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1. INTRODUCTION

The semiclassical version of the Fefferman—Phong inequality for a system of
second order partial differential operators can be stated as follows: given an
N x N second order system of PDEs

p(x,Eh) = ZAjk é]5k+Z€] Bi(x;h) + C(x;h) = p(x, & h)*

Jj k=1

(x,&) e R" x R", h € (0,1] (the semiclassical parameter), there exists hy € (0, 1]
and an absolute constant C > 0 (independent of h) such that

(L.1)  (p™(x,hD; hYu,u) = —Ch*|ulf, Yu e L(R";CY), Yh € (0, h).

Here pY(x,hD;h) denotes the semiclassical Weyl-quantization of the symbol
p(x,&;h) (see, for instance, Dimassi and Sjostrand [1]), (-,-) stands for the
L?*(R";C") inner product, and | - |, for the corresponding norm. The proof of
the Fefferman—Phong inequality for systems of PDEs given in Parmeggiani [3]
(see also Parmeggiani [4]; see also Sung [6] for a proof in the case n = 1) carries
over, as mentioned in the final remark of that paper, to the semiclassical case.
In this paper, besides making that remark more precise in Section 2 (see Theo-
rem 2.1 below), I shall consider in Section 3 (see Theorem 3.1 below) the validity
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of inequality (1.1), and its sharpness, in the case of certain systems of PDEs that
seem to be natural (e.g. systems related to Dirac operators). In the final Section 4
I shall test the result of Section 3 in the case of “‘Dirac-squared-type” systems (see
(4.4) below), for which the constant appearing in (1.1) may be computed
explicitly.

Remark that, in contrast to the scalar case, the Fefferman—Phong inequality
may be false for Hermitian nonnegative systems (see Parmeggiani [2] and the ref-
erence to Brummelhuis” work therein), and therefore the problem of finding nec-
essary and/or sufficient conditions in order that the Fefferman—Phong inequality
for systems hold, both in the semiclassical and usual (4 = 1) case, is a non-trivial
and basic problem.

The method used in Sections 3 and 4 for obtaining the inequality is a natural
“completion-of-squares procedure”, that is, I will write

pY(x,hD;h) = " LY (x,hD; h)* + Co(x; h),

J=1

for suitable first-order systems L (x, hD; h) = L (x, hD; h)*, so that one gets
(p¥ (x,hD;h)u,u) Z |L" (>, hD; s h)ul§ + (Co(x; h)u, u),

and the point is to control from below the term (Cyu, u) “throwing away’’ the
nonnegatlve contribution of the terms [LY(x,hD; :h)u|3. T will show that such
a “wasteful” procedure is in fact in some cases optimal (for small /), by showing
examples in which Y | L (x, hD; Ry = O(h3), while (Co(x; h)uy, uy) > —Ch?,
for suitable Schwartz functions u, with [u |, = 1.

It is also important to notice that in the completion-of-squares procedure, the
resulting term Cy(x;/) is obviously nonnegative when N =1 (i.e. in the scalar
case), whereas in the genuinely matrix-valued case (N > 2) this might no longer
be the case. This observation provides an example (see Remark 4.3) of a second
order system for which the semiclassical Fefferman—Phong inequality cannot hold.

In the sequel My will denote the set of N x N complex matrices (possibly
dependent on the parameter /), and SZ([R{” R";My) := S*(R" x R") ® My
will denote the set of matrix-valued usual S} class of second order symbols.
Finally, given a,b = 0, I will write a ~ b when C~'b < a < Cb for some absolute
constant C > 0 (independent of the main parameters).

2. A FIRST SEMICLASSICAL FEFFERMAN—PHONG INEQUALITY

Following [3] and [4], I consider the N x N system of second order PDEs in R"
given by

2.1) p(x,&h) = AX)|EP + Z@ k) 4+ Cx ) = p(x, & )" = —cohly,
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with ¢g > 0, for all (x,¢&) € R" x R" and all & € (0, 1], where
(2.2) A, Bi(:;h), C(h) e C*(R";My), 1 <j<n, Vhe(0,1],

and where for any given « € 7' (with Z, = {0,1,...}) there exists C, > 0 such
that

(2.3) [03A] L= ey +hl§:w” M) L @y

+h" 2||8§ )L mrmy) < Cor Vh € (0,1].
In other words, conditions (2.1) and (2.3), respectively, are rephrased as
(2.4) h2p(x,héh) > —coly, Y(x,&) e R" x R", Vhe (0,1],
(2.5)  hp(x,héh) e STH(R" x R My),  uniformly in h e (0, 1],

respectively.
One has the following theorem (which makes precise the final remark in [3]
and [4]).

