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Functional analysis. — A spectral Schwarz lemma, by EDOARDO VESENTINI.

ABSTRACT. — The classical Schwarz lemma for any scalar-valued holomorphic function hmapping
the open unit disc ∆ ⊂ C into itself is generalized by replacing h by a holomorphic map f of ∆
into a unital associative Banach algebra A, and |h(z)| by the spectral radius of f (z) (z ∈ ∆). If
A = L(H) and H is a complex Hilbert space, the behaviour of the numerical radius of f (z) is also
investigated.
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Let A be a unital, associative Banach algebra and let f be a holomorphic map of
the open unit disc ∆ of C into A. In the “classical” case, where A = C, the Schwarz
lemma is the main tool in the construction of a geometric framework—offered by the
Poincaré metric—for a comprehensive analysis of the behaviour of f . In the general
case, when C is replaced by the Banach algebra A, the spectral radius, numerical
radius, spectrum, numerical range, etc. are gauges of the behaviour of the A-valued
holomorphic function f . In both settings, the theory of subharmonic functions—and
in particular the maximum principle for these functions—play a crucial role; the
connections between spectrum and spectral radius, numerical range and numerical
radius, disclose new insights into the behaviour of f .

The main part of this article is devoted to elaborating on some of these new insights,
investigating in particular spectrum-valued functions associated to holomorphic maps
of ∆ into A, with special attention to the case in which A is commutative. In the final
sections of the paper, ∆ will be replaced by a domain E ⊂ C and the euclidean
distance on ∆ by the Carathéodory distance on E; the spectral invariants will be
expressed in terms of the Hausdorff distance between spectra.

The results concerning the holomorphic map ∆→ A yield—via Dunford integral
—an approach which might lead to a “Schwarz lemma” for holomorphic maps of the
open unit ball of A into itself.

1. SPECTRAL VERSIONS OF THE SCHWARZ LEMMA

Let A be a unital, associative Banach algebra,1 and let µ : A → R+ be a
plurisubharmonic function on A such that µ(zx) = |z|µ(x) for all z ∈ C and x ∈ A.

1 All algebras in this paper will be tacitly assumed to be associative.
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Let f : ∆→ A be a holomorphic map of the open unit disc∆ = {z ∈ C : |z| < 1}
into A such that

(1) µ(f (z)) ≤ 1 ∀z ∈ ∆.

If

(2) f (z) = a0 + za1 + z
2a2 + · · · , with a0, a1, a2, . . . ∈ A,

is the power-series expansion of f in ∆, then

f ′(z) = a1 + 2za2 + · · · ∀z ∈ ∆.

If

(3) f (0) = a0 = 0,

the function

g : z 7→
1
z
f (z) = a1 + za2 + · · ·

is holomorphic on ∆.
Suppose that

sup{µ(g(z)) : z ∈ ∆} > 1,

i.e., there are z0 ∈ ∆ and ϑ > 0 such that

µ(g(z0)) ≥ 1+ ϑ.

By the maximum principle for subharmonic functions, for any r ∈ (|z0|, 1) there is
some z ∈ ∆ with |z| = r such that

µ(g(z)) ≥ 1+ ϑ,

and therefore
µ(f (z)) = |z|µ(g(z)) ≥ r(1+ ϑ) > 1

whenever r is sufficiently close to 1, contradicting (1). Thus,

(4) µ(f (z)) ≤ |z| ∀z ∈ ∆,

i.e.

(5) µ(za1 + z
2a2 + · · · ) ≤ |z|,

whence

(6) µ(f ′(0)) = µ(a1) ≤ 1.
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Again by the maximum principle, if µ(a1) = 1, then

µ

(
1
z
f (z)

)
= 1,

that is to say,
µ(f ′(0)) = 1 ⇒ µ(f (z)) = |z| ∀z ∈ ∆.

That proves

LEMMA 1. If f (0) = 0 and if (1) holds, then (4) and (6) are satisfied. If either
µ(f ′(0)) = 1 or there is some z ∈ ∆ \ {0} such that

(7) µ(f (z)) = |z|,

then this latter equality holds for all z ∈ ∆.

This lemma yields a “spectral version” of the classical Schwarz lemma for
holomorphic scalar-valued functions of one complex variable.

