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Algebra. — Combinatorics and topology of toric arrangements defined by root
systems, by LUCA MOCI.

A Ilaria, e ai viaggi che ci aspettano

ABSTRACT. — Given the toric (or toral) arrangement defined by a root system Φ, we classify
and count its components of each dimension. We show how to reduce to the case of 0-dimensional
components, and in this case we give an explicit formula involving the maximal subdiagrams of the
affine Dynkin diagram of Φ. Then we compute the Euler characteristic and the Poincaré polynomial
of the complement of the arrangement, which is the set of regular points of the torus.
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1. INTRODUCTION

Let g be a semisimple Lie algebra of rank n over C, h a Cartan subalgebra andΦ ⊂ h∗

and Φ∨ ⊂ h respectively its root and coroot systems. The equations {α(h) = 0}α∈Φ
define in h a family H of intersecting hyperplanes. Let 〈Φ∨〉 be the lattice spanned
by the coroots. Then the quotient T .

= h/〈Φ∨〉 is a complex torus of rank n. Each
root α takes integer values on 〈Φ∨〉, so it induces a map T → C/Z ' C∗ that
we denote by eα . The conditions {α(h) ∈ Z}α∈Φ define in h a periodic family of
hyperplanes, or equivalently the equations {eα(t) = 1}α∈Φ define in T a finite family
T of hypersurfaces.H and T are called respectively the hyperplane arrangement and
the toric arrangement defined by Φ (see for example [8], [10], [23]). We define the
subspaces ofH to be the intersections of elements ofH, and the components of T to be
the connected components of the intersections of elements of T . We denote by S(Φ)
the set of subspaces of H, by C(Φ) the set of components of T , and by Sd(Φ) and
Cd(Φ) the sets of d-dimensional subspaces and components. Clearly if Φ = Φ1 ×Φ2
then S(Φ) = S(Φ1)× S(Φ2) and C(Φ) = C(Φ1)× C(Φ2), so from now on we will
suppose Φ to be irreducible.
H is a classical object, whereas De Concini and Procesi [8] recently showed that

T provides a geometric way to compute the values of the Kostant partition function.
This function counts in how many ways an element of the lattice 〈Φ〉 can be written as
a sum of positive roots, and plays an important role in representation theory, since (by
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Kostant’s and Steinberg’s formulae [18], [25]) it yields efficient computation of weight
multiplicities and Littlewood–Richardson coefficients, as shown in [6] using results
from [1], [3], [7], [26]. Values of the Kostant partition function can be computed as
sums of contributions given by the elements of C0(Φ) (see [6, Th. 3.2]).

Furthermore, let R be the complement in T of the union of all elements of T . Then
R is called the set of regular points of the torus T and has been intensively studied (see
in particular [8], [19], [20]). The cohomology of R is the direct sum of contributions
given by the elements of C(Φ) (see for example [8]). Then by describing the action of
W on C(Φ)we implicitly get aW -equivariant decomposition of the cohomology of R,
and by counting and classifying the elements of C(Φ) we can compute the Poincaré
polynomial of R.

We say that a subset Θ of Φ is a subsystem if it satisfies the following conditions:

• α ∈ Θ ⇒ −α ∈ Θ ,
• α, β ∈ Θ and α + β ∈ Φ ⇒ α + β ∈ Θ.

For each t ∈ T let us define the following subsystem of Φ:

Φ(t)
.
= {α ∈ Φ | eα(t) = 1}.

The aim of Section 2 is to describe C0(Φ), the set of points t ∈ T such that Φ(t) has
rank n. Let α1, . . . , αn be the simple roots of Φ, α0 the lowest root (i.e. the opposite
of the highest root), andΦp the subsystem ofΦ generated by {αi}0≤i≤n, i 6=p. Let Γ be
the affine Dynkin diagram ofΦ and V (Γ ) the set of its vertices (a list of such diagrams
can be found for example in [12] or [17]). V (Γ ) is in bijection with {α0, α1, . . . , αn},
so we can identify each vertex p with an integer from 0 to n. The diagram Γp that we
get by removing from Γ the vertex p (and all adjacent edges) is the (genuine) Dynkin
diagram of Φp. Let W be the Weyl group of Φ and Wp the Weyl group of Φp, i.e.
the subgroup of W generated by all the reflections sα0, . . . , sαn except sαp . Notice that
Γ0 is the Dynkin diagram of Φ and W0 = W . Since W permutes the roots, its natural
action on T restricts to an action on C0(Φ). We denote byW(t) the stabilizer of a point
t ∈ C0(Φ). We prove

THEOREM 1. There is a bijection between the W -orbits of C0(Φ) and the vertices
of Γ , having the property that for every point t in the orbit Op corresponding to the
vertex p, Φ(t) is W -conjugate to Φp and W(t) is W -conjugate to Wp.