THEOREM 2.1. In the above hypotheses the semiclassical Fefferman—Phong in-
equality holds for p: there exists a constant C > 0 such that

(p™ (x, hD; hyu,u) > —Ch?|uls, Vue S (R";CY), Yh e (0,1].

PRrROOF. The proof follows immediately from the proof given in [3], upon noting
that the semiclassical Weyl-quantization p¥(x,hD;h) is nothing but the usual
(h = 1) Weyl-quantization of p(x,h&;h), that condition (2.5) ensures that the
Fefferman—Phong metric introduced in [3] (see also [4])

d¢e|’
M2’

H(x)"':= max{%, TYA(X)}

gre = H(x)?|dx]* + €] ~

is independent of h € (0, 1], and that all the seminorms considered are bounded
uniformly in h. Thus one may work in the usual (4 = 1) Weyl-Hérmander calcu-
lus and Theorem 3.1 of [3] yields the existence of an absolute constant C > 0 such
that

h=2(p™ (x, hD; hyu,u) = —Clul;, Yu e #(R";CV),

for all 1 € (0, 1], which concludes the proof. O
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REMARK 2.2. Notice that, therefore, the proof of Theorem 2.1 is not semiclassi-
cal, for it is a reduction to the usual Weyl-quantization of a differential symbol
whose seminorms of all orders are bounded uniformly in h.

Notice that if one considers U,: & (R"; CY) — #(R";C"), the isometry of
L*(R™; C") (also automorphism of ./ (R"; C")) such that

(Upu)(x) = =" *u(h"%x),
then
U, 'p™(x,hD; h) Uy = p™ (h"x, "> D; ),
whence, since
(p™(x, hD; hyu,u) = (p* (', k2 D; ) Uy 'u, Uy ),

Theorem 2.1 gives a semiclassical Fefferman—Phong inequality for systems of
PDEs belonging to pseudodifferential classes whose associated Hérmander met-
ric (and weights) depend on the semiclassical parameter.

As an example of system for which Theorem 2.1 applies, one may take

p(x, & h) = A(x)|¢)? +hZf, xX) + 1 C(x) = p(x, & h)" = —coh’Iy,

for all (x,¢&) e R" x R" and all /€ (0,1], for a constant ¢y > 0 and smooth
matrices 4, B; (1 <j <n) and C such that for any given o € 7' there exists
C, > 0 for Wthh

054

Lo(R"My) T ZH@“B | oy + ||50C||Lv reMy) < Ca

Jj=1

Of course, one would like to consider also other classes of systems of PDEs
for which the semiclassical version of the Fefferman—Phong inequality holds. In
the next section I will show that when A4(x) is uniformly elliptic the semiclassical
Fefferman—Phong inequality holds true for classes of second order systems of
PDEs for which /71| B;(+; )|, and h2|C(-;h)|;. are not necessarily bounded.

3. THE INEQUALITY IN CASE THE MATRIX-COEFFICIENT A IS ELLIPTIC

Let us consider the N x N system of second order PDEs

B plx,&h) = Ax)E] +Zéj Bi(x;h) + C(x;h) = p(x, & )" = 0

for all (x,&) € R" x R" and all & € (0, 1], where
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(32) A, Bi(h),C(h) e C*(R";My), j=1,....n, Vhe (0,1],

and for any given o € 7" there exists C, > 0 such that

(33) 0%l ey T D NEBi () e (grany) + 102CC ) Loy < C

J=1

for all / € (0, 1]. Suppose furthermore that the matrix-coefficient A satisfies the
uniform-ellipticity condition: there exists ¢ > 0 such that

(3.4) ¢y < A(x) < cly, VxeR"

It is readily seen (see, for instance [3]) that (3.1) yields that all the matrices A4,
B; and C are Hermitian, and that 4, C > 0.
Remark that hypotheses (3.3) and (3.4) yield that the positive square root

(3.5) A(x)'? ;:i_/xl/z(z—A(x))ldz,
2ni J,
y<{AeC; Red >0} being a counterclockwise-oriented path encircling the
interval [c™!,¢], is smooth and bounded along with its derivatives of all orders
(with bounds depending only on ¢ and the C,).
One has the following result.

