+1} = 1\} \simeq \mathfrak{C}_{n+1}.
$$

Then $W \simeq \mathfrak{S}_{n+1}$ acts on $C_0(\Phi)$ trivially and $Z(\Phi)$ transitively, as expected since Aut(Γ) $\simeq \mathfrak{D}_{n+1}$ acts transitively on the vertices of Γ . We can write more explicitly $C_0(\Phi) \subseteq \mathfrak{h}/\langle \Phi^\vee \rangle$ as

$$
\mathcal{C}_0(\Phi) = \left\{ \left[\frac{k}{n+1} \sum_{i=1}^n i \alpha_i^{\vee} \right] \middle| k = 0, \ldots, n \right\}.
$$

2.3. *Proofs*

Motivated by Remark 2, we start by describing the automorphisms of g that are induced by the points of $C_0(\Phi)$.

LEMMA 5. *If* $t \in C_0(\Phi)$, then Ad(t) has finite order.

PROOF. Let β_1, \ldots, β_n be linearly independent roots such that $e^{\beta_i}(t) = 1$. Then for each root $\alpha \in \Phi$ we have $m\alpha = \sum c_i \beta_i$ for some $m, c_i \in \mathbb{Z}$, and thus

$$
e^{\alpha}(t^m) = e^{m\alpha}(t) = \prod_{i=1}^n (e^{\beta_i})^{c_i}(t) = 1.
$$

Then Ad(t^m) is the identity on g, so by (4), $t^m \in Z(\Phi)$. As $Z(\Phi)$ is a finite group, t^m and t have finite order. \Box

The previous lemma allows us to apply the following

THEOREM 6 (Kac).

(i) *Each inner automorphism of* g *of finite order* m *is conjugate to an automorphism* σ *of the form*

$$
\sigma(X_i) = \zeta^{s_i} X_i
$$

with ζ *a* fixed primitive m-th root of unity and (s_0, \ldots, s_n) nonnegative integers *without common factors such that* $m = \sum s_i a_i$.

- (ii) *Two such automorphisms are conjugate if and only if there is an automorphism of* Γ sending the parameters (s_0, \ldots, s_n) of the first to the parameters (s'_0, \ldots, s'_n) *of the second.*
- (iii) Let (i_1, \ldots, i_r) be all the indices for which $s_{i_1} = \cdots = s_{i_r} = 0$. Then \mathfrak{g}^{σ} is the *direct sum of an* (n − r)*-dimensional center and a semisimple Lie algebra whose* D *ynkin diagram is the subdiagram of* Γ *with vertices* i_1, \ldots, i_r .

This is a special case of a theorem proved in [\[16\]](#page-15-15) and more extensively in [\[12,](#page-15-8) X.5.15 and 16]. We only need the following

COROLLARY 7.

- (i) Let σ be an inner automorphism of $\mathfrak g$ of finite order m such that $\mathfrak g^\sigma$ is semisimple. *Then there is* $p \in V(\Gamma)$ *such that* σ *is conjugate to* σ_p *. In particular,* $m = a_p$ *and the Dynkin diagram of* \mathfrak{g}^{σ} *is* Γ_p *.*
- (ii) *Two automorphisms* σ_p , $\sigma_{p'}$ *are conjugate if and only if* p, p' *are in the same* $Aut(\Gamma)$ *-orbit.*

PROOF. If \mathfrak{g}^{σ} is semisimple, then in Theorem 6(iii) $n = r$, hence all parameters of σ but one are equal to 0, and the nonzero parameter s_p must be equal to 1, otherwise there would be a common factor, contradicting Theorem 6. So we get the first statement. Then the second statement follows from Theorem 6(ii).

Let $t \in C_0(\Phi)$; by Remark 2, $\mathfrak{g}^{\text{Ad}(t)}$ is semisimple, so by Corollary 7(i), Ad(t) is conjugate to some σ_p . Thus there is a canonical map

$$
\psi : \mathcal{C}_0(\Phi) \to \mathcal{Q}
$$

sending t to $\psi(t) = \{p \in V(\Gamma) \mid \sigma_p \text{ is conjugate to } \text{Ad}(t)\}\)$. Notice that $\psi(t)$ is a well-defined element of Q by Corollary 7(ii).