As a corollary we get the formula

(1) |C0(Φ)| =
∑

p∈V (Γ )

|W |

|Wp|
.

In Section 3 we deal with components of arbitrary dimension. For each component
U of T we consider the subsystem of Φ,

ΘU
.
= {α ∈ Φ | eα(t) = 1 ∀t ∈ U},

and its completion ΘU
.
= 〈ΘU 〉R ∩Φ.
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Let Kd be the set of subsystems Θ of Φ of rank n− d that are complete (i.e. such
that Θ = Θ), and let CΦΘ be the set of components U such that ΘU = Θ . This gives a
partition of the components:

Cd(Φ) =
⊔
Θ∈Kd

CΦΘ .

Notice that the subsystem of roots vanishing on a subspace of H is always complete;
then Kd is in bijection with Sd . The elements of Sd are classified and counted in
[22], [23]. Thus the description of the sets CΦΘ that we give in Theorem 11 yields a
classification of the components of T . In particular, we show that |CΦΘ | = n

−1
Θ |C0(Θ)|,

where nΘ is an integer depending only on the conjugacy class of Θ , and so

(2) |Cd(Φ)| =
∑
Θ∈Kd

n−1
Θ |C0(Θ)|.

In Section 4, using results of [8] and [9], we deduce from Theorem 1 that the Euler
characteristic of R is equal to (−1)n|W |. Moreover, Corollary 12 yields a formula for
the Poincaré polynomial of R:

(3) PΦ(q) =

n∑
d=0

(−1)d(q + 1)dqn−d
∑
Θ∈Kd

n−1
Θ |W

Θ
|.

This formula allows one to compute PΦ(q) explicitly.

2. ZERO-DIMENSIONAL COMPONENTS

2.1. Statements

For all facts about Lie algebras and root systems we refer to [14]. Let

g = h⊕
⊕
α∈Φ

gα

be the Cartan decomposition of g, and let us choose nonzero elementsX0, X1, . . . , Xn
in the 1-dimensional subalgebras gα0, gα1, . . . , gαn ; since [gα, gα′] = gα+α′ whenever
α, α′, α + α′ ∈ Φ, we know that X0, X1, . . . , Xn generate g. Let a0 = 1 and for
p = 1, . . . , n let ap be the coefficient of αp in −α0. For each p = 0, . . . , n we define
an automorphism σp of g by

σp(Xp)
.
= e2πia−1

p Xp, σp(Xi) = Xi ∀i 6= p.

LetG be the semisimple and simply connected algebraic group having root system
Φ; g and T are respectively the Lie algebra and a maximal torus ofG (see for example
[13]). G acts on itself by conjugacy, i.e. for each g ∈ G the map k 7→ gkg−1 is an
automorphism of G. Its differential Ad(g) is an automorphism of g.



296 L. MOCI

REMARK 2. Let t ∈ C0(Φ) and let gAd(t) be the subalgebra consisting of the
elements fixed by Ad(t). For each α ∈ Φ and for eachXα ∈ gα we have Ad(t)(Xα) =
eα(t)Xα , thus

gAd(t)
= h⊕

⊕
α∈Φ(t)

gα.

Moreover, gσp is generated by the subalgebras {gαi }0≤i≤n, i 6=p. Then gAd(t) and gσp are
semisimple algebras with root systems respectively Φ(t) and Φp. Our strategy will be
to prove that for each t ∈ C0(Φ), Ad(t) is conjugate to some σp. This implies that
gAd(t) is conjugate to gσp and then Φ(t) to Φp, as claimed in Theorem 1.

Then we want to give a bijection between vertices of Γ and W -orbits of C0(Φ)

showing that, for every t in the orbit Op, Ad(t) is conjugate to σp. However, since
some of the σp (as well as the corresponding Φp) are themselves conjugate, this
bijection is not going to be canonical. To make it canonical we should merge the orbits
corresponding to conjugate automorphisms; for this we consider the action of a larger
group.

Let Λ(Φ) ⊂ h be the lattice of coweights of Φ, i.e.

Λ(Φ)
.
= {h ∈ h | α(h) ∈ Z ∀α ∈ Φ}.