THEOREM 3.1. Let p be as in (3.1) and satisfy hypotheses (3.2)—(3.4). Define

forj=1,... ,nthe smooth (in x) Hermitian matrices
(3.6) By j(x;h) := A(x)" 2 Bi(x; 1) A (x) "2,
and
N Tr(B4 j(x;h Tr(B. i(x;h)*
(37) Al = Ba (i) - Tr(Ba,xi 1)) Aé( D g, sy 4 B iR A’i‘( Py

Suppose further that there exists ¢y > 0 such that (in the sense of Hermitian
matrices)

(3.8) D> Aj(xih) < el’ly, VxeR", Vhe (0,1].
J=1

(Of course, when N = 1 the condition is trivially satisfied, for A;(x; h) = 0 for all x,
h,and j=1,... n.) Then there exists C > 0, depending only on N, on a finite
number of seminorms of A'?, A, the B; and C, and on the constant ci of (3.8),
such that

(3.9)  (p(x,hD; hyu,u) = —Ch?|ul;, Yue #(R"CN), Yhe (0,1].



344 A. PARMEGGIANI

PRrROOE. I start by writing

(3.10) p(x,Eh) = A(x) ' Ppa(x, & h)A(x) ',

where
Pal, &R = [P0y + S E B (x5 h) + Ca(xi ),
=1

with C4(x; /) == A(x)"2C(x; 1) A(x) "% Tt follows from (3.2)—(3.4) that the
matrices B, ; and C, are all smooth (in x) and bounded, along with their x-
derivatives to all orders, uniformly in x and /4. Remark also, as is clear, that

pa(x,Eh) =pa(x, & h)" >0, V(x, &) e R" xR", Vhe(0,1].

I now “complete the squares” in p4 and write

GA1) palx,Eh) = ZLxéh (chh ZBA,(xh)

where

1 * .
Lj(xaévh) = é/IN+§BAj(x7h) = L,(X,é,//l) y J = 17"'7”'

Hence, in particular, L (x,hD;h) = LY (x, hD; h)', j=1,...,n. Writing aff;b for
the composition-law of the semlclasswal Weyl Hormander calculus of symbols
a and b, one has in the first place that, since

oL;

(3.12) =

- jkIN7 lgj,kgl/l,

P » i dL; OL; I .
(3.13)  LinL; = L; 2h{ Ly =L hz[aék o L 1<j<n

I next compute
i
AV gty AV = AV AV — SRV p YAV 4 (A g, AVR) 4 R,
where (by virtue of the fact that p, is a second-order differential system)

ro = ro(x; h) is smooth in x and for all « € Z'}

(3.14) sup [0 (5 i)l L (mry) < 00,
he (0,1]

with bounds depending only on the constants appearing in (3.3) and (3.4). One
now has
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: 0 oA 8 041/
1/2 1/2y Yoyl v Y g2 T
{A pA7A } Z(aé (A pA) a)Ck an (A pA) aék >

pa 04/ oL\ 04'?
_ Q124 _ 412 J
Z 2 ax =>4 Z( bitbig, )

— O0xy,

0472
=2Y 4L
kz:; K @xk ’

and, by the same token,

" 042

AV pa} = =2 L.
{ apA} ; ax]c k
Hence
A2 9412
AVtyp AV = p — ihz (A1/2L AT oA, Al/z) o
6xk Ox

k=1
A1/2 6A1/

=p—ih Z (Al/ztithﬁh

ﬁthﬁhA 1/2) + h*ry,
|

where r; = ri(x;h) satisfies the same properties of ry. We therefore get, for any
given u € (R"; CY),

(p"(x,hD; hyu,u) = (pYy (x, hD; h) A" u, 41 u)
pim’S™ (13 (e hDs a1 2, P4 n*O(|uly
+2 Im; L (x,hD;h)A4 “’a—xj” + h=O(|uly)

(in view of (3.11))

= UL e hDs ) Al + (Caxih) - %ZBA,.,-@; 1)) A 2, A )
j=1 j=1
- w . 1/2 6"41/2 2 2
+2h1mjzl: Lj (.X, hD,h)A u,a—xju +h 0(”1/!”0)

(by using the Cauchy—Schwarz inequality in the second-to-last term)

1< . 1/2, 12 2 S
> §;||L]W(x,h0,h)A ulg =207

j=1
+ (Coloe; )y A 2u, AV2u) + W2O(|uly)

n 1/212
> —2hY oA
j=1

04172 2

0xj

u

0

[ul2 + K2 O(ul?) + (Colx; h) A 2u, A1),

J L
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where I have put Cy(x;h) := Cy(x;h) — ZBA i(x h)?*. The problem is now to

control from below this latter term, and it is here that we use hypotheses (3.1) and
(3.8) as follows.

LeMMA 3.2. Hypothesis (3.1) yields

1 n
(3.15) Co(x; h) > —N;Aj(x;h), VxeR", Vhe(0,1],
as Hermitian matrices.