Let σ(x) and %(x) denote respectively the spectrum and the spectral radius of any
x ∈ A. Since the function log ◦ % is plurisubharmonic on A ([7], [8]), and therefore %
is plurisubharmonic onA, Lemma 1 (with µ = %) yields the first part of the following

THEOREM 1. Let f be a holomorphic map of ∆ into A. If f (0) = 0 (for example, if
A contains no non-zero topologically nilpotent element and σ(f (0)) = {0}) and if

(8) σ(f (z)) ⊂ ∆ ∀z ∈ ∆,

or equivalently, %(f (z)) ≤ 1 for all z ∈ ∆, then

(9) %(f (z)) ≤ |z| ∀z ∈ ∆

and

(10) %(f ′(0)) ≤ 1.

Moreover, if either %(f ′(0)) = 1 or there is some z ∈ ∆ \ {0} such that

(11) %(f (z)) = |z|,

then this latter equality holds for all z ∈ ∆, and the intersection

(12) L = σ

(
1
z
f (z)

)
∩ ∂∆

(is not empty and) does not depend on z ∈ ∆, i.e. the peripheral spectrum of f (z) is
zL for all z ∈ ∆.



312 E. VESENTINI

The final statement is a consequence of the maximum principle for the spectral
radius ([7, Proposition 2], or, e.g., [8, Proposition 2.7]), according to which, if the map
h : ∆→ A is holomorphic and %(h) is equal to a constant c on∆, then the peripheral
spectrum of h(z) (i.e. the intersection of σ(h(z)) with the circle with center 0 and
radius %(h(z))) does not depend on z.

Suppose now that there is z0 ∈ ∆\ {0} such that the inner spectral radius2 of f (z0)

is

(13) κ(f (z0)) = |z0|,

i.e., f (z0) ∈ A−1 and
1

%(f (z0)−1)
= |z0|.

Since f (z0) and f (z0)
−1 commute, we have

%(f (z0)) ≥
1

%(f (z0)−1)
= |z0|,

and therefore, by Theorem 1,
%(f (z0)) = |z0|,

proving thereby

LEMMA 2. Under the hypotheses of Theorem 1, if (13) holds at some z0 ∈ ∆ \ {0},
then there is a closed subset L of ∂∆ such that the peripheral spectrum of f (z) is zL
for all z ∈ ∆.

EXAMPLE. Let A = L(C2) and let

(14) f (z) =

(
z 0
cz zϕ(z)

)
with c ∈ C, ϕ : ∆→ C holomorphic and |ϕ(z)| < 1 for all z ∈ ∆. Then

σ(f (z)) =

{
ζ ∈ C : det

(
z− ζ 0
cz zϕ(z)− ζ

)
= 0

}
= {z, zϕ(z)},

and therefore
%(f (z)) = max{|z|, |z| |ϕ(z)|};

moreover,

f ′(z) =

(
1 0
c ϕ(z)+ zϕ′(z)

)
,

σ (f ′(z)) =

{
ζ ∈ C : det

(
1− ζ 0
c ϕ(z)+ zϕ′(z)− ζ

)
= 0

}
,

2 The inner spectral radius κ(x) of any element x of a unital Banach algebra A is, by definition,
κ(x) = inf{|ζ | : ζ ∈ σ(x)}, or equivalently, κ(x) = 1/%(x−1) if x is invertible in A, and κ(x) = 0
otherwise.
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whence

σ(f ′(z)) = {1, ϕ(z)+ zϕ′(z)}, σ (f ′(0)) = {1, ϕ(0)}, %(f ′(0)) = 1.

If z ∈ ∆ \ {0} then

1
z
f (z) =

(
1 0
c ϕ(z)

)
, σ

(
1
z
f (z)

)
= {1, ϕ(z)}, σ

(
1
z
f (z)

)
∩ ∂∆ = {1}.

The spectral radius and the inner spectral radius of (1/z)f (z) are

%

(
1
z
f (z)

)
= 1 and κ

(
1
z
f (z)

)
= |ϕ(z)|.

REMARK. The condition σ(f (0)) = {0} is not sufficient to grant the conclusion of
Theorem 1, as the following example shows.

