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Abstract. — In this paper we consider the PDE describing the fluid flow in a porous medium,

focusing on the solution’s dependence upon the choice of the saturation curve and the hydraulic con-
ductivity. Basically, we consider two di¤erent saturation curves (say y1 and y2) and two di¤erent hy-

draulic conductivities (K1 and K2) which are both ‘‘close’’ in the Ll
loc-norm. Then we find estimates

to prove a constitutive stability for the solutions of the corresponding problems with the same

boundary and initial conditions.
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1. Introduction

Let us consider the well-known equation describing a 1-D Darcyan flow of a fluid
through an homogeneous rigid porous medium (see [1]–[2]), i.e.

yt ¼ ½Kðcx þ 1Þ�xð1:1Þ

where

• x a ½0; 1� is the dimensionless vertical coordinate pointing upwards.

• c is the fluid pressure head (see [1] for more details),

c ¼ p

rg
;

with p fluid pressure, r liquid density and g gravity acceleration.

• y is the moisture content. In particular,

0a y � ymax

where ymax coincides with the porosity of the medium.

• K is the hydraulic conductivity of the medium.

The model is completed:



• by prescribing how K depends on y, i.e. giving the so-called hydraulic conduc-
tivity curve (see e.g. [3]),

K ¼ KðyÞ:ð1:2Þ

• By assuming a constitutive relationship linking y and c, namely the so-called
saturation (or retention) curve (see [4])1,

y ¼ yðcÞ:ð1:3Þ

In particular, both (1.2) and (1.3) are obtained by experimental measurements. It
has to be noted, however, that accurate measurements of the unsaturated conduc-
tivity and water retention curve is generally cumbersome, costly and very time–
consuming. Indeed, in many practical situations experimental data assessing the
‘‘precise’’ shape of the hydraulic functions are not available.

The aim of this paper is to show that ‘‘small variations’’ in the shape of both
the saturation curve and the hydraulic conductivity function produce ‘‘small vari-
ations’’ of the solutions, i.e. to determine how much changes in the shape of the
soil water retention curve and/or conductivity curve a¤ect the prediction of the
soil water content.

We note (see Remark 2.1) that two classes of retention curves are used in the
literature: one in which y 0ðcÞ is continuous (we will refer to it as a degenerate case
for a reason that will be selfexplained later on) and one in which y 0ðcÞ is discon-
tinuous at c ¼ 0 (non-degenerate case). The two cases exhibit relevant mathemat-
ical di¤erences; on the other hand it is extremely di‰cult (if not impossible) to
discriminate experimentally between the two cases. Therefore, our result of con-
stitutive stability of equation (1.1) seems particularly relevant.

Similar results were found in [6], where the author gives an estimate for a de-
generate problem without gravity term and in case of a completely unsaturated
domain.

In [7] constitutive stability results are proved (using an homotopy argument)
in the particular case of non-degenerate problems.

In [8] the following degenerate di¤usion problem is considered

ut ¼ ðum�1uxÞx;� 1

m
um

�
x

����
x¼0;1

¼ 0;

ujt¼0 ¼ u0ðxÞ;

with 0 < ma 1, and the author proves an estimate in the L2-norm for the con-
tinuous dependence of the solution u on the parameter m . The proof cannot be
extended to the problem we are considering, since it corresponds to a particular
choice of the saturation curve y and moreover the gravity term does not appear.

1Prescribing (1.3) means that the equilibrium between pressure and water content is reached

instantaneously. A di¤erent approach (see [5] for instance) includes dynamical e¤ects expressed by
a di¤erential equation linking y and c.
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We conclude this section quoting the stability result found in [9] for problems
in which the degeneration belongs to a completely di¤erent type.

2. Assumptions and basic equations

We consider the following assumptions

(H.1) KðyÞ a C1ð½0; ymax�Þ,

sup
y A ½0;ymax�

KðyÞ ¼ Ksat < l;

and

KðyÞ ! 0þ as y ! 0þ:ð2:1Þ

(H.2) K 0ðyÞb 0 and

sup
y A ½0;ymax�

K 0ðyÞ ¼ LK < l:

(H.3) K 0ðyÞ is uniformly Lipschitz continuous with Lipschitz constant LK 0 .

We assume

(H.4) y a CðRÞ and it is a strictly increasing function for c < 0 and yC ymax for
cb 0.

(H.5) yðcÞ is uniformly Lipschitz continuous with Lipschitz constant Ly.
(H.6) sups A ½�M0;0�

dK
dy

ðyðsÞÞ
� �2 y 0ðsÞ

KðyðsÞÞ

n o
< l, for any fixed M0 > 0 (see also Re-

mark 2.2 below).