We now prove the fundamental

LEMMA 8. *Two points in* $C_0(\Phi)$ *induce conjugate automorphisms if and only if they are in the same* $W \times Z(\Phi)$ *-orbit.*

PROOF. Let N be the normalizer of T in G. We recall that $W \simeq N/T$ and the action of W on T is induced by the conjugation action of N; it is also well known that two points of T are G-conjugate if and only if they are W-conjugate. Thus W-conjugate points induce conjugate automorphisms. Moreover, by (4),

 $\text{Ad}(t) = \text{Ad}(s) \iff \text{Ad}(t s^{-1}) = \text{id}_{\mathfrak{g}} \iff ts^{-1} \in Z(\Phi).$

Finally, suppose that $t, t' \in C_0(\Phi)$ induce conjugate automorphisms, i.e.

$$
\exists g \in G : \mathrm{Ad}(t') = \mathrm{Ad}(g) \,\mathrm{Ad}(t) \,\mathrm{Ad}(g^{-1}) = \mathrm{Ad}(g t g^{-1}).
$$

Then $zt' = gtg^{-1}$ for some $z \in Z(\Phi)$. Thus zt' and t are G-conjugate elements of T, and so they are *W*-conjugate, proving the claim. \Box

We can now prove Theorem 3(i). Indeed, by the previous lemma there is a canonical injective map defined on the set of orbits of $C_0(\Phi)$:

$$
\overline{\psi} : \frac{\mathcal{C}_0(\Phi)}{W \times Z(\Phi)} \to Q.
$$

We must show that this map is surjective. The system

$$
\alpha_i(h) = 1 \, (\forall i \neq 0, \, p), \quad \alpha_p(h) = a_p^{-1}
$$

is composed of *n* linearly independent equations, so it has a solution $h \in \mathfrak{h}$. Notice that $\alpha_0(h) \in \mathbb{Z}$. Let t be the class of h in T; then $e^{\alpha}(t) = 1 \Leftrightarrow \alpha \in \Phi_p$. Hence by Remark 2, Ad(t) is conjugate to σ_p , and $\Phi(t)$ to Φ_p .

In order to relate the action of $Z(\Phi)$ to that of Aut(Γ), we introduce the following subset of W. For each $p \neq 0$ such that $a_p = 1$, set $z_p \stackrel{\sim}{=} w_0^p w_0$, where w_0 is the longest element of W and w_0^p $\frac{p}{0}$ is the longest element of the parabolic subgroup of W generated by all the simple reflections $s_{\alpha_1}, \ldots, s_{\alpha_n}$ except s_{α_p} . Then we define

$$
W_Z \doteq \{1\} \cup \{z_p\}_{p=1,\dots,n,\,a_p=1}.
$$

This set has the following properties (see [\[15,](#page-15-13) §1.7 and 1.8]):

THEOREM 9 (Iwahori–Matsumoto).

- (i) W_Z *is a subgroup of* W *isomorphic to* $Z(\Phi)$ *.*
- (ii) *For each* $z_p \in W_Z$, $z_p \alpha_0 = \alpha_p$. *This defines an injective morphism* $W_Z \hookrightarrow$ Aut(Γ)*, and the* WZ*-orbits of* V (Γ) *coincide with the* Aut(Γ)*-orbits.*

Therefore Q is the set of W_Z -orbits of $V(\Gamma)$, and the bijection $\overline{\psi}$ between Q and the set of $Z(\Phi)$ -orbits of $C_0(\Phi)/W$ can be lifted to a noncanonical bijection between $V(\Gamma)$ and $C_0(\Phi)/W$. Thus we just have to consider the action of W on $C_0(\Phi)$ and prove

LEMMA 10. *If* $t \in \mathcal{O}_p$, then $W(t)$ is conjugate to W_p .