Let f be given by (14), with c and ϕ as above, and let K be a two by two complex
constant matrix, 6= 0, given by

K =

(
α β

γ −α

)
,

with

(15) detK = −(α2
+ βγ ) = 0.

The function g : ∆ 3 z 7→ K + f (z), i.e.

(16) g(z) =

(
z+ α β

cz+ γ zϕ(z)− α

)
,

is such that σ(g(0)) = {0} but does not necessarily satisfy the conclusion of
Theorem 1, as will be shown now.

The spectrum of g(z) consists of the roots, ζ1, ζ2, of the characteristic equation of
the matrix on the right-hand side of (16), i.e.

ζ 2
− z(ϕ(z)+ 1)ζ + z((z+ α)ϕ(z)− α − βc)− (α2

+ βγ ) = 0,

which, by (15), reads

ζ 2
− z(ϕ(z)+ 1)ζ + z((z+ α)ϕ(z)− α − βc) = 0.

Since
ζ1ζ2 = z((z+ α)ϕ(z)− α − βc),

if %(g(z)) ≤ |z| for all z ∈ ∆, then

|z((z+ α)ϕ(z)− α − βc)| ≤ |z|2,
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and therefore

|(z+ α)ϕ(z)− α − βc| ≤ |z|,∣∣∣∣ϕ(z)+ 1
z
(α(ϕ(z)− 1)− βc)

∣∣∣∣ ≤ 1(17)

for all z ∈ ∆ \ {0}.
Choosing ϕ constant:

ϕ(z) = ϕ0 ∈ ∆,

and such that
α(ϕ0 − 1)− βc 6= 0,

and letting z→ 0, (17) yields a contradiction.

Some of the conclusions of Theorem 1 can be rephrased in terms of Oka’s set-
valued analytic functions ([5], [4], [10]). According to Theorem IV of [6], if F is an
analytic set-valued function on ∆ such that F(z) is uniformly bounded on ∆, then
there is a separable Hilbert spaceH and a holomorphic map f : ∆→ L(H) such that

σ(f (z)) = F(z) ∀z ∈ ∆.

Thus, Theorem 1 yields

COROLLARY 1. If F(z) ⊂ ∆ for all z ∈ ∆, and F(0) = {0}, then

F(z) ⊂ ∆|z| = {ζ ∈ ∆ : |ζ | < |z|} ∀z ∈ ∆.

If F(z) ⊂ ∂∆|z| for some z ∈ ∆ \ {0}, the same inclusion holds for all z ∈ ∆.

2. A SCHWARZ LEMMA FOR THE NUMERICAL RANGE AND NUMERICAL RADIUS

Let nowA = L(H), whereH is a complex Hilbert space, ‖ ‖ and ( | ) being the norm
and inner product in H. Let W(x) and w(x) be the numerical range and numerical
radius of any x ∈ L(H):

W(x) = {ζ = (xξ |ξ) : ξ ∈ H, ‖ξ‖ = 1},
w(x) = sup{‖ξ‖ : ξ ∈ W(x)} = sup{|(xξ |ξ)| : ξ ∈ H, ‖ξ‖ = 1}.

If the map f : ∆→ L(H) is holomorphic, the function

∆ 3 z 7→ logw(f (z))

is subharmonic ([1], [8]), and therefore satisfies the maximum principle. If w ◦ f
reaches a maximum, c, at some point of ∆, and therefore

(w ◦ f )(z) = c ∀z ∈ ∆,
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then the intersection of W(f (z)) with the circle with centre 0 and radius c is
independent of z.3

A similar argument to the proof of Theorem 1 yields

THEOREM 2. If f (0) = 0 and w(f (z)) ≤ 1 for all z ∈ ∆, then

w(f (z)) ≤ |z| ∀z ∈ ∆, and w(f ′(0)) ≤ 1.

If w(f ′(0)) = 1 or there is some z ∈ ∆ \ {0} for which

w(f (z)) = |z|,

then this latter equality holds for all z ∈ ∆, and the (non-empty) intersection

W

(
1
z
f (z)

)
∩ ∂∆

does not depend on z.

3. THE COMMUTATIVE CASE

Going back to the case of the spectral radius, it turns out—as will be shown now—that,
if the unital Banach algebra A is commutative, some of the conclusions of Theorem 1
can be refined.