The lattice spanned by the coroots 〈Φ∨〉 is a sublattice of Λ(Φ); set

Z(Φ)
.
= Λ(Φ)/〈Φ∨〉.

This finite subgroup of T coincides with Z(G), the center ofG. It is well known ([13,
13.4]) that

(4) Ad(g) = idg ⇔ g ∈ Z(Φ).

Notice that
Z(Φ) = {t ∈ T | Φ(t) = Φ}

thus Z(Φ) ⊆ C0(Φ). Moreover, for each z ∈ Z(Φ), t ∈ T , α ∈ Φ,

eα(zt) = eα(z)eα(t) = eα(t),

and therefore Φ(zt) = Φ(t). In particular, Z(Φ) acts by multiplication on C0(Φ).
Clearly this action commutes with that of W and we get an action of W × Z(Φ) on
C0(Φ).

LetQ be the set of Aut(Γ )-orbits of V (Γ ). If p, p′ ∈ V (Γ ) are two representatives
of q ∈ Q, then Γp ' Γp′ , thus Wp ' Wp′ . Moreover we will see (Corollary 7(ii)) that
σp is conjugate to σp′ . Then we can restate Theorem 1 as follows.

THEOREM 3. There is a canonical bijection between Q and the set of W × Z(Φ)-
orbits in C0(Φ), having the property that if p ∈ V (Γ ) is a representative of q ∈ Q,
then:
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(i) every point t in the corresponding orbit Oq induces an automorphism conjugate
to σp;

(ii) the stabilizer of t ∈ Oq is isomorphic to Wp × StabAut(Γ )p.

This theorem immediately implies the formula

(5) |C0(Φ)| =
∑
q∈Q

|q|
|W |

|Wp|

where p is any representative of q. This is clearly equivalent to formula (1).

REMARK 4. If we view the elements of Λ(Φ) as translations, we can define a group
of isometries of h by

W̃
.
= W nΛ(Φ).

W̃ is called the extended affine Weyl group of Φ and contains the affine Weyl group
Ŵ

.
= W n 〈Φ∨〉 (see for example [15], [24]).
The action of W × Z(Φ) on C0(Φ) can be lifted to an action of W̃ . Indeed, W̃

preserves the lattice 〈Φ∨〉 of h, and thus acts on T = h/〈Φ∨〉 and on C0(Φ) ⊂ T .
Since the semidirect factor 〈Φ∨〉 acts trivially, W̃ acts as its quotient,

W̃/〈Φ∨〉 ' W × Z(Φ).

2.2. Examples

In the following examples we denote by Sn, Dn, Cn respectively the symmetric,
dihedral and cyclic group on n letters.

CASE Cn. The roots 2αi+· · ·+2αn−1+αn (i = 1, . . . , n) take integer values at the
points [α∨1 /2], . . . , [α∨n /2] ∈ h/〈Φ∨〉, and thus at their sums, for a total of 2n points
of C0(Φ). Indeed, let us introduce the following notation. For a fixed basis h∗1, . . . , h

∗
n

of h∗, the simple roots of Cn can be written as

(6) αi = h
∗

i − h
∗

i+1 for i = 1, . . . , n− 1, αn = 2h∗n.

Then Φ = {h∗i − h
∗

j } ∪ {h
∗

i + h
∗

j } ∪ {±2h∗i } (i, j = 1, . . . , n, i 6= j), and writing ti
for eh

∗
i , we have

eΦ
.
= {eα | α ∈ Φ} = {ti t

−1
j } ∪ {ti tj } ∪ {t

±2
i }.

The system of n independent equations t21 = 1, . . . , t2n = 1 has 2n solutions:
(±1, . . . ,±1), and it is easy to see that the other systems do not have other solutions.
The group W ' Sn n (C2)

n acts on T = (C∗)n by permuting and inverting its
coordinates; the second operation is trivial on C0(Φ). Two elements of C0(Φ) are in the
sameW -orbit if and only if they have the same number of negative coordinates. So we
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can define the p-th W -orbitOp as the set of points with p negative coordinates. (This
choice is not canonical: we may choose the set of points with p positive coordinates
as well.) Clearly, if t ∈ Op then

W(t) ' (Sp ×Sn−p)n (C2)
n.

Thus |Op| =
(
n
p

)
and we get

|C0(Φ)| =

n∑
p=0

(
n

p

)
= 2n.