PROOF. Notice that the centralizer $C_N(t)$ of t in N is the normalizer of $T = C_T(t)$ in $C_G(t)$. Thus $W(t) = C_N(t)/T$ is the Weyl group of $C_G(t)$. Since $C_G(t)$ is the subgroup of G of points fixed by the conjugacy by t, its Lie algebra is $\mathfrak{g}^{\text{Ad}(t)}$, conjugate to \mathfrak{g}^{σ_p} by Theorem 3(i). Therefore $W(t)$ is conjugate to W_p . \Box

This completes the proof of Theorem 3 and also of Theorem 1, since by Remark 2 the map ψ defined in (7) can also be seen as the map

$$
t \mapsto \psi(t) = \{p \in V(\Gamma) \mid \Phi_p \text{ is conjugate to } \Phi(t)\}.
$$

3. POSITIVE-DIMENSIONAL COMPONENTS

3.1. *From hyperplane arrangements to toric arrangements*

Let S be a d-dimensional subspace of H. The set Θ_S of elements of Φ vanishing on S is a complete subsystem of Φ of rank $n-d$. Hence the map $S \mapsto \Theta_S$ gives a bijection between S_d and K_d , whose inverse is

$$
\Theta \mapsto S(\Theta) \doteq \{ h \in \mathfrak{h} \mid \alpha(h) = 0 \,\forall \alpha \in \Theta \}.
$$

In [\[23,](#page-15-2) 6.4 and C] (following [\[22\]](#page-15-10) and [\[5\]](#page-14-6)) the subspaces of H are classified and counted, and the W-orbits of S_d are completely described. This is done case-by-case according to the type of Φ . We now show a case-free way to extend this analysis to the components of $\mathcal T$.

Given a component U of T, set

$$
\Theta_U \doteq \{ \alpha \in \Phi \mid e^{\alpha}(t) = 1 \; \forall t \in U \}.
$$

In contrast with the case of linear arrangements, Θ_U in general is not complete. For each $\Theta \in \mathcal{K}_d$ define $\mathcal{C}_{\Theta}^{\Phi}$ as the set of components U such that $\overline{\Theta_U} = \Theta$. This is clearly a partition of the set of d-dimensional components of \mathcal{T} , i.e.

(8)
$$
\mathcal{C}_d(\Phi) = \bigsqcup_{\Theta \in \mathcal{K}_d} \mathcal{C}_{\Theta}^{\Phi}.
$$

We may think of $S(\Theta)$ as the tangent space at any point of each component of $\mathcal{C}_{\Theta}^{\Phi}$; then by [\[23\]](#page-15-2) the problem of classifying and counting the components of $\mathcal T$ reduces to classifying and counting the components of T with a given tangent space, i.e. the elements of $\mathcal{C}_{\Theta}^{\Phi}$. We do this in the next section.

3.2. *Theorems*

Let Θ be a complete subsystem of Φ and W^{Θ} its Weyl group. Let $\mathfrak k$ and K be respectively the semisimple Lie algebra and the semisimple and simply connected algebraic group with root system Θ , $\mathfrak d$ a Cartan subalgebra of $\mathfrak k$, $\langle \Theta^\vee \rangle$ and $\Lambda(\Theta)$ the coroot and coweight lattices, $Z(\Theta) \doteq \Lambda(\Theta)/\langle \Theta^{\vee} \rangle$ the center of K, D the maximal torus of K defined by $\mathfrak{d}/\langle\Theta^\vee\rangle$, D the toric arrangement defined by Θ on D, and $\mathcal{C}_0(\Theta)$ the set of its 0-dimensional components.