PROOF OF THE LEMMA. Fixed any x € R” and % € (0, 1], I write (with repeti-
tions according to multiplicity)

Spec(By j(x;h) == {2 (x;h); k=1,...,NY R, j=1,...,n
I consider next fork=1,... N

£ = ) = (g A ), = 22 (i) =32 (),
and

1 |
Pale, €95 = 37 (5 Bay (k) =5 4] (s Iy)* + Colih), k=1,...om,

=1

which is nonegative by hypothesis (3.1), that is, in the sense of Hermitian
matrices,

n

1 1. 1
Colxsh) = = (5 Bajlx h? — E;L,@(x; h)B i (x:h) + ZA,&” (x; 1) Iy).
j=1

Hence averaging over kK =1,..., N gives, recalling the definition of the Hermi-
tian matrices A;(x; h) given in (3.7),
1 n
Co(x; ) = —N;Aj(x;h),
which concludes the proof of the lemma. O

From the lemma and hypothesis (3.8) it therefore follows that

0412|?

(p™(x,hD; hyu,u) = —2h*
an

J=1

2 2 C1 2 2
lullg + > O(Jullg) — NhZIIA”Z\ILm Julg,
LX,
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for all u e #(R";C") and all & e (0,1], which concludes the proof of the
theorem. 0

REMARK 3.3. [t is interesting to note that the matrices A;, 1 < j < n, have eigen-

values given by

N () _ 5()\2

3 <u> K'=1,....N
k#k'; k=1 2

Hence hypothesis (3.8) may be thought of as requiring that the extent to which the

matrices By j fail to be scalar multiples of the identity Iy be O(h). In particular,
By, ; may be given in the form

B j(x;h) = bj(x)Iy + hB4 j(x; h),

Jor some smooth real (bounded, along with all the derivatives ) Junctions b;
and some smooth Hermitian matrices By ;(;h) (j=1,...,n) such that
|0%By ;(-;h)| . < oo for all h and all o € VAR

Notice that when b; = 0 for all j =1,...,n, then B4 j = O(h), and the conclu-
sion of the theorem follows at once, for in lhzs case the condition pa(x,Eh) =0
immediately yields C4(x;h) > 0, so that (in the sense of Hermitian matrices)

Ca(x;h) 4ZBijh >——ZBA,(xh > —ch’ly,

Sfor all x € R" and all h € (0, 1], for some absolute constant ¢ > 0.

The method of proof of Theorem 3.1 gives the following slightly more general
result.

THEOREM 3.4. Consider the N x N systems of second order PDEs

n

(3.16)  p(x.&h) = (EA4;(x) + EBi(x;h)) + Clx;h) = p(x, & h)* =0

=
Sor all (x,&) € R" x R" and all h € (0, 1], where
(3.17)  A;,Bi(;h),C(;h) e C*(R";My), j=1,...,n, Yhe (0,1],

and for any given o € 7] there exists C, > 0 such that

(3.18) > (0%l + 1B (s k) ) + 105CCsh) e < Coy YR (0,1].

J=1

Suppose furthermore that the matrix-coefficients A; satisfy the uniform-ellipticity
condition: there exists ¢ > 0 such that

(3.19) 'y <A4;(x) <cly, VxeR", j=1,...,n
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Let (as in (3.5)) Al/2 be the smooth posztwe square root of Aj;. Define as in

Theorem 3.1 the matrlces By, ;= 172 BiA; 1/2 and A; (see (3.6) and (3.7)), and
suppose that there exists ¢y > 0 such] that

(3.20) ZA V2N (x; h) A (%) < e1h?Ty, Vx e R", Vhe (0,1].

Then there exists C > 0, depending only on N, on a finite number of seminorms of
the A 1/2 , Aj, Bj and C, and on the constant ¢y of (3.20), such that
(3.21)  (p™(x,hD; hyu,u) = —Ch*|ul, Yu e 7 (R™CN), Vh e (0,1].

PrROOE. The proof follows the same lines of that of Theorem 3.1. I write in the
first place

p(x, & h) = ZA V2Li(x, & ) a,(x)
+ C(x;h) 42,4 ()" 2By, j(x;h)* 4;(x) 2,

where

IBA Sxsh)y =Li(x,&h)", 1<j<n.