If Σ(A) is the Gelfand spectrum of the unital Banach algebra A, endowed with
the Gelfand topology, then (2) yields

〈f (z), χ〉 = 〈a0, χ〉 + 〈a1, χ〉 z+ 〈a2, χ〉 z
2
+ · · · ∀z ∈ ∆,χ ∈ Σ(A),

〈f ′(z), χ〉 = 〈a1, χ〉 + 2〈a2, χ〉 z+ · · · ∀z ∈ ∆,χ ∈ Σ(A).

If (8) holds, i.e.

|〈f (z), χ〉| ≤ 1 ∀z ∈ ∆,χ ∈ Σ(A),

then, by the Cauchy integral formula,

|〈f ′(0), χ〉| ≤ 1 ∀χ ∈ Σ(A),

and therefore %(f ′(0)) ≤ 1.
If %(f ′(0)) = 1, the set Q of all χ ∈ Σ(A) for which |〈f ′(0), χ〉| = 1 is not

empty.
Suppose now that the holomorphic map f : ∆→ A satisfies (8), and furthermore

that σ(f (0)) = {0}, i.e.
〈a0, χ〉 = 0 ∀χ ∈ Σ(A).

3 For further information on the behaviour of the set-valued function z 7→ W(f (z)), see [1], [8].
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The Schwarz lemma applied to 〈f (·), χ〉 for all χ ∈ Σ(A) then yields (9), and
since now

〈f (0), χ〉 = 〈f ′(0), χ〉,

it follows that
L = {〈f ′(0), χ〉 : χ ∈ Q},

where L is defined by (12).
Hence the weaker condition σ(f (0)) = {0} suffices to obtain the conclusion of

Theorem 1.
Summing up, the following theorem improves Theorem 1 in the commutative case.

THEOREM 3. If the holomorphic map f of ∆ into the unital, commutative Banach
algebra A is such that σ(f (z)) ⊂ ∆ for all z ∈ ∆, then %(f ′(0)) ≤ 1. If moreover
σ(f (0)) = {0}, then %(f (z)) ≤ |z| for all z ∈ ∆.

It will now be shown how a similar approach, based on Gelfand’s theory of
commutative Banach algebras, yields a “Schwarz lemma” for the inner spectral radius.

If κ(f (0)) = 0, there is χ0 ∈ Σ(A) for which

〈f (0), χ0〉 = 0.

By the Schwarz lemma,

|〈f (z), χ0〉| ≤ |z| ∀z ∈ ∆,

which implies

LEMMA 3. If the holomorphic map f : ∆ → A is such that σ(f (z)) ⊂ ∆ for all
z ∈ ∆ and κ(f (0)) = 0 (i.e. 0 ∈ σ(f (0))), then

κ(f (z)) ≤ |z| ∀z ∈ ∆.

If moreover κ(f (z0)) = |z0| for some z0 ∈ ∆ \ {0}, i.e. if

inf{|〈f (z0), χ〉| : χ ∈ Σ(A)} = |z0|,

then the set Σ(z0) ⊂ Σ(A) consisting of all characters χ of A for which

|〈f (z0), χ〉| = |z0|

is non-empty. By the Schwarz lemma, for every χ ∈ Σ(z0) there is θχ ∈ R such that

〈f (z), χ〉 = eiθχ z ∀z ∈ ∆.

This conclusion can be made more precise in the following example, in which A is a
uniform algebra on a compact Hausdorff space X.
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Let f : ∆ × X → C be such that for every z ∈ ∆ the function fz : X 3 x 7→
f (z, x) is contained in A, with

sup{|f (z, x)| : x ∈ X} ≤ 1,

and for every x ∈ X the function ∆ 3 z 7→ f (z, x) is holomorphic on ∆. By
Dunford’s theorem, the map z 7→ fz of ∆ into A is holomorphic on ∆.

If we identify each x ∈ X with the evaluation δx at x, then X becomes a closed
subset of the Gelfand spectrum Σ(A) of A, and the Shilov boundary ∂A of A is a
closed subset of X.

If f (0, x) = 0 for some x ∈ X (i.e. 〈f0, χ〉 = 0 for some χ ∈ Σ(A)), then by
Lemma 3,

κ(fz) ≤ |z| ∀z ∈ ∆,

i.e., for every z ∈ ∆,

(18) |〈fz, χ〉| ≤ |z| for some χ ∈ Σ(A).