We also consider the *adjoint group* $K_a \doteq K/Z(\Theta)$ and its maximal torus $D_a \doteq$ $D/Z(\Theta) \simeq \mathfrak{d}/\Lambda(\Theta)$. We recall from [\[13\]](#page-15-12) that K is the universal covering of K_a , and if D' is an algebraic torus with Lie algebra \mathfrak{d} , then $D' \simeq \mathfrak{d}/L$ for some lattice $\Lambda(\Theta) \supseteq L \supseteq {\langle \Theta^{\vee} \rangle}$; so there are natural covering projections $D \to D' \to D_a$ with kernels respectively $L/\langle\Theta^{\vee}\rangle$ and $\Lambda(\Theta)/L$. Notice that Θ naturally defines an arrangement on each D', and that for $D' = D_a$ the set of 0-dimensional components is $C_0(\Theta)/Z(\Theta)$. Given a point t of some D' we set

$$
\Theta(t) \doteq \{ \alpha \in \Theta \mid e^{\alpha}(t) = 1 \}.
$$

THEOREM 11. *There is a* W^{Θ} -equivariant surjective map

$$
\varphi:\mathcal{C}^\varPhi_\Theta\twoheadrightarrow\mathcal{C}_0(\Theta)/Z(\Theta)
$$

such that ker $\varphi \simeq Z(\Phi) \cap Z(\Theta)$ *and* $\Theta_U = \Theta(\varphi(U))$ *.*

PROOF. Let $S(\Theta)$ be the subspace of h defined in Section 3.1 and H the corresponding subtorus of T. Then T/H is a torus with Lie algebra $\mathfrak{h}/S(\Theta) \simeq \mathfrak{d}$, so Θ defines an arrangement D' on D' \doteq T/H. The projection π : T → T/H induces a bijection between $\mathcal{C}_{\Theta}^{\Phi}$ and the set of 0-dimensional components of \mathcal{D}' , because $H \in C^{\Phi}_{\Theta}$ and $\Theta_U = \Theta(\pi(U))$ for each $U \in C^{\Phi}_{\Theta}$.

Moreover, the restriction of the projection $d\pi$: h \rightarrow h/S(Θ) to $\langle \Phi^{\vee} \rangle$ is simply the map that restricts the coroots of Φ to Θ . Set $R^{\Phi}(\Theta) \doteq d\pi((\Phi^{\vee}))$; then $\Lambda(\Theta) \supseteq R^{\Phi}(\Theta) \supseteq \langle \Theta^{\vee} \rangle$ and $D' \simeq \partial/R^{\Phi}(\Theta)$. Denote by p the projection $\Lambda(\Phi) \to \Lambda(\Phi)/\langle \Phi^{\vee} \rangle$ and embed $\Lambda(\Theta)$ in $\Lambda(\Phi)$ in the natural way. Then the kernel of the covering projection of $D' \rightarrow D_a$ is isomorphic to

$$
\Lambda(\Theta)/R^{\Phi}(\Theta) \simeq p(\Lambda(\Theta)) \simeq Z(\Phi) \cap Z(\Theta). \qquad \Box
$$

We set

$$
n_{\Theta} \doteq |Z(\Theta)|/|Z(\Phi) \cap Z(\Theta)|.
$$

The following corollary is straightforward from Theorem 11.

COROLLARY 12.

$$
|\mathcal{C}_{\Theta}^{\Phi}| = n_{\Theta}^{-1}|\mathcal{C}_{0}(\Theta)|
$$

and then by (8)*,*

$$
|\mathcal{C}_d(\Phi)| = \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |\mathcal{C}_0(\Theta)|.
$$

Notice that two components U, U' of T are W-conjugate if and only if the two conditions below are satisfied:

- their tangent spaces are W-conjugate, i.e. there exists $w \in W$ such that $\overline{\Theta_U} =$ $w.\overline{\Theta}_{U'}$;
- U and $w.U'$ are $W^{\overline{\Theta_U}}$ -conjugate.

Then the action of W on $\mathcal{C}(\Phi)$ is described by the following remark.

REMARK 13. (i) By Theorem 11, φ induces a surjective map $\overline{\varphi}$ from the set of W^{Θ} orbits of $\mathcal{C}_{\Theta}^{\Phi}$ to the set of $W^{\Theta} \times Z(\Theta)$ -orbits of $\mathcal{C}_0(\Theta)$, described by Theorem 3.