L(x,&h) = Gln + 5 <

Then, as before,

1/2
{Al/sz Al/z} 2A1/2 ’
xj
and
1/2
1/2 j
{4/%, L2} = 2 L
Therefore
. 12, y2u 41/2 - 1/272 (1/2
ZIAJ tnlitnd;"” = ZlAf Lj 4,
= =

aA1/2 aAl/Z

th( Al

L)) + i,
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where r = r(x; h) is smooth in x and for all & € Z"

sup (05 (5 AL gnmy) < +0,
he (0,1]

with bounds depending only on the constants appearing in (3.18) and (3.19).
Therefore, for any given u € #(R"; C")

(p™(x, hD; h)u, u) = Z"wahDh) A2

04!
+2hImZ <LW x,hD;h) A} u, a] u>
Xj

( xh)——ZA 1/2BA k) 4,(x )l/z)u,u>
+ 17 0(|ulg)

(by the Cauchy—Schwarz inequality)

1 n
2 3 2 I (o kD47
J=

2

n o4l
_ 2/122 | H(Colexi ) + 12 0(ulg),

where this time I have put

1 n
Co(x;h) == C(x; h) — ZZ Ai(x) 2B, j(x; h) 4;(x) 2.
=1
Now, proceeding in a way similar to that of the proof of Lemma 3.2, let

Spec(Bu, ;(x;h)) i= {4 (x;h); k=1,...,N} <R, 1<j<n,

and letfork=1,...,N

1

1, 1 ,(n
¢ = O = (=34 k), =3 A0 (), = 5 2 ().

Then by (3.16) one has

1 .
ZA )'2(5 B, j(x;h) — Ei/(c])(x; W) 4;(x)" + Co(x;h) = 0
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that is
C >—zn:A1/2(le 0, L) a4
0= < Jo\g P40 T %% Aj,J 47k N)4p
whence averaging over k = 1,..., N gives, as before,

1 n
Coxih) 2 = 7 D) PR Ay ()

It thus follows from hypothesis (3.20) that

2
n

(p™ (x, hD; h)u,u) > —2h* Z

J=1

1/2
J

an

2 2 C1 2
lulg + h*O(Juls) — thl\ullo,
L’L

for all u e #(R"CY) and all 4 € (0,1], which concludes the proof of the
theorem. O

Of course, a lot of information has been thrown away when disregarding
the “‘sum-of-squares” term appearing in (3.11) in bounding from below the L2-
quadratic form of pY(x,/nD;h). In this respect, Theorem 3.1 (and Theorem 3.4)
is not yet satisfactory. This will be seen even more clearly in the next section,
where I shall test Theorems 2.1 and 3.1 on a Dirac-squared-type system.

However, there are instances in which the result of Theorem 3.1 is sharp
for all 4 € (0, h], for some Ay € (0, 1] sufficiently small, as the following lemma
shows.

LeMMA 3.5. Suppose that

(322) B](X, h) = B()](h) -+ l’lv/Bl)j(X; h) = B](X, h)*, ] = 1, Lo, n,

where v; > 3/2, 1 <j <n, the By ;j(h) are matrices that are constant in x, and the
By j(-;h) € C*(R";My) are such that for all o € Z'! there is C, > 0 with

Z 105B1, (1)) e < Cyy Yhe (0,1].
=1

Suppose further that there exists ¢ > 0 such that for any given h € (0, 1] there are

é_/(-)(h) eR,j=1,...,n and a non-zero vj, € C¥ such that
1
(3.23) ‘(:?(h)IN + EBO,j(h))uh " < 3 Ploplen, 1<j<n.
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For each h € (0, 1] let u, € & (R"; C) be the function

(324) uh(x) — cohn/2eih*1<x¢0(h)>—112|x‘2/2vh/|Uh|CN’ X e Rn7

where E°(h) = (E)(h),...,E2(h)), and c;? ::/ e dr. Consider the Sfirst-order
Rll

symbols Lij(x,&;h) = &Iy +%B_,(x; h),1 <j<n Then

C2 2
(3.25) ||L]W(x,hD;h)uh||§g10h3<c2—|—70+c—g>, Vhe (0,1, 1<j<n,
: p

2
where ¢;? ::/ £l dr.

ProOF. I may suppose that |v;|ov =1 for all & € (0, 1]. It is immediate to check
that

"uh”O = 17 Vh € (07 1]7

and that
h 0 23 .
hD,up(x) = 78xju;,(x) = & (Wup(x) + ih”xjup(x), 1 <j <n.
Now

2
2 _521y|2 C
gl = i [ g s =Bt vhe 0,1

and, by hypothesis (3.23),

1 1 .
L (x,hD; h)uy, = (fj(.)(h)IN + EBO,j(h))uh + hY EBl’j(X; R)uy, + ih X,

2
<c*h’, Vhe(0,1].
0

(v + 5 Bo ()

Since

I therefore get

2 2
1L (v, hD; By |§ < 100° (Cz P >
1

for all & € (0, 1], which concludes the proof. O
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REMARK 3.6. It is easy to give examples for which the hypotheses of the above
lemma are fulfilled, as the following two cases show:

(i) Suppose there is C > 0 and jy € {1,...,n} such that
|Bo.j(h) — Bo,jy(h) |y, < C¥?, Vhe (0,1], j=1,....n;
(it) Suppose that
[Bo, j(h), By, ;:(h)] =0, Yhe(0,1], j,j'=1,...,n

In case (i) one just takes for each h € (0, 1]

&V(h) e Spec( — %Boﬁ](h)),

a vector

1
0#uv, e Ker(EBoJ(h) + é?(h)]N),

and &°(h) = (& (h), &} (). ..., &) (h)).
In case (ii) one takes for each h € (0, 1]

&(h) = (&)(h), & (h), ..., (),

where é]Q(h) e Spec( — %Bo,j(h)) for 1 <j < n, and the é](-) (h) are chosen in such a

way that 0 # vy, is a common eigenvector, ie.

" 1
O#uve) Ker(EBOJ(h) +E(h)1y).
J=1

Hence Lemma 3.5 yields that when 4 = Iy and the matrices B, ; = B; in
Theorem 3.1 satisfy in addition the assumptions of the lemma, then there exists
ho € (0, 1] such that inequality (3.9) is sharp for all h € (0,ho), in the sense that
no better contribution from the terms (L}"(x, hD; h)*u,u) may be obtained.

4. SEMICLASSICAL DIRAC-SQUARED-TYPE SYSTEMS

In this section I test Theorem 3.1 on certain systems that I shall call Dirac-
squared-type systems.

Following Salo and Tzou [5], one defines a generalized Dirac-type operator as
follows. Let ¢; € C" and consider the constant-coefficient N x N system (N > 2)
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(4.1) Po(&) = (b - i <jh<nr CER
(where v - w =), vgwy, for v, w complex vectors), such that
(42) Po(é) = Po(¢)", and  Po(&)* = €Ly
Then it follows that
(4.3) Po(O)Po(L) + Po(L)Po(0) = (C- Oy, (e
When considering certain problems that involve Carleman estimates (see for

instance [5]), one is willing to consider the system given by the principal part, in
the semiclassical calculus, of Py(hD + iVyp)*Py(hD + iVp), that is

(44)  plx.&h) = Po(&)” + Po(Vo(x:h)* + i[Po(&), Po(Vo(x; b)),

(x,8) e R" x R", h € (0,1], where ¢ = ¢(x; h) is smooth in x and real-valued, and
V denotes the gradient with respect the variable x. Since

{p(x, & Yo, vyen = [Po(E)o[2n + [Po(Vp)elg v + 21m{ Py (&), Po(Ve)vden,
v e CV, by the Cauchy—Schwarz inequality we clearly have that
p(x,&h) = p(x,&h)" > 0.
I shall call system (4.4), a Dirac-squared-type system.

We have the following result, which is a consequence of Theorem 3.1 (it is of
course also a consequence of Theorem 2.1 and the final part of Remark 3.3).

PrROPOSITION 4.1. Suppose that ¢(x;h) = c, + hp(x;h), for a real constant c,
and a smooth, real-valued y such that |03(-;h)| -y < +oo for all h e (0,1]
and all o € 7'} with |a| > 1. Then there exists C = C(n) > 0 such that

4.5)  (p" (e, hD; hyu,u) = —CRA\VY (5 )] Julg, Vue #(R™CV),

for all h € (0,1]. One has from Theorem 3.1 that C = 2(n — 1), whereas from its
method of proof one has C = (n — 2).

PrOOF. 1 write

Py(&) =D &0
j=1

Then from (4.2) one has
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and

(4.6) Po(ej)Po(ejr) + Polej)Pole;) = Q;Qy + 00y =0, 1<j,j' <n, j#j'

y (4.4) I may therefore write

p(x,&h) = [¢| IN+Z@ B;(x; h) + C(x; h),

where

(4.7) Bi(x;h) == i[Q;, Po(Vo(x; h))| = [ijQk] ( h)
k=1
10,04 ””( ),
k=1

and

(4.8) C(x;h) = [Vo(x; h) Iy = W[V (x; 1) Iy

One may also write, by (4.6),

n

49) Bl =21 > QO () = 2(QP(Volxih) £ (xchIy).

k#j; k=1

Notice that by (4.7) and (4.8), the final part of Remark 3.3 yields the existence
of C" > 0 such that

(4.10)  (p™(x,hD; hyu,u) > —C'h?|u|;, Yu e L(R";CN), Vh e (0,1].