Remark 2.1. For c ¼ 0 we shall consider two situations, i.e.

(1) y 0ð0�Þ ¼ y 0ð0þÞ ¼ 0 (which means that y a C1ðRÞ).
(2) y 0ð0�Þ > 0 while y 0ð0þÞ ¼ 0.

Once the saturation curve is given, equation (1.1) takes the following form

½yðcÞ�t ¼ ½KðcÞðcx þ 1Þ�xð2:2Þ

(usually known as the c-form of the Richards’ equation), where

KðcÞ ¼ KðyðcÞÞ:

Remark 2.2. In terms of KðcÞ assumption (H.6) reads as

sup
s A ½�M0;0�

½K 0ðsÞ�2

KðsÞy 0ðsÞ

( )
< l;
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for any M0 > 0. Even if it seems to be very restrictive, actually the permeability
and retention curves commonly used in hydrology fulfill such condition. In particu-
lar, the well-known vanGenuchten and Mualem curves satisfy (H.6) (see [3] and [4]).

In particular, after performing the so-called Kircho¤’s transformation G, defined
as

uðx; tÞ ¼ Gðcðx; tÞÞ ¼
Z cðx; tÞ

0

KðsÞ ds;

equation (2.2) reads as

½sðuÞ�t ¼ ½ux þ kðuÞ�x;ð2:3Þ

where kðuÞ ¼ KðG�1ðuÞÞ and the function sðuÞ ¼ yðG�1ðuÞÞ behaves like y.
As a consequence of assumptions (H.1)–(H.6) we have

(F.1) sðsÞ a CðRÞ, sðsÞ is strictly increasing for s < 0 and sCss for sb 0.
Moreover s is uniformly Lipschitz continuous with Lipschitz constant Ls.

(F.2) According to Remark 2.1 for s ¼ 0 two options are possible, i.e.
(1) s 0ð0Þ ¼ 0.
(2) s 0ð0Þ > 0.
In case 1 Richards’ equation degenerates at u ¼ 0, while in case 2 equation
(2.2) is uniformly parabolic.

(F.3) sups A ½�M0;0�
½k 0ðsÞ�2
s 0ðsÞ

n o
< l, for any fixed M0 > 0.

Concerning the initial datum we consider

sðuðx; 0ÞÞ ¼ v0ðxÞ:ð2:4Þ

with v0ðxÞ Lipschitz continuous function. The boundary conditions may be
chosen among these:

(I)
uð0; tÞ ¼ pðtÞ;
uð1; tÞ ¼ qðtÞ;

�

(II)
uxð0; tÞ þ kðuð0; tÞÞ ¼ FðtÞ;
uxð1; tÞ þ kðuð1; tÞÞ ¼ NðtÞ;

�

(III)
uð0; tÞ ¼ pðtÞ;
uxð1; tÞ þ kðuð1; tÞÞ ¼ NðtÞ:

�

We shall consider problems (I), (II) and (III) in the domain DT ¼ ð0; 1Þ � ð0;TÞ.
For such problems existence and uniqueness of a solution have been proved

(see [10]–[20], for instance). In particular, we can state the existence of a solution
u such that

u a L2ð0;T ;H 2ð0; 1ÞÞ
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and the following estimates hold true

jjujjl aM;ð2:5Þ
jjuxjjlaM1;ð2:6Þ

jjuxxjjL2ðDT Þ aM2;ð2:7Þ

where the constants depend on the initial and boundary data and coe‰cients.

Remark 2.3. Such results imply, in turn, that the function s is Hölder continuous
(see [15] and [20]). Moreover, we note that (2.5) holds true also if we consider prob-
lems in an n-dimension spatial domain, while (2.6)–(2.7) in general are valid only
for the 1-D case. We confine our analysis to the latter case.

Remark 2.4. It is important to recall that estimate (2.7) does not imply, in gen-
eral, a similar regularity on ut. This is true only if the equation (2.3) is uniformly
parabolic, namely only in case 2 of condition (F.2).

Remark 2.5. Since a priori estimates like (2.5) ensure that y has a positive lower
bound, condition (2.1) in assumption (H1) entails,

inf
y A ½0;ymax�

KðyÞ ¼ Kmin > 0: r

Moreover, we recall the following results

(R.1) In case of problem (III), we may have uðx; tÞ < 0 in DT , for suitable
NðtÞb 0. We remark, however, that boundary condition (III) should be
replaced by a unilateral boundary condition (see [10] and [13] for details).