The fact that ∂A can be identified with a closed subset of X implies that if
f (0, X) = {0}, then f0 = 0 on ∂A, and therefore also onΣ(A), whence σ(f0) = {0}.
By Theorem 1, %(fz) ≤ |z| for all z ∈ ∆, hence |〈fz, χ〉| ≤ |z| for all χ ∈ Σ(A), and
therefore

sup{|f (z, x)| : x ∈ X} ≤ |z| ∀z ∈ ∆.

Suppose now that there exist z0 ∈ ∆ \ {0} and x0 ∈ X for which

(19) |f (z0, x0)| = |z0|,

i.e.
ζ0 :=

1
z0
〈fx0, δz0〉 ∈ ∂∆.

Since ∣∣∣∣1
z
f (z, x0)

∣∣∣∣ ≤ 1 ∀z ∈ ∆,

the maximum principle yields:

LEMMA 4. If f (0, x) = 0 for all x ∈ X and if there exist z0 ∈ ∆ \ {0} and x0 ∈ X

satisfying (19), then there is ζ ∈ ∂∆ such that f (z, x0) = zζ for all z ∈ ∆.

4. A SPECTRAL SCHWARZ LEMMA FOR THE UNIT BALL

Let B = {x ∈ A : ‖x‖ < 1} be the open unit ball of a unital Banach algebra A with
no non-zero topologically nilpotent element, and let F : B → B be a holomorphic
map such that %(F (0)) = 0.

If u ∈ ∂B, then 1 > %(u) > 0, and, for z ∈ C,

%(zu) = |z|%(u) ≤ |z| ‖u‖ = |z|.
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The holomorphic map f : ∆ 3 z 7→ F(zu) is such that f (0) = 0, and

%(f (z)) = %(F (zu)) ≤ ‖F(zu)‖ ≤ 1.

By Theorem 1,
%(f (z)) ≤ |z| ∀z ∈ ∆,

i.e.,
%(F (zu)) ≤ ‖zu‖ ∀z ∈ ∆,u ∈ ∂B,

and in conclusion

(20) %(F (x)) ≤ ‖x‖ ∀x ∈ B.

If %(F (x0)) = ‖x0‖ for some x0 ∈ B \ {0}, i.e., upon setting x0 = ‖x0‖u0 with
u0 ∈ ∂B,

%(f (‖x0‖)) = %(F (‖x0‖u0)) = %(F (x0)) = ‖x0‖,

then %(f (z)) = |z| for all z ∈ ∆, that is to say,

%

(
F

(
z

z0
z0u0

))
= |z| =

∥∥∥∥ zz0
z0u0

∥∥∥∥ = ∥∥∥∥ zz0
x0

∥∥∥∥,
i.e.,

(21) %(F (zx0)) = |z| ‖x0‖ ∀z ∈ ∆1/‖x0‖.

Since

f ′(0) =
d

dz
F (zu0)

∣∣∣∣
0
= F ′(0)u0,

(20) also holds if %(F ′(0)u0) = 1, i.e.

%(F ′(0)x0) = |z0| = ‖x0‖.

Summing up:

THEOREM 4. If σ(F (0)) = {0}, then (20) holds. If either

%(F (x0)) = ‖x0‖ or %(F ′(0)x0) = ‖x0‖

for some x0 ∈ B \ {0}, then (21) holds.

Now, let the unital Banach algebra A be commutative and semisimple; as before,
let the holomorphic map F : B → B be such that σ(F (x)) ⊂ ∆ for all x ∈ B. By
Lemma 3,

κ(F (0)) = 0 ⇒ κ(F (x)) ≤ ‖x‖ ∀x ∈ B.

Going back to the example at the end of the previous section, let A be a uniform
algebra on a compact Hausdorff space X, and let F : B ×X→ C be such that:
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• for every ξ ∈ B the function X 3 x 7→ F(ξ, x) is an element of A, with

(22) sup{|F(ξ, x)| : x ∈ X} ≤ 1;

• for every x ∈ X the function B 3 ξ 7→ F(ξ, x) is holomorphic on B.

In view of (22), Dunford’s theorem implies that the map ξ 7→ F(ξ, ·) is holomorphic
on B.