Notice also that, again by virtue of (4.7) and (4.8), p satisfies (2.4) and (2.5),
whence Theorem 2.1 too gives the existence of C’ > 0 such that (4.10) holds.

The point here is therefore to have a better control on the constant C’, and
this is provided by Theorem 3.1 and its proof. This is what I am going to show
next. (However, Theorem 2.1 holds for more general matrix-coefficients 4 which
are in fact allowed to be only > 0, i.e. allowed to have a non-trivial kernel; it
hence holds, for instance, for the system A4;(x) p(x,&;h)A;(x), where p is given
by (4.4) and the kernel of 4;(x) is non-trivial for some x.)
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One has from (4.7) that Tr(B;(x; 1)) = 0, for all x, h, and j = 1,...,n. On the
other hand (using (4.6))

j = (lhz Q]an lp) — _hzz[ijQk Z Q]va’ %

oy 0
—h* Y N v (0/0k0; 0 — 0k Q7 Ok — Qi Ok Ok Q; + 0k 0; 0k O))

K @Xk 6xk
oy 0
el a‘” N 0.0100 ~ 00200 ~ 000w~ 0:0}0)
g Ok OXi!
oy o oy 0
e 6—””6—‘”@{@(, —ar 3 PV g0
k! #j X k=k'#j Y OXk!
o oy 2 W oy
a2 2 0000 +4h 2 000
k<k;k’#] O O k’<kzk:k’¢1 O O
oy o
= 4h2< () )IN + 4h? (O Ok + Ok Ok)
kz;éj X k<k;k’ 0 O

= 4* |V (x; ) Iy,
where I have put Uy = (0 /0xi ). ;- Hence
Bi(x;h)* = 42 \VI(x; h)| Iy, Tr(Bi(x;h)?) = ANR* |V (x; h) |

It follows that
A;(x; h) = 2NRAVYIY (x; 1) P Ly,

> Aj(xih) = 2N VO (x; )P Ly = 2N (n = DR |V (x; )L,
j=1 Jj=1
and that

1 .
(411)  Colwsh) = V(s )Py = 33 4 VO (x )Py
j=1

n

= —(n—2)R|Vy(x; h))*Iy > (by (3.15)) > —%ZAj(x;h)
j=1

= —2(n— DIV (x; h) |1y,

which concludes the proof. O
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I next give an example (which is, in fact a consequence of Lemma 3.5) of
Dirac-squared-type system for which the procedure of completing the square is
sharp for obtaining the semiclassical Fefferman—Phong inequality.

LEMMA 4.2. Let n > 2, and for some v > 3/2 let
(412)  o(x;h) = bi(h)xi + ba(h)xs + h'¢y (x:h), x e R", he(0,1],

with 0 # by(h),by(h) € R, where ¢\(-;h) € C*(R";R) and for all o€ Z' with
loo| > 1 there exists C, > 0 such that

1031 (5 A)l e < Coy VR e (0,1].
For each h € (0,1] let w, € ¥ (R";C") be the function
up(x) = coh”/zeﬂrl'1“(1’2(”)“*‘’b‘(h>“*2)7hz|x‘2/2v/|U|a:zv7 x e R",
where the real number 2y € Spec(—iQ1Q2) and 0 # v € Ker(iQ10> + o), and
where (again) cy* = / e dr 4s before, consider the first-order symbols

R"

Li(x,&h) = &Iy +3Bi(x;h), 1 <j<n Then there exists a constant C >0
such that

ILY (x, hD; hYuplg < Ch?, Vhe (0,1), j=1,....n.

ProOOF. Recalling formula (4.9) and using

W

0y, oxy’ k=3,

I write
Bj(x;h) = Bo,j(h) + 1"By,j(x;h), j=1,....n,
where
Bo1(h) = 2iby(h) 0102, Boa(h) = 2ibi(h) 0201, By j(h) =0, j =3,
and

RS J .
By j(x;h) = 2ih Z Qijaisl(x; h), 1<j<n.
k£ k=1 Xk

Therefore (by (4.6))
[Bo‘j(h)aBO,j’(h)] =0, Vhe (07 1]7 vjvj/ =1...,n

1
hD,, uy, + 530,1(}1)“11 = by(h) (Ao + iQ10n)uy, +ih’x1up,
—_—

=0
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and
hD.,u; + %BO,Z(h)uh = —by(h) (Ao — iQ2 01 )up, +il’ xyup,
=0
so that the proof follows as in Lemma 3.5. O

Lemma 4.2 therefore shows that when, say, b(h) = by(h) = hby(h), where
bo(h) is real and uniformly bounded for all / € (0, 1], one has the existence of
an /iy € (0, 1] such that Proposition 4.1 holds and is sharp for all h € (0, ho), again
in the sense that the terms (L} (x, hD:; h)*u,u) do not give a better contribution.