Notice that if t ∈ Op then −t ∈ On−p, and Ad(t) = Ad(−t) since Z(Φ) =
{±(1, . . . , 1)}. In fact, Γ has a symmetry exchanging the vertices p and n − p.
Finally, notice that C0(Φ) is a subgroup of T isomorphic to (C2)

n and generated by
the elements

δi
.
= (1, . . . , 1,−1, 1, . . . , 1) (with the −1 at the i-th place).

Then we can return to the original coordinates observing that δi is the nontrivial
solution of the system t2i = 1, tj = 1 for j 6= i, and using (6) to get

δi ↔
[ n∑
k=i

α∨k /2
]
.

CASE Dn. We can write αn = h∗n−1 + h
∗
n and the other αi as before, so eΦ =

{ti t
−1
j } ∪ {ti tj }. Then each system of n independent equations is W -conjugate to

t1 = t2, . . . , tp−1 = tp, tp−1 = t
−1
p , t±1

p+1 = tp+2, . . . , tn−1 = tn, tn−1 = t
−1
n

for some p 6= 1, n − 1. Thus we get the subset of (C2)
n consisting of the following

n-ples: {(±1, . . . ,±1)} \ {±δi}i=1,...,n, 2n − 2n in number. However, reasoning as
before we see that each such n-ple represents two points in h/〈Φ∨〉. Namely, the
correspondence is given by{[n−1∑

k=i

α∨k

2
±
α∨n−1 − α

∨
n

4

]}
→ δi .

From the geometric point of view, the tis are coordinates of a maximal torus of
the orthogonal group, while T = h/〈Φ∨〉 is a maximal torus of its two-sheet
universal covering. Each W -orbit corresponding to the four extremal vertices of Γ
is a singleton consisting of one of the four points over ±(1, . . . , 1), all inducing the
identity automorphism: indeed, Aut(Γ ) acts transitively on these points. The other
orbits are defined as in the case Cn.
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CASE Bn. This case is very similar to the previous one, but now αn = h∗n, eΦ =
{ti t
−1
j }∪{ti tj }∪{t

±1
i }, and hence we get the points {(±1, . . . ,±1)} \ {δi}i=1,...,n. Here

the projection is {[n−1∑
k=i

α∨k

2
±
α∨n

4

]}
→ δi

so we have 2n − n pairs of points in C0(Φ).

CASE An. If we view h∗ as the subspace of 〈h∗1, . . . , h
∗

n+1〉 of equation
∑
h∗i = 0,

and T as the subgroup of (C∗)n+1 of equation
∏
ti = 1, we can write all the simple

roots as αi = h∗i − h
∗

i+1; then eΦ = {ti t−1
j }. In this case Φ has no proper subsystem

of the same rank, so all the coordinates must be equal. Therefore

C0(Φ) = Z(Φ) = {(ζ, . . . , ζ ) | ζ
n+1
= 1} ' Cn+1.

Then W ' Sn+1 acts on C0(Φ) trivially and Z(Φ) transitively, as expected since
Aut(Γ ) ' Dn+1 acts transitively on the vertices of Γ . We can write more explicitly
C0(Φ) ⊆ h/〈Φ∨〉 as

C0(Φ) =

{[
k

n+ 1

n∑
i=1

iα∨i

] ∣∣∣∣ k = 0, . . . , n
}
.

2.3. Proofs

Motivated by Remark 2, we start by describing the automorphisms of g that are
induced by the points of C0(Φ).

LEMMA 5. If t ∈ C0(Φ), then Ad(t) has finite order.

PROOF. Let β1, . . . , βn be linearly independent roots such that eβi (t) = 1. Then for
each root α ∈ Φ we have mα =

∑
ciβi for some m, ci ∈ Z, and thus

eα(tm) = emα(t) =

n∏
i=1

(eβi )ci (t) = 1.

Then Ad(tm) is the identity on g, so by (4), tm ∈ Z(Φ). As Z(Φ) is a finite group, tm

and t have finite order. 2

The previous lemma allows us to apply the following

THEOREM 6 (Kac).

(i) Each inner automorphism of g of finite order m is conjugate to an automorphism
σ of the form

σ(Xi) = ζ
siXi

with ζ a fixed primitive m-th root of unity and (s0, . . . , sn) nonnegative integers
without common factors such that m =

∑
siai .
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(ii) Two such automorphisms are conjugate if and only if there is an automorphism of
Γ sending the parameters (s0, . . . , sn) of the first to the parameters (s′0, . . . , s

′
n)

of the second.
(iii) Let (i1, . . . , ir) be all the indices for which si1 = · · · = sir = 0. Then gσ is the

direct sum of an (n− r)-dimensional center and a semisimple Lie algebra whose
Dynkin diagram is the subdiagram of Γ with vertices i1, . . . , ir .