Set fz = F(zu, x) for u ∈ ∂B. Then the function fz : ∆ → A is holomorphic
on ∆, and Lemma 4 then yields

PROPOSITION 1. If F(0, x) = 0 for all x ∈ X and if there exist ξ0 ∈ B \ {0} and
x0 ∈ X with

|F(ξ0, x0) = ‖ξ0‖,

then there is ζ ∈ ∂∆ such that

F

(
z

‖ξ0‖
ξ0, x0

)
= ζz ∀ z ∈ ∆.

5. THE HAUSDORFF DISTANCE

If X is a metric space with a distance d , let δ(K1,K2) be the Hausdorff distance of
two compact subsets K1 and K2 of X:

δ(K1,K2) = max
{
sup{d(x1,K2) : x1 ∈ K1}, sup{d(K1, x2) : x2 ∈ K2}

}
.

If X = C and d is the euclidean distance in C, and if A is a unital Banach algebra,
then, for x ∈ A,

%(x) = δ({0}, σ (x)),

and, more generally, for any ζ ∈ C,

%(ζ1A − x) = sup{|τ | : τ ∈ σ(ζ1A − x)} = sup{|τ | : τ ∈ ζ − σ(x)}
= sup{|ζ − τ | : τ ∈ Σ(x)} = δ({ζ }, σ (x)),

so that, for x1, x2 ∈ A,

δ(σ (x1), σ (x2)) = max
{
sup{d(ζ1, σ (x2)) : ζ1 ∈ σ(x1)},

sup{d(σ (x1), ζ2) : ζ2 ∈ σ(x2)}
}

= max
{
sup{%(ζ11A − x2) : ζ1 ∈ σ(x1)},

sup{%(ζ21A − x1) : ζ2 ∈ σ(x2)}
}

= max
{
sup{δ({ζ1}, σ (x2)) : ζ1 ∈ σ(x1)},

sup{δ(σ (x1), {ζ2}) : ζ2 ∈ σ(x2)}
}
.
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If A is commutative, then

δ(σ (x1), σ (x2)) = max
{
sup{d(〈x1, χ〉, σ (x2)) : χ ∈ Σ(A)},
sup{d(σ (x1, 〈x2, χ〉) : χ ∈ Σ(A)}

}
= max

{
sup{inf{|〈x1, χ〉 − 〈x2, λ〉| : λ ∈ Σ(A)} : χ ∈ Σ(A)},
sup{inf{|〈x1, λ〉 − 〈x2, χ〉| : λ ∈ Σ(A)} : χ ∈ Σ(A)}

}
.

Let ω be the Poincaré distance in ∆, and let δ = δω now be the Hausdorff distance
defined by ω. Let A be a unital Banach algebra and let f : ∆ → A be, as before, a
holomorphic map such that σ(f (z)) ⊂ ∆ for all z ∈ ∆.

For any z0 ∈ ∆ and any x ∈ A with σ(x) ⊂ ∆,

δω(z0, σ (x)) = max
{
ω(z0, σ (x)), sup{ω(z0, z) : z ∈ σ(x)}

}
= sup{ω(z0, z) : z ∈ σ(x)}.

For z0 ∈ ∆, let φ be the Möbius transformation

φ : z 7→
z− z0

1− z0z
.

By the invariance of the Poincaré distance, if σ(f (z)) ⊂ ∆, then

δω(z0, σ (f (z))) = δω(φ(z0), φ(σ (f (z)))) = δω(0, φ(σ (f (z))))
= δω(0, σ (φ(f (z)))) = %(φ̂(f (z))),

where
φ̂(f (z)) = (1A − z0f (z))

−1(f (z)− z01A),

and if

(23) σ(f (z0)) = {z0},

then
%(φ̂(f (z0))) = %(φ(z0)) = 0.

Let g : ∆→ A be the holomorphic map defined by

g(z) = φ̂(f (φ−1(z))).

Since φ(z0) = 0, (23) implies

g(0) = φ̂(f (φ−1(0))) = φ̂(f (z0)),

σ (g(0)) = φ(σ(f (z0))) = {φ(z0)} = {0}.