(R.2) In case of problems (I) and (II), a saturation region may appear. In such a
case (see [14]–[19]) the following sets could be defined

D ¼ fðx; tÞ a DT : sðx; tÞ < 0g ¼ fðx; tÞ a DT : uðx; tÞ < 0g;
P ¼ fðx; tÞ a DT : sðx; tÞ ¼ 0g ¼ fðx; tÞ a DT : uðx; tÞb 0g;

corresponding to the unsaturated and saturated region, respectively, and
the interfaces separating the regions can be proved to be Lipschitz contin-
uous.

Hereafter we give three examples concerning the water infiltration through the
subsurface that can be described by the problem (I), (II) or (III).

Example 1: vertical flow through the vadose zone (see also [10]).

In this case x ¼ 0 represents the so-called water table and x ¼ 1 the ground
surface. Problem (I) with pðtÞ ¼ 0 and qðtÞb 0 models water infiltration through
the unsaturated zone in case of prescribed water pressure at the ground surface.
When qðtÞ > 0 a saturated region appears.
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Problem (III) with pðtÞ ¼ 0 and NðtÞb 0 describes the same phenomenon in
case of flux condition on the ground surface.

Example 2: vadose zone and phreatic aquifer.

Such a scenario can be modeled by setting x ¼ 0 at the impervious layer con-
fining the bottom of the aquifer, while x ¼ 1 still represents the ground surface.
Possible boundary conditions are the ones of problem (II) with F ðtÞ ¼ 0 (no flux
condition on the impervious layer) and NðtÞb 0 (rain flux condition).

Example 3: vadose zone and phreatic aquifer in case of evaporation.

Such a case has been studied in [12]. As before, x ¼ 0 represents the imper-
vious layer confining the bottom of the aquifer and x ¼ 1 the ground surface.
Boundary condition of type (II) are used, with F ðtÞ ¼ 0 (no flux condition) and
NðtÞ ¼ q ¼ const: where qa 0 is the evaporation rate. Actually, as pointed out in
[12], the evaporation rate could not be prescribed, since, in general, q depends on
uð1; tÞ as well as other physical parameters (e.g. temperature, wind velocity, rela-
tive humidity, etc.). However, in some case, e.g. soil surface close to saturation,
we may assume a constant evaporation rate. r

3. Stability results

In this section we give an estimate (in the L2-norm) for the di¤erence of satura-
tion profiles and the conductivity curves.

Let us take two pairs of constitutive functions characterising the medium, i.e.
fy1ðcÞ;K1ðyÞg and fy2ðcÞ;K2ðyÞg, and assume

jjy1 � y2jjLl
loc
ðRÞ < e;

jjK1 �K2jjLlð½0;ymax�Þ < e:

where e > 0 is a constant.
The corresponding fs1; k1g and fs2; k2g satisfy

jjs1 � s2jjLlð½�M;M �Þ aCse;ð3:1Þ

and

jjk1 � k2jjLlð½�M;M �Þ aCke;ð3:2Þ

where Cs and Ck are constant depending on Kmin, Ly and LK.
We introduce also the following additional assumption

(F.4) There exists a constant N1 > 0 such that for all w a ½�M;M �, v a ½�M; 0Þ,
we have

sup
ðv A ½�M;0Þ;w A ½�M;M �Þ

js2ðvÞ � s1ðvÞj
js1ðwÞ � s1ðvÞj

jw� vj
� �

aN1:
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Remark 3.1. Even if condition (F.4) may seem too artificial, such a requirement
is physically reasonable. In particular, it is always fulfilled in case s1 does not de-
generate at 0. In general, (F.4) holds true provided that slight assumptions on the
mutual relationship between s1 and s2 are satisfied. Details on this point are given
in Appendix A. r

Now, if u1 and u2 are the corresponding solutions to problem (I), or (II) or
(III), with the same initial condition and boundary data, we want to estimate
jjs1ðu1Þ � s2ðu2ÞjjL2 in terms of e.

First we recall a result corresponding to Lemma 1 of [21].

Lemma 3.1. If assumptions (H.1)–(H.6) and (F.1)–(F.3) are fulfilled, then there
exists a constant F0 > 0 such that

½kiðs1Þ � kiðs2Þ�2 aF0½siðs1Þ � siðs2Þ�ðs1 � s2Þ;ð3:3Þ

for any s1; s2 a R and with i ¼ 1 or 2. r

The main result in the paper is the following

Theorem 3.1. If assumptions (H.1)–(H.6) and (F.1)–(F.4) are fulfilled then

�Z T

0

Z 1

0

js1ðu1ðx; tÞÞ � s2ðu2ðx; tÞÞj2 dx dt
�1=2

aCe:ð3:4Þ

with C constant depending on Ls, Cs, Ck, M, and T.