(ii) In particular, if Θ is irreducible, let Γ^{Θ} be its affine Dynkin diagram, Q^{Θ} the set of Aut(*Γ*)-orbits of its vertices, Γ_p^{Θ} the diagram that we get from Γ^{Θ} by removing the vertex p, and Θ_p the associated root system. Then there is a surjective map

$$
\widehat{\varphi}:\mathcal{C}^\varPhi_\Theta\twoheadrightarrow\mathcal{Q}^\Theta
$$

such that if $\widehat{\varphi}(U) = q$ and p is a representative of q, then $\Theta_U \simeq \Theta_p$.

3.3. *Examples*

CASE F₄. We have $Z(\Phi) = \{1\}$, thus $n_{\Theta} = |Z(\Theta)|$. Therefore in this case n_{Θ} does not depend on the conjugacy class, but only on the isomorphism class of Θ .

We say that a subspace S of H (respectively a component U of T) is of a given type if the corresponding subsystem Θ_S (respectively Θ_U) is of that type. Then by [\[23,](#page-15-2) Tab. C.9] and Corollary 12 there are:

- 1. one subspace of type A_0 , tangent to one component of the same type (the whole spaces):
- 2. 24 subspaces of type A_1 , each tangent to one component of the same type;
- 3. 72 subspaces of type $A_1 \times A_1$, each tangent to one component of the same type;
- 4. 32 subspaces of type A_2 , each tangent to one component of the same type;
- 5. 18 subspaces of type B₂, each tangent to one component of the same type and one component of type $A_1 \times A_1$;
- 6. 12 subspaces of type C_3 , each tangent to one component of the same type and three of type $A_2 \times A_1$;
- 7. 12 subspaces of type B3, each tangent to one component of the same type, one of type A_3 and three of type $A_1 \times A_1 \times A_1$;
- 8. 96 subspaces of type $A_1 \times A_2$, each tangent to one component of the same type;
- 9. one subspace of type F_4 (the origin), tangent to: one component of the same type, 12 of type $A_1 \times C_3$, 32 of type $A_2 \times A_2$, 24 of type $A_3 \times A_1$, and 3 of type C_4 .

CASE A_{n-1} . It is easily seen that each subsystem Θ of Φ is complete and is a product of irreducible factors $\Theta_1, \ldots, \Theta_k$, with Θ_i of type A_{λ_i-1} for some positive integers λ_i such that $\lambda_1 + \cdots + \lambda_k = n$ and $n - k$ is the rank of Θ . In other words, as is well known, the W-conjugacy classes of subspaces of H are in bijection with the partitions λ of *n*, and if a subspace has dimension d then the corresponding partition has length $|\lambda| = k$ equal to $d + 1$. The number of subspaces of the partition λ is easily seen to be equal to $n!/b_\lambda$, where b_i is the number of λ_j that are equal to i and $b_\lambda \doteq \prod i!^{b_i}b_i!$ (see [\[23,](#page-15-2) 6.72]). Now let g_{λ} be the greatest common divisor of $\lambda_1, \ldots, \lambda_k$. By Example 4 in Section 2.2 we know that $|Z(\Theta)| = \lambda_1 \dots \lambda_k = |\mathcal{C}_0(\Theta)|$ and $|Z(\Phi) \cap Z(\Theta)| = g_\lambda$. Then by Corollary 12, $|\mathcal{C}_{\Theta}^{\Phi}| = g_{\lambda}$ and

$$
|\mathcal{C}_d(\Phi)| = \sum_{|\lambda|=d+1} \frac{n! g_{\lambda}}{b_{\lambda}}.
$$

This could also be seen directly as follows. We can view T as the subgroup of $(\mathbb{C}^*)^n$ given by the equation $t_1 \dots t_n - 1 = 0$. Then Θ imposes the equations

$$
t_1 = \cdots = t_{\lambda_1}, \ldots, t_{\lambda_1 + \cdots + \lambda_{k-1} + 1} = \cdots = t_n.
$$