If A contains no non-zero topologically nilpotent element, then g(0) = 0, and, by
Theorem 1,

%(g(z)) ≤ |z| ∀z ∈ ∆,
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i.e.
%(φ̂(f (φ−1(z))) ≤ |z| ∀z ∈ ∆.

Setting z = φ(w) with w ∈ ∆ yields

%(φ̂(f (w))) ≤ |φ(w)| = δω({0}, {φ(w)}) = δω({φ−1(0)}, {w})
= δω({z0}, {w}) ∀w ∈ ∆

i.e.

δω({φ
−1(0)}, σ (φ(w))) = δω({0}, σ (φ̂(f (w))))

≤ δω({z0}, {w}) = ω(z0, w),

proving thereby

THEOREM 5. Let A be a unital, Banach algebra containing no non-zero topolog-
ically nilpotent element, and let f : ∆ → A be a holomorphic map such that
σ(f (z)) ⊂ ∆ for all z ∈ ∆. If (23) holds at some point z0 ∈ ∆, then

δω({z0}, σ (f (w))) ≤ ω(z0, w) ∀w ∈ ∆.

If either

%

(
f ′(z0)

(1− z0f (z0))2

)
=

1
(1− |z0|2)2

,

or there is some w ∈ ∆ \ {z0} such that

δω({z0}, σ (f (w))) = ω(z0, w),

then this latter equality holds for all w ∈ ∆.

The last part of the theorem follows from Theorem 1 and from the fact that

g′(0) =
(1− |z0|

2)2f ′(z0)

(1− z0f (z0))2
.

6. A SCHWARZ LEMMA FOR THE CARATHÉODORY SPECTRAL RADIUS

The above results can be restated in terms of the Carathéodory distance on a bounded
domain in C. Let A be a unital Banach algebra containing no non-zero topologically
nilpotent element. For any x ∈ A, let E be a domain in C containing σ(x). Let cE be
the Carathéodory distance in E, and let δcE be the Hausdorff distance defined by cE .
If ζ0 ∈ E, let

τE(ζ0, x) = max{cE(ζ0, ζ ) : ζ ∈ σ(x)} = δcE ({ζ0}, σ (x)).

Let f be a holomorphic map of a domain U ⊂ C into A such that σ(f (z)) ⊂ E
for all z ∈ U .
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According to Theorem II (p. 60) of [9], the function

z 7→ log τE(ζ0, f (z)) = log δcE ({ζ0}, σ (f (z)))

is subharmonic on U .
If E = ∆ and ζ0 = 0, and if ω is the Poincaré distance in ∆, then

τ∆(0, x) = ω(0, %(x)) =
1
2

1+ %(x)
1− %(x)

,

and denoting by Hol(E,∆) the set of all holomorphic maps of E into ∆, we have

τE(ζ0, x) = sup{ω(ϕ(ζ0), ϕ(ζ )) : ζ ∈ σ(x), ϕ ∈ Hol(E,∆)}
≤ {cE(ζ0, ζ ) : ζ ∈ σ(x)} = δcE ({ζ0}, σ (x)).

THEOREM 6. Let E be a domain in C, bi-holomorphically homeomorphic to ∆. Let
f : ∆→ A be a holomorphic map such that σ(f (z)) ⊂ E for all z ∈ ∆, σ(f (0)) =
{ζ0} for some ζ0 ∈ E, and f (ζ0) = 0. Then

(24) τE(ζ0, f (z)) ≤ |z| ∀z ∈ ∆.

PROOF. If ψ is a bi-holomorphic homeomorphism of E onto ∆ such that ψ(ζ0) = 0,
then

τE(ζ0, f (z)) = sup{cE(ζ0, ζ ) : ζ ∈ σ(f (z))}
= sup{cE(ψ−1(0), (ψ−1

◦ ψ)(ζ )) : ζ ∈ σ(f (z))}
= sup{ω(0, ψ(ζ )) : ζ ∈ σ(f (z))}
= sup{|λ| : λ ∈ ψ(σ(f (z)))}
= sup{|λ| : λ ∈ σ(ψ̂(f (z)))},

where ψ̂(f (z)) ∈ A is the image of ψ defined by the Dunford integral.
Since

σ(ψ̂(f (z))) = ψ(σ(f (z))) ⊂ ψ(E) ⊂ ∆,

the conclusion follows from Theorem 1. 2
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