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Partial differential equations. — On a conjecture of J. Serrin, by HAÏM BREZIS.

Dedicated to the memory of Guido Stampacchia, a beloved mentor and friend

ABSTRACT. — In 1964 J. Serrin proposed the following conjecture. Let u ∈ W1,1
loc (Ω) be a weak

solution of the second order elliptic equation (1) below, in divergence form, with Hölder continuous
coefficients aij (x); then u is a “classical” solution. We announce a solution of this conjecture
assuming only u ∈ BVloc(Ω) and Dini continuous coefficients.
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Let Ω ⊂ RN , N ≥ 2, be a bounded domain and let u ∈ W 1,1
loc (Ω) be a weak

solution of the equation

(1)
∑
i,j

∂

∂xj

(
aij

∂u

∂xi

)
= 0 in Ω,

where the coefficients aij (x) are bounded measurable and elliptic, i.e.,

λ|ξ |2 ≤
∑
i,j

aij (x)ξiξj ≤ Λ|ξ |
2, x ∈ Ω, ξ ∈ RN ,

with 0 < λ ≤ Λ <∞. A weak solution u ∈ W 1,1
loc (Ω) satisfies, by definition,

(2)
∑
i,j

∫
aij

∂u

∂xi

∂ζ

∂xj
= 0 ∀ζ ∈ C1

c (Ω)

where the subscript c indicates compact support.
A celebrated result of E. De Giorgi [4] asserts that if u is a weak solution of (1)

and moreover u ∈ H 1
loc(Ω), then u is locally Hölder continuous, and in particular u ∈

L∞loc(Ω) (see also [13]). Subsequently J. Serrin produced in [11] a striking example
showing that the assumption u ∈ H 1

loc(Ω) is essential; more precisely, for every p,
1 < p < 2, and all N ≥ 2, he constructed an equation of the form (1) which has
a solution u ∈ W 1,p(Ω) and u /∈ L∞loc(Ω). J. Serrin conjectured in [11] that if the
coefficients aij are locally Hölder continuous, then any weak solution u ∈ W 1,1

loc (Ω) of
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(1) must be a “classical” solution, i.e., u ∈ H 1
loc(Ω). Serrin’s conjecture was confirmed

by R. A. Hager and J. Ross [7] provided u is a weak solution of class W 1,p(Ω) for
some p with 1 < p < 2.

We announce here the solution of Serrin’s conjecture in full generality, starting
with u ∈ W 1,1

loc (Ω), or even with u ∈ BVloc(Ω), i.e., u ∈ L1
loc(Ω) and its derivatives

(in the sense of distributions) are measures.
Our first result is an improvement of the theorem of Hager and Ross: instead of

aij ∈ C
0,α(Ω̄) for some α ∈ (0, 1), we assume only aij ∈ C0(Ω̄).

THEOREM 1. Assume aij ∈ C0(Ω̄) and u ∈ W 1,p(Ω) for some p > 1. If u is a weak
solution of (1), then u ∈ W 1,q

loc (Ω) for every q <∞. Moreover,

‖u‖W 1,q (ω) ≤ C‖u‖W 1,p(Ω)

for every ω ⊂⊂ Ω , where C depends only on N , λ, Λ, p, q, ω,Ω , and the modulus
of continuity of aij on Ω̄ .

OPEN PROBLEM. We do not know whether the conclusion of Theorem 1 holds in
the two limiting cases: p = 1 and/or q = ∞. (The answer to both questions is positive
if the coefficients aij are Dini continuous; see Theorem 2 below.)

We now turn to Serrin’s conjecture. Here we assume that the coefficients aij are
Dini continuous in Ω̄ , i.e., aij ∈ C0(Ω̄) and

(3) A(r) =
∑
i,j

sup
x,y∈Ω, |x−y|<r

|aij (x)− aij (y)|, r > 0,

satisfies

(4)
∫ 1

0

A(r)

r
dr <∞.

THEOREM 2. Assume that the coefficients aij are Dini continuous in Ω̄ , and let u ∈
BV (Ω) be a weak solution of (1). Then u ∈ H 1

loc(Ω). Moreover,

(5) ‖u‖H 1(ω) ≤ C‖u‖BV (Ω)

for every ω ⊂⊂ Ω , where C depends only on N , λ, Λ, ω, Ω , and the modulus of
continuity of aij on Ω̄ .

REMARK 1. Surprisingly, the constant C in (5) depends only on the modulus of
continuity of aij in Ω̄ , and not on the Dini modulus of continuity of aij in Ω̄ . This
suggests that Serrin’s conjecture might be true assuming only continuity of aij in Ω̄
(this corresponds to the open problem mentioned above with p = 1).

REMARK 2. Using Lemma 2 below we may assert that, under the assumptions of
Theorem 2, u ∈ C1(Ω). If the coefficients aij belong to C0,α(Ω̄), 0 < α < 1,
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one can further improve the conclusion of Theorem 2, namely u ∈ C1,α(ω̄) for every
ω ⊂⊂ Ω . This is a consequence of the standard Schauder regularity theory for elliptic
equations in divergence form with C0,α coefficients (see e.g. [10, Theorem 5.5.3(b)],
[6, Theorem 3.7], [5, Theorem 3.5], or [3, Theorem 2.6 in Chapter 9]). All the above
results extend to elliptic systems.

The proofs use a duality technique in conjunction with a bootstrap argument and
the following tools:

a) Standard Lp-regularity theory for elliptic equations in divergence form:

LEMMA 1 (see e.g. [10, Theorem 5.5.3(a)], or [3, Theorem 2.2 in Chapter 10]). Assume
aij ∈ C

0(Ω̄) and u ∈ H 1(Ω) is a weak solution of

(6)
∑
i,j

∂

∂xj

(
aij

∂u

∂xi

)
=

∑
j

∂

∂xj
fj

with fj ∈ Lp(Ω) for all j , and p ∈ (2,∞). Then u ∈ W 1,p
loc (Ω), and for ω ⊂⊂ Ω ,

‖u‖W 1,p(ω) ≤ C
(
‖u‖H 1(Ω) +

∑
j

‖fj‖Lp(Ω)

)
where C depends on N , λ, Λ, p, ω, Ω , and the modulus of continuity of aij .

b) Schauder regularity theory for elliptic equations in divergence form with Dini
continuous coefficients:

LEMMA 2. Assume aij ∈ C0(Ω̄) satisfy (3), (4), and let u ∈ H 1(Ω) be a weak
solution of (6) with fj ∈ C∞c (Ω) for all j . Then u ∈ C1(Ω).

The conclusion of Lemma 2 comes with an estimate of the Dini modulus of
continuity of Du involving the Dini modulus of continuity of aij . However, we
do not need such an estimate—we use only the qualitative form of Lemma 2; this
explains Remark 1. It is not easy to find an early reference for Lemma 2. According
to the experts (I am quoting M. Giaquinta), it was common knowledge in Pisa in
the late 60’s—the proof being based on Campanato’s approach to Schauder estimates
(as presented in [6] or [3]), combined with a result of S. Spanne (Corollary 1 in
[12]). A complete proof may be found e.g. in [9, Theorem 5.1]. Y. Li ([8]) has
obtained a similar conclusion (also valid for systems) under weaker assumptions on
the coefficients aij .

The detailed proofs of Theorems 1 and 2 are presented as an Appendix in [1].
Theorem 2 is used in the paper of A. Ancona [1], who solved some open problems
raised in [2], and called my attention to Serrin’s conjecture.
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