Thus we have the relation $x_1^{\lambda_1} \dots x_k^{\lambda_k} - 1 = 0$. If $g_{\lambda} = 1$ this polynomial is irreducible, because the vector $(\lambda_1, \ldots, \lambda_k)$ can be completed to a basis of the lattice \mathbb{Z}^k . If $g_{\lambda} > 1$ this polynomial has exactly g_{λ} irreducible factors over \mathbb{C} . Thus in every case it defines an affine variety having exactly g_{λ} irreducible components, which are precisely the elements of $\mathcal{C}_{\Theta}^{\Phi}$.

4. TOPOLOGICAL INVARIANTS

4.1. *Theorems*

Let R be the complement in T of the union of all the hypersurfaces of the toric arrangement $\mathcal T$. In this section we prove that the Euler characteristic of R , denoted by χ_{Φ} , is equal to $(-1)^n |W|$. This may also be seen as a consequence of [\[4,](#page-14-7) Prop. 5.3]. We also give a formula for the Poincaré polynomial of R , denoted by $P_{\Phi}(q)$.

Let d_1, \ldots, d_n be the *degrees* of W, i.e. the degrees of the generators of the ring of W-invariant regular functions on $\mathfrak h$. It is well known that $d_1 \dots d_n = |W|$. Moreover, by [\[2\]](#page-14-8), $\mathcal{B}(\Phi) \doteq (d_1 - 1) \dots (d_n - 1)$ is equal to the leading coefficient of the Poincaré polynomial of the complement of H in \natural , and hence to the number of *unbroken bases* of Φ , because by [\[21\]](#page-15-16) they give a basis for the *n*-th cohomology space.

The cohomology of R can be expressed as a direct sum of contributions given by the components of T (see for example [\[8,](#page-14-0) Th. 4.2] or [\[10,](#page-15-1) 15.1.5]). In terms of the Poincaré polynomial this expression is:

THEOREM 14.

$$
P_{\Phi}(q) = \sum_{U \in \mathcal{C}(\Phi)} \mathcal{B}(\Theta_U)(q+1)^{d(U)} q^{n-d(U)}
$$

where $d(U)$ *is the dimension of the component* U *.*

Now we use this expression to compute χ_{Φ} .

LEMMA 15.

$$
\chi_{\Phi} = (-1)^n \sum_{p=0}^n \frac{|W|}{|W_p|} \mathcal{B}(\Phi_p).
$$

PROOF. We have

(9)
$$
\chi_{\Phi} = P_{\Phi}(-1) = (-1)^n \sum_{t \in C_0(\Phi)} \mathcal{B}(\Phi(t))
$$

because the contributions of all components of positive dimension vanish at −1. Obviously isomorphic subsystems have the same degrees, so Theorem 1 yields the statement. \square

THEOREM 16.

$$
\chi_{\Phi} = (-1)^n |W|.
$$

PROOF. By the previous lemma we must prove that

$$
\sum_{p=0}^{n} \frac{\mathcal{B}(\Phi_p)}{|W_p|} = 1.
$$

 306 L. MOCI

If we write d_1^p t_1^p, \ldots, d_n^p for the degrees of W_p , the previous identity becomes

$$
\sum_{p=0}^{n} \frac{(d_1^p - 1) \dots (d_n^p - 1)}{d_1^p \dots d_n^p} = 1.
$$

This identity has been proved in [\[9\]](#page-14-5), and later with different methods in [\[11\]](#page-15-17). \Box

Notice that W acts on R and hence on the cohomology of R. So we can consider the *equivariant Euler characteristic* of R, that is, for each $w \in W$,

$$
\widetilde{\chi}_{\Phi}(w) \doteq \sum_{i=0}^{n} (-1)^{i} \operatorname{Tr}(w, H^{i}(R, \mathbb{C})).
$$

Let ρ_W be the character of the regular representation of W. From Theorem 16 we get