In the following remark I give an elementary example of second order system
(of Dirac-squared-type) for which the semiclassical Fefferman—Phong inequality
cannot hold.

REMARK 4.3. Recall from the proof of Proposition 4.1 that when writing
p(x,&h) = Zj’-’zl Lj(x,f;h)2 + Co(x; h), one has (see (4.11)) that

Co(x; ) = —(n = 2) [V (x; ) *Ly.
Take thus n > 3 and ¢ and ¢, as in (4.12), where (say)
bi(h) = ba(h) = h'by, by # 0.
Then, for hy € (0, 1] sufficiently small,
\Vo(x; h)|* ~h, Yhe(0,h), VxeR",
and by Lemma 4.2 one has
(p™ (x, hD; hup, u) ~ O(h*) — h, Yh e (0, ),

whence (by possibly shrinking hy) the semiclassical Fefferman—Phong inequality
cannot hold.

Of course, one may even give “‘worse’” and simpler examples. The simplest one is
given just by taking ¢(x;h) = x). In this case, again by Lemma 4.2 (with by (h) = 1
and by(h) = 0), one has

(p™ (x,hD; h)uy, up) ~ 0(h3) —1, Vhe (0,h],

which shows again (by possibly shrinking hy) the failure of the semiclassical
Fefferman—Phong inequality.

It is finally interesting to notice in Lemma 4.2 that the function
bi(h)x; 4+ by(h)x, is a harmonic conjugate of b,(h)x; — by (h)x,. This leads to
the following observation (a localized version of the semiclassical Fefferman—
Phong inequality).
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LeMMA 4.4. Letn >3 andv > 3/2. For each h € (0, 1], let ¢y = ¢ (x1,x2;h) be a
harmonic polynomial. Consider the Dirac-squared-type system (4.4), with

o(x;h) = ¢o(x1,x2;h) + W'y (x;h), xeR", he(0,1]
where ¢,(-;h) is real and smooth for all h € (0,1], and such that for any given
compact K = R" and any given o € 7" with 1 < |a| <2 there exists Cx, > 0 for
which
10561 (M)l e (k) < Cra VH € (0,1].
Then for any given compact K < R" one has
(P (x, hD; h)u,u) = —(n = 2) |V (s W) o ) lul, Vu e CF (K;CN),
Sfor all h € (0,1].

Furthermore, one may find a constant C > 0 and for each h € (0, 1] a function
uy € S (R";CN) (see (4.14) below) such that

|LY (x, hD; hyuy |5 < Ch®, Vhe (0,1), j=1,...,n.
PrOOF. I need only prove the second part of the statement. For this pur-
pose I adapt the proof of Lemma 4.2 as follows. Let 4y € Spec(—iQ;Q>) and
0 # v € Ker(iQ1 Q> + o). Then I write

B](X,l/l) :BO,j(X;h) +hvBl,j(x;h)7 .]: 17"'7”7

where
By 1(x;h) = 21'2;:2()@ h)010>, Boa(x;h) = Zi%(x; h) 0,01,
By, j(x;h) =0, j=3,...,n,
and

. G
By j(xh) =2il" ) Qijaiwx;h), l<j<n
kAj k=1 Xk

Let vy (x1,x2; /1) be a harmonic function such that v, + ig, is holomorphic, that
is, ¢, is a harmonic conjugate of yy,. Then y,(+; 1) is a polynomial and

Mo _ 0 o _ O

4.1 = =
( 3) 6x1 axz ’ @X2 6x1

., Y(x1,x2) € R?, Vhe (0,1].

Consider then, for each % € (0, 1], the Schwartz function

(414) uh(x) _ Cohn/zeih‘l,loszo(xl,ngll)fhl‘x‘2/20/|v|clv7 xe Rn7
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2
where ¢;? = / ¢ dr. Now, by (4.14) and (4.6) one has
n

1 0
hDy, uy, +§Bo,1(x; h)uy = ( 6_% + ﬂlQle)uh + ih3xu,

6% (o + 101 02)uy, +ih*xyup,
| N e’
=0

and

1 0 0
530,2 (x; h)uy, = (/10 6—% + %o lQ2Q1>uh + ih*xauy,

0 0
(/1 a—%—ﬂ Q1Q2)uh + ih® xyu
X

hDXz uy +

_

- axz (10 + inQz)uh —|—ih3x2uh.
e —

=0
Hence the proof follows as in Lemma 3.5. O
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