Proof. The proof is based on the approach used in [6].
We prove the assertion in case a Dirichlet problem (I) is considered. Slight

changes of the proof are necessary to deal with other cases (see Remark 3.2).
The weak form of equation (2.3) reads asZZ

DT

fsðuÞft � ½ux þ kðuÞ�fxg dx dt ¼
Z 1

0

fðx; 0Þv0ðxÞ dx;ð3:5Þ

A di¤erent form of the expression (3.5) is the followingZZ
DT

fsðuÞft þ ufxx � kðuÞfxg dx dt ¼
Z 1

0

fðx; 0Þv0ðxÞ dx;ð3:6Þ

Ef a C1ðDTÞBL2ð0;T ;H 2
0 ð0; 1ÞÞ;

which is obtained from (3.5) by noting that uxfx ¼ ðufxÞx � ufxx and ðufxÞ ¼ 0,
for x ¼ 0; 1. Now, considering two solutions u1, u2 and subtracting the equations
corresponding to (3.6), we getZZ

DT

f½s1ðu1Þ � s2ðu2Þ�ft þ ½u1 � u2�fxx � ½k1ðu1Þ � k2ðu2Þ�fxg dx dt ¼ 0;ð3:7Þ
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Moreover, adding and subtracting s1ðu2Þft and k1ðu2Þfx in (3.7), we have

ZZ
DT

f½s1ðu1Þ � s1ðu2Þ�ft þ ½u1 � u2�fxx � ½k1ðu1Þ � k1ðu2Þ�fxg dx dtð3:8Þ

¼
ZZ

DT

f½s2ðu2Þ � s1ðu2Þ�ft þ ½k1ðu2Þ � k2ðu2Þ�fxg dx dt

Let us define

Aðx; tÞ ¼
s1ðu1ðx; tÞÞ � s1ðu2ðx; tÞÞ

u1 � u2
; if u1ðx; tÞA u2ðx; tÞ;

0; otherwise:

8<
:

and

Bðx; tÞ ¼
k1ðu1ðx; tÞÞ � k1ðu2ðx; tÞÞ

u1 � u2
; if u1ðx; tÞA u2ðx; tÞ;

0; otherwise:

8<
:

which, in general, are non continuous functions. Although, thanks to properties
(H.1) and (F.1) we have,

0aAðx; tÞaLs; 0aBðx; tÞaLk; Eðx; tÞ a DT :

Now, we rewrite (3.8) as

ZZ
DT

ðu1 � u2Þ½Aðx; tÞft þ fxx � Bðx; tÞfx� dx dtð3:9Þ

¼
ZZ

DT

½s2ðu2Þ � s1ðu2Þ�ft dx dtþ
ZZ

DT

½k1ðu2Þ � k2ðu2Þ�fx dx dt

Let us consider sequences of functions fÂAng a ClðDTÞ, fB̂Bng a ClðDTÞ, such
that

0a ÂAnðx; tÞaLs; jjÂAn � AjjL2ðDT Þ a
1

n
as n ! l

0a B̂Bnðx; tÞaLk; jjB̂Bn � BjjL2ðDT Þ a
1

n
as n ! l

and set

An ¼ ÂAn þ
1

n
; Bn ¼ B̂Bn þ

1

n
;
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so that

0 < Anðx; tÞaLs þ 1; jjAn � AjjL2ðDT Þ ! 0 as n ! l;ð3:10Þ
A

An

����
����

����
����
L2ðDT Þ

is bounded;ð3:11Þ

0 < Bnðx; tÞaLk þ 1; jjBn � BjjL2ðDT Þ ! 0 as n ! l;ð3:12Þ
B2
nðx; tÞ

jAnðx; tÞj
is bounded ðbecause of Lemma 3:1Þ:ð3:13Þ

Moreover, consider a sequence fzng a ClðDTÞ such that

jjznjjL2ðDT Þ ! jju1 � u2jjL2ðDT Þ as n ! l:ð3:14Þ

Here and in the sequel C j, ð j ¼ 1; 2; . . .Þ, denotes any constant not dependent on
n.

Now, we look at the following (backward) parabolic problem

Anfn; t þ fn;xx � Bnfn;x ¼ Anzn;ð3:15Þ
fnðx;TÞ ¼ 0;ð3:16Þ
fnð0; tÞ ¼ 0 ¼ fnð1; tÞ:ð3:17Þ

Problem (3.15)–(3.17) has a unique solution fn a C2;1ðDTÞ (see [22], for instance).