This is a special case of a theorem proved in [16] and more extensively in [12, X.5.15
and 16]. We only need the following

COROLLARY 7.

(i) Let σ be an inner automorphism of g of finite order m such that gσ is semisimple.
Then there is p ∈ V (Γ ) such that σ is conjugate to σp. In particular, m = ap and
the Dynkin diagram of gσ is Γp.

(ii) Two automorphisms σp, σp′ are conjugate if and only if p, p′ are in the same
Aut(Γ )-orbit.

PROOF. If gσ is semisimple, then in Theorem 6(iii) n = r , hence all parameters of σ
but one are equal to 0, and the nonzero parameter sp must be equal to 1, otherwise there
would be a common factor, contradicting Theorem 6. So we get the first statement.
Then the second statement follows from Theorem 6(ii). 2

Let t ∈ C0(Φ); by Remark 2, gAd(t) is semisimple, so by Corollary 7(i), Ad(t) is
conjugate to some σp. Thus there is a canonical map

(7) ψ : C0(Φ)→ Q

sending t to ψ(t) = {p ∈ V (Γ ) | σp is conjugate to Ad(t)}. Notice that ψ(t) is a
well-defined element of Q by Corollary 7(ii).

We now prove the fundamental

LEMMA 8. Two points in C0(Φ) induce conjugate automorphisms if and only if they
are in the same W × Z(Φ)-orbit.

PROOF. Let N be the normalizer of T in G. We recall that W ' N/T and the action
of W on T is induced by the conjugation action of N ; it is also well known that two
points of T are G-conjugate if and only if they are W -conjugate. Thus W -conjugate
points induce conjugate automorphisms. Moreover, by (4),

Ad(t) = Ad(s) ⇔ Ad(ts−1) = idg ⇔ ts−1
∈ Z(Φ).

Finally, suppose that t, t ′ ∈ C0(Φ) induce conjugate automorphisms, i.e.

∃g ∈ G : Ad(t ′) = Ad(g)Ad(t)Ad(g−1) = Ad(gtg−1).

Then zt ′ = gtg−1 for some z ∈ Z(Φ). Thus zt ′ and t are G-conjugate elements of T ,
and so they are W -conjugate, proving the claim. 2
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We can now prove Theorem 3(i). Indeed, by the previous lemma there is a
canonical injective map defined on the set of orbits of C0(Φ):

ψ :
C0(Φ)

W × Z(Φ)
→ Q.

We must show that this map is surjective. The system

αi(h) = 1 (∀i 6= 0, p), αp(h) = a
−1
p

is composed of n linearly independent equations, so it has a solution h ∈ h. Notice
that α0(h) ∈ Z. Let t be the class of h in T ; then eα(t) = 1 ⇔ α ∈ Φp. Hence by
Remark 2, Ad(t) is conjugate to σp, and Φ(t) to Φp.

In order to relate the action of Z(Φ) to that of Aut(Γ ), we introduce the following
subset of W . For each p 6= 0 such that ap = 1, set zp

.
= w

p

0w0, where w0 is the
longest element of W and wp0 is the longest element of the parabolic subgroup of W
generated by all the simple reflections sα1, . . . , sαn except sαp . Then we define

WZ
.
= {1} ∪ {zp}p=1,...,n, ap=1.

This set has the following properties (see [15, §1.7 and 1.8]):

THEOREM 9 (Iwahori–Matsumoto).

(i) WZ is a subgroup of W isomorphic to Z(Φ).
(ii) For each zp ∈ WZ , zp.α0 = αp. This defines an injective morphism WZ ↪→

Aut(Γ ), and the WZ-orbits of V (Γ ) coincide with the Aut(Γ )-orbits.

Therefore Q is the set of WZ-orbits of V (Γ ), and the bijection ψ between Q and
the set of Z(Φ)-orbits of C0(Φ)/W can be lifted to a noncanonical bijection between
V (Γ ) and C0(Φ)/W . Thus we just have to consider the action of W on C0(Φ) and
prove

LEMMA 10. If t ∈ Op, then W(t) is conjugate to Wp.