COROLLARY 17.

$$
\widetilde{\chi}_{\Phi}=(-1)^n \varrho_W.
$$

PROOF. Since W is finite and acts freely on R, it is well known that $\widetilde{\chi}_{\Phi} = k \varrho_W$ for some $k \in \mathbb{Z}$. Then to compute k we just have to look at $\widetilde{\chi}_k(1, \ldots) = \chi_k$. some $k \in \mathbb{Z}$. Then to compute k we just have to look at $\widetilde{\chi}_{\Phi}(1_W) = \chi_{\Phi}$. \Box

Finally, we give a formula for $P_{\Phi}(q)$ that, together with the above mentioned results in [\[23\]](#page-15-2), allows its explicit computation.

THEOREM 18.

$$
P_{\Phi}(q) = \sum_{d=0}^{n} (q+1)^d q^{n-d} \sum_{\Theta \in \mathcal{K}_d} n_{\Theta}^{-1} |W^{\Theta}|.
$$

PROOF. By formula (8) we can restate Theorem 14 as

$$
P_{\Phi}(q) = \sum_{d=0}^{n} (q+1)^d q^{n-d} \sum_{\Theta \in \mathcal{K}_d} \sum_{U \in \mathcal{C}_{\Theta}^{\Phi}} \mathcal{B}(\Theta_U).
$$

Moreover, by Theorem 11 and Corollary 12 we get

$$
\sum_{U \in \mathcal{C}_{\Theta}^{\Phi}} \mathcal{B}(\Theta_U) = n_{\Theta}^{-1} \sum_{t \in \mathcal{C}_0(\Theta)} \mathcal{B}(\Theta(t)).
$$

Finally, the claim follows from formula (9) and Theorem 16 applied to Θ :

$$
\sum_{t \in \mathcal{C}_0(\Theta)} \mathcal{B}(\Theta(t)) = (-1)^d \chi_{\Theta} = |W^{\Theta}|. \qquad \Box
$$

4.2. *Examples*

CASE F4. In Section 3.3 we have given the list of all possible types of complete subsystems, together with their multiplicities. So we just have to compute the coefficient $n_{\Theta}^{-1}|W^{\Theta}|$ for each type. This is equal to:

- \bullet 1 for types 1, 2 and 3,
- 2 for types 4 and 8,
- \bullet 4 for type 5,
- 24 for types 6 and 7,
- \bullet 1152 for type 9.

Thus

$$
P_{\Phi}(q) = 2153q^{4} + 1260q^{3} + 286q^{2} + 28q + 1.
$$

CASE A_{n-1} . By Section 3.3, $n_{\Theta}^{-1} = g_{\lambda}/\lambda_1 \ldots \lambda_k$ and $|W^{\Theta}| = \lambda_1! \ldots \lambda_k!$. Hence by Theorem 17,

$$
P_{\Phi}(q) = \sum_{d=0}^{n} (q+1)^d q^{n-d} \sum_{|\lambda|=d+1} n! b_{\lambda}^{-1} g_{\lambda}(\lambda_1 - 1)! \dots (\lambda_k - 1)!.
$$

ACKNOWLEDGEMENTS. I would like to thank Gus Lehrer and Paolo Papi for useful suggestions, and Filippo Callegaro, Francesca Mori and Alessandro Pucci for some stimulating discussions. I also want to express my gratitude to my supervisor Corrado De Concini for suggesting many key ideas, encouragement, and a lot of helpful advice.