PROOF. Notice that the centralizer CN (t) of t in N is the normalizer of T = CT (t)
in CG(t). Thus W(t) = CN (t)/T is the Weyl group of CG(t). Since CG(t) is the
subgroup ofG of points fixed by the conjugacy by t , its Lie algebra is gAd(t), conjugate
to gσp by Theorem 3(i). Therefore W(t) is conjugate to Wp. 2

This completes the proof of Theorem 3 and also of Theorem 1, since by Remark 2
the map ψ defined in (7) can also be seen as the map

t 7→ ψ(t) = {p ∈ V (Γ ) | Φp is conjugate to Φ(t)}.
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3. POSITIVE-DIMENSIONAL COMPONENTS

3.1. From hyperplane arrangements to toric arrangements

Let S be a d-dimensional subspace ofH. The set ΘS of elements of Φ vanishing on S
is a complete subsystem of Φ of rank n− d . Hence the map S 7→ ΘS gives a bijection
between Sd and Kd , whose inverse is

Θ 7→ S(Θ)
.
= {h ∈ h | α(h) = 0 ∀α ∈ Θ}.

In [23, 6.4 and C] (following [22] and [5]) the subspaces of H are classified and
counted, and the W -orbits of Sd are completely described. This is done case-by-case
according to the type of Φ. We now show a case-free way to extend this analysis to
the components of T .

Given a component U of T , set

ΘU
.
= {α ∈ Φ | eα(t) = 1 ∀t ∈ U}.

In contrast with the case of linear arrangements, ΘU in general is not complete. For
eachΘ ∈ Kd define CΦΘ as the set of components U such thatΘU = Θ . This is clearly
a partition of the set of d-dimensional components of T , i.e.

(8) Cd(Φ) =
⊔
Θ∈Kd

CΦΘ .

We may think of S(Θ) as the tangent space at any point of each component of CΦΘ ;
then by [23] the problem of classifying and counting the components of T reduces
to classifying and counting the components of T with a given tangent space, i.e. the
elements of CΦΘ . We do this in the next section.

3.2. Theorems

Let Θ be a complete subsystem of Φ and WΘ its Weyl group. Let k and K be
respectively the semisimple Lie algebra and the semisimple and simply connected
algebraic group with root system Θ , d a Cartan subalgebra of k, 〈Θ∨〉 and Λ(Θ) the
coroot and coweight lattices, Z(Θ) .= Λ(Θ)/〈Θ∨〉 the center of K , D the maximal
torus ofK defined by d/〈Θ∨〉,D the toric arrangement defined byΘ onD, and C0(Θ)

the set of its 0-dimensional components.
We also consider the adjoint group Ka

.
= K/Z(Θ) and its maximal torus Da

.
=

D/Z(Θ) ' d/Λ(Θ). We recall from [13] that K is the universal covering of Ka ,
and if D′ is an algebraic torus with Lie algebra d, then D′ ' d/L for some lattice
Λ(Θ) ⊇ L ⊇ 〈Θ∨〉; so there are natural covering projections D � D′ � Da
with kernels respectively L/〈Θ∨〉 and Λ(Θ)/L. Notice that Θ naturally defines an
arrangement on each D′, and that for D′ = Da the set of 0-dimensional components
is C0(Θ)/Z(Θ). Given a point t of some D′ we set

Θ(t)
.
= {α ∈ Θ | eα(t) = 1}.
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THEOREM 11. There is a WΘ -equivariant surjective map

ϕ : CΦΘ � C0(Θ)/Z(Θ)

such that kerϕ ' Z(Φ) ∩ Z(Θ) and ΘU = Θ(ϕ(U)).

PROOF. Let S(Θ) be the subspace of h defined in Section 3.1 and H the
corresponding subtorus of T . Then T/H is a torus with Lie algebra h/S(Θ) ' d, so
Θ defines an arrangement D′ on D′ .= T/H . The projection π : T � T/H induces
a bijection between CΦΘ and the set of 0-dimensional components of D′, because
H ∈ CΦΘ and ΘU = Θ(π(U)) for each U ∈ CΦΘ .

Moreover, the restriction of the projection dπ : h � h/S(Θ) to 〈Φ∨〉 is
simply the map that restricts the coroots of Φ to Θ . Set RΦ(Θ) .

= dπ(〈Φ∨〉);
then Λ(Θ) ⊇ RΦ(Θ) ⊇ 〈Θ∨〉 and D′ ' d/RΦ(Θ). Denote by p the projection
Λ(Φ) � Λ(Φ)/〈Φ∨〉 and embed Λ(Θ) in Λ(Φ) in the natural way. Then the kernel
of the covering projection of D′ � Da is isomorphic to

Λ(Θ)/RΦ(Θ) ' p(Λ(Θ)) ' Z(Φ) ∩ Z(Θ). 2

We set
nΘ

.
= |Z(Θ)|/|Z(Φ) ∩ Z(Θ)|.

The following corollary is straightforward from Theorem 11.

COROLLARY 12.
|CΦΘ | = n−1

Θ |C0(Θ)|

and then by (8),
|Cd(Φ)| =

∑
Θ∈Kd

n−1
Θ |C0(Θ)|.

Notice that two components U,U ′ of T are W -conjugate if and only if the two
conditions below are satisfied:

• their tangent spaces are W -conjugate , i.e. there exists w ∈ W such that ΘU =
w.ΘU ′ ;
• U and w.U ′ are WΘU -conjugate.

Then the action of W on C(Φ) is described by the following remark.

REMARK 13. (i) By Theorem 11, ϕ induces a surjective map ϕ from the set ofWΘ -
orbits of CΦΘ to the set of WΘ

× Z(Θ)-orbits of C0(Θ), described by Theorem 3.
(ii) In particular, if Θ is irreducible, let Γ Θ be its affine Dynkin diagram, QΘ the set

of Aut(Γ )-orbits of its vertices, Γ Θp the diagram that we get from Γ Θ by removing
the vertex p, and Θp the associated root system. Then there is a surjective map

ϕ̂ : CΦΘ � QΘ

such that if ϕ̂(U) = q and p is a representative of q, then ΘU ' Θp.
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3.3. Examples

CASE F4. We have Z(Φ) = {1}, thus nΘ = |Z(Θ)|. Therefore in this case nΘ does
not depend on the conjugacy class, but only on the isomorphism class of Θ .

We say that a subspace S of H (respectively a component U of T ) is of a given
type if the corresponding subsystemΘS (respectivelyΘU ) is of that type. Then by [23,
Tab. C.9] and Corollary 12 there are:

1. one subspace of type A0, tangent to one component of the same type (the whole
spaces);

2. 24 subspaces of type A1, each tangent to one component of the same type;
3. 72 subspaces of type A1 × A1, each tangent to one component of the same type;
4. 32 subspaces of type A2, each tangent to one component of the same type;
5. 18 subspaces of type B2, each tangent to one component of the same type and one

component of type A1 × A1;
6. 12 subspaces of type C3, each tangent to one component of the same type and three

of type A2 × A1;
7. 12 subspaces of type B3, each tangent to one component of the same type, one of

type A3 and three of type A1 × A1 × A1;
8. 96 subspaces of type A1 × A2, each tangent to one component of the same type;
9. one subspace of type F4 (the origin), tangent to: one component of the same type,

12 of type A1 × C3, 32 of type A2 × A2, 24 of type A3 × A1, and 3 of type C4.

CASE An−1. It is easily seen that each subsystemΘ ofΦ is complete and is a product
of irreducible factors Θ1, . . . , Θk , with Θi of type Aλi−1 for some positive integers λi
such that λ1 + · · · + λk = n and n − k is the rank of Θ . In other words, as is well
known, theW -conjugacy classes of subspaces ofH are in bijection with the partitions
λ of n, and if a subspace has dimension d then the corresponding partition has length
|λ|

.
= k equal to d + 1. The number of subspaces of the partition λ is easily seen to be

equal to n!/bλ, where bi is the number of λj that are equal to i and bλ
.
=
∏
i!bibi! (see

[23, 6.72]). Now let gλ be the greatest common divisor of λ1, . . . , λk . By Example 4
in Section 2.2 we know that |Z(Θ)| = λ1 . . . λk = |C0(Θ)| and |Z(Φ)∩Z(Θ)| = gλ.
Then by Corollary 12, |CΦΘ | = gλ and

|Cd(Φ)| =
∑
|λ|=d+1

n!gλ
bλ

.

This could also be seen directly as follows. We can view T as the subgroup of
(C∗)n given by the equation t1 . . . tn − 1 = 0. Then Θ imposes the equations

t1 = · · · = tλ1, . . . , tλ1+···+λk−1+1 = · · · = tn.