REFERENCES

- [1] W. BALDONI - M. BECK - C. COCHET - M. VERGNE, *Volume of polytopes and partition function*. Discrete Comput. Geom. 35 (2006), 551–595.
- [2] E. BRIESKORN, *Sur les groupes des tresses (d'après V. I. Arnol'd)*. In: Sém. Bourbaki, exp. 401, Lecture Notes in Math. 317, Springer, 1973, 21–44.
- [3] M. BRION - M. VERGNE, *Arrangement of hyperplanes. I. Rational functions and Jeffrey–Kirwan residue*. Ann. Sci. Ecole Norm. Sup. (4) 32 (1999), 715–741. ´
- [4] F. CALLEGARO - D. MORONI - M. SALVETTI, *Cohomology of affine Artin groups and applications*, Trans. Amer. Math. Soc. 360 (2008), 4169–4188.
- [5] R. W. CARTER, *Conjugacy classes in the Weyl group*. Compos. Math. 25 (1972), 1–59.
- [6] C. COCHET, *Vector partition function and representation theory*. arXiv:math/ 0506159v1 (math.RT), 2005.
- [7] C. DE CONCINI - C. PROCESI, *Nested sets and Jeffrey–Kirwan cycles*. In: Geometric Methods in Algebra and Number Theory, Progr. Math. 235, Birkhäuser Boston, Boston, MA, 2005, 139–149.
- [8] C. DE CONCINI - C. PROCESI, *On the geometry of toric arrangements*. Transformation Groups 10 (2005), 387–422.
- [9] C. DE CONCINI - C. PROCESI, *A curious identity and the volume of the root spherical simplex*. Rend. Lincei Mat. Appl. 17 (2006), 155–165.
- [10] C. DE CONCINI - C. PROCESI, *Topics in hyperplane arrangements, polytopes and box-splines*. Preprint, www.mat.uniroma1.it/people/procesi/dida.html.
- [11] G. DENHAM, *A note on De Concini and Procesi's curious identity*. Rend. Lincei Mat. Appl. 19 (2008), 59–63.
- [12] S. HELGASON, *Differential Geometry, Lie Groups, and Symmetric Spaces*. Academic Press, 1978.
- [13] J. E. HUMPHREYS, *Linear Algebraic Groups*. Springer, 1975.
- [14] J. E. HUMPHREYS, *Introduction to Lie Algebras and Representation Theory*. 3rd ed., Springer, 1975.
- [15] N. IWAHORI - H. MATSUMOTO, *On some Bruhat decompositions and the structure of the Hecke rings of* p*-adic Chevalley groups*. Publ. Math. I.H.E.S. 25 (1965), 5–48.
- [16] V. KAC, *Automorphisms of finite order of semisimple Lie algebras*. Funktsional. Anal. i Prilozhen. 3 (1969), no. 3, 94–96 (in Russian).
- [17] V. KAC, *Infinite-Dimensional Lie Algebras*. 3rd ed., Cambridge Univ. Press, 1990.
- [18] B. KOSTANT, *A formula for the multiplicity of a weight*. Trans. Amer. Math. Soc. 93 (1959), 53–73.
- [19] G. I. LEHRER, *A toral configuration space and regular semisimple conjugacy classes*. Math. Proc. Cambridge Philos. Soc. 118 (1995), 105–113.
- [20] G. I. LEHRER, *The cohomology of the regular semisimple variety*. J. Algebra 199 (1998), 666–689.
- [21] P. ORLIK - L. SOLOMON, *Combinatorics and topology of complements of hyperplanes*. Invent. Math. 56 (1980), 167–189.
- [22] P. ORLIK - L. SOLOMON, *Coxeter arrangements*. In: Singularities, Part 2 (Arcata, CA, 1981), Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 269–291.
- [23] P. ORLIK - H. TERAO, *Arrangements of Hyperplanes*. Springer, 1992.
- [24] A. RAM, *Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux*. Pure Appl. Math. Quart. 2 (2006), 963–1013.
- [25] R. STEINBERG, *A general Clebsch–Gordan theorem*. Bull. Amer. Math. Soc. 67 (1961), 406–407.
- [26] A. SZENES - M. VERGNE, *Toric reduction and a conjecture of Batyrev and Materov*. Invent. Math. 158 (2004), 453–495.

Received 4 July 2008, and in revised form 24 September 2008.

> Dipartimento di Matematica Universita degli Studi Roma Tre ` Largo San Leonardo Murialdo, 1 00146 ROMA, Italy moci@mat.uniroma3.it