Thus we have the relation xλ1
1 . . . x

λk
k −1 = 0. If gλ = 1 this polynomial is irreducible,

because the vector (λ1, . . . , λk) can be completed to a basis of the lattice Zk . If gλ > 1
this polynomial has exactly gλ irreducible factors over C. Thus in every case it defines
an affine variety having exactly gλ irreducible components, which are precisely the
elements of CΦΘ .
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4. TOPOLOGICAL INVARIANTS

4.1. Theorems

Let R be the complement in T of the union of all the hypersurfaces of the toric
arrangement T . In this section we prove that the Euler characteristic of R, denoted by
χΦ , is equal to (−1)n|W |. This may also be seen as a consequence of [4, Prop. 5.3].
We also give a formula for the Poincaré polynomial of R, denoted by PΦ(q).

Let d1, . . . , dn be the degrees ofW , i.e. the degrees of the generators of the ring of
W -invariant regular functions on h. It is well known that d1 . . . dn = |W |. Moreover,
by [2], B(Φ) .= (d1− 1) . . . (dn− 1) is equal to the leading coefficient of the Poincaré
polynomial of the complement of H in h, and hence to the number of unbroken bases
of Φ, because by [21] they give a basis for the n-th cohomology space.

The cohomology of R can be expressed as a direct sum of contributions given by
the components of T (see for example [8, Th. 4.2] or [10, 15.1.5]). In terms of the
Poincaré polynomial this expression is:

THEOREM 14.

PΦ(q) =
∑

U∈C(Φ)
B(ΘU )(q + 1)d(U)qn−d(U)

where d(U) is the dimension of the component U .

Now we use this expression to compute χΦ .

LEMMA 15.

χΦ = (−1)n
n∑

p=0

|W |

|Wp|
B(Φp).

PROOF. We have

(9) χΦ = PΦ(−1) = (−1)n
∑

t∈C0(Φ)

B(Φ(t))

because the contributions of all components of positive dimension vanish at −1.
Obviously isomorphic subsystems have the same degrees, so Theorem 1 yields the
statement. 2

THEOREM 16.
χΦ = (−1)n|W |.

PROOF. By the previous lemma we must prove that

n∑
p=0

B(Φp)
|Wp|

= 1.
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If we write dp1 , . . . , d
p
n for the degrees of Wp, the previous identity becomes

n∑
p=0

(d
p

1 − 1) . . . (dpn − 1)

d
p

1 . . . d
p
n

= 1.

This identity has been proved in [9], and later with different methods in [11]. 2

Notice that W acts on R and hence on the cohomology of R. So we can consider
the equivariant Euler characteristic of R, that is, for each w ∈ W ,

χ̃Φ(w)
.
=

n∑
i=0

(−1)i Tr(w,H i(R,C)).

Let %W be the character of the regular representation of W . From Theorem 16 we get

COROLLARY 17.
χ̃Φ = (−1)n%W .

PROOF. Since W is finite and acts freely on R, it is well known that χ̃Φ = k%W for
some k ∈ Z. Then to compute k we just have to look at χ̃Φ(1W ) = χΦ . 2

Finally, we give a formula for PΦ(q) that, together with the above mentioned
results in [23], allows its explicit computation.

THEOREM 18.

PΦ(q) =

n∑
d=0

(q + 1)dqn−d
∑
Θ∈Kd

n−1
Θ |W

Θ
|.

PROOF. By formula (8) we can restate Theorem 14 as

PΦ(q) =

n∑
d=0

(q + 1)dqn−d
∑
Θ∈Kd

∑
U∈CΦΘ

B(ΘU ).

Moreover, by Theorem 11 and Corollary 12 we get∑
U∈CΦΘ

B(ΘU ) = n−1
Θ

∑
t∈C0(Θ)

B(Θ(t)).

Finally, the claim follows from formula (9) and Theorem 16 applied to Θ:∑
t∈C0(Θ)

B(Θ(t)) = (−1)dχΘ = |WΘ
|. 2
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4.2. Examples

CASE F4. In Section 3.3 we have given the list of all possible types of complete
subsystems, together with their multiplicities. So we just have to compute the
coefficient n−1

Θ |W
Θ
| for each type. This is equal to:

• 1 for types 1, 2 and 3,
• 2 for types 4 and 8,
• 4 for type 5,
• 24 for types 6 and 7,
• 1152 for type 9.

Thus
PΦ(q) = 2153q4

+ 1260q3
+ 286q2

+ 28q + 1.

CASE An−1. By Section 3.3, n−1
Θ = gλ/λ1 . . . λk and |WΘ

| = λ1! . . . λk!. Hence by
Theorem 17,

PΦ(q) =

n∑
d=0

(q + 1)dqn−d
∑
|λ|=d+1

n!b−1
λ gλ(λ1 − 1)! . . . (λk − 1)!.
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