Remark 3.2. Since we are considering a Dirichlet problem, we impose conditions
(3.17) so that fn may be used later on as test function in the weak form of the
equation. Due to the regularity of fn, such conditions imply that fn; tð1; tÞ ¼ 0 ¼
fn; tð0; tÞ so that

fn; tð1; tÞfn;xð1; tÞ ¼ 0 ¼ fn; tð0; tÞfn;xð0; tÞ;ð3:18Þ

which is a property used in the proof (see below). Although, condition (3.18) is sat-
isfied also in case problem (II) or (III) are considered. As a matter of fact, in
such cases instead of (3.17) one should set fn;xð0; tÞ ¼ 0 ¼ fn;xð1; tÞ or fnð0; tÞ ¼
0 ¼ fn;xð1; tÞ, respectively. In any case property (3.18) is still fulfilled and thus the
remaining part of the proof can be applied also to problems (II) and (III). r

Let us consider t1 a ½0;TÞ and multiply by fn; t both sides of (3.15). Integrating
the resulting equation over Dt1;T ¼ ð0; 1Þ � ðt1;TÞ taking into account conditions
(3.16)–(3.17), we obtainZZ

Dt1 ;T

Anf
2
n; t dx dtþ

1

2

Z 1

0

f2
n;xðx; t1Þ dx�

ZZ
Dt1 ;T

Bnfn;xfn; t dx dt

¼
ZZ

Dt1 ;T

znAnfn; t dx dt;
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and so, ZZ
Dt1 ;T

Anf
2
n; t dx dtþ

1

2

Z 1

0

f2
n;xðx; t1Þ dxð3:19Þ

a

ZZ
Dt1 ;T

jBnj jfn;xj jfn; tj dx dtþ
ZZ

Dt1 ;T

znAnfn; t dx dt

a

ZZ
Dt1 ;T

jBnj
A

1=2
n

A1=2
n jfn;xj jfn; tj dx dtþ

ZZ
Dt1 ;T

znAnfn; t dx dt

a
1

4d

ZZ
Dt1 ;T

B2
n

An

ðAnf
2
n; tÞ dx dtþ d

ZZ
Dt1 ;T

jfn;xj
2
dx dt

þ 1

4d

ZZ
Dt1 ;T

Anf
2
n; t dx dtþ d

ZZ
Dt1 ;T

Anjznj2 dx dt;

where the Cauchy’s inequality has been used and d is a positive constant, to be
specified later.

Then, recalling (3.13) and choosing

d ¼ 1

2
½1þ supðB2

n=AnÞ�;ð3:20Þ

from (3.19) we get Et1 a ½0;TÞ,

1

2

ZZ
Dt1 ;T

Anf
2
n; t dx dtþ

1

2

Z 1

0

f2
n;xðx; t1Þ dxð3:21Þ

a d

ZZ
Dt1 ;T

f2
n;x dx dtþ djjA1=2

n znjj2L2ðDT Þ:

In particular, considering the continuous function

f ðt1Þ :¼
Z 1

0

f2
n;xðx; t1Þ dx;

we have

Et1 a ½0;TÞ; f ðt1Þa 2d

Z T

t1

f ðtÞ dtþ 2djjA1=2
n znjj2L2ðDT Þ:ð3:22Þ

Now, we apply a Gronwall type argument (see Appendix B), obtaining

Et1 a ½0;TÞ; f ðt1Þa 2djjA1=2
n znjj2L2ðDT Þ expð2dTÞ;ð3:23Þ

where d given by (3.20). We can exploit (3.23) to get the following estimate

jjfn;xjj
2
L2ðDT Þ aC1jjA1=2

n znjj2L2ðDT Þ:ð3:24Þ
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Now, since expression (3.21) holds true for any t1 a ½0;TÞ, we can consider it
with t1 ¼ 0 and use estimate (3.24), obtaining

jjA1=2
n fn; tjj

2
L2ðDT Þ aC2jjA1=2

n znjj2L2ðDT Þ:ð3:25Þ

Let us consider fn as test function in expression (3.8). Adding and substracting
the appropriate terms, we obtainZZ

DT

ðu1 � u2ÞAnzn dx dt ¼
ZZ

DT

½s2ðu2Þ � s1ðu2Þ�fn; t dx dtð3:26Þ

þ
ZZ

DT

½k1ðu2Þ � k2ðu2Þ�fn;x dx dt

þ
ZZ

DT

ðu1 � u2Þ½An � A�fn; t dx dt

þ dx dt

ZZ
DT

ðu1 � u2Þ½B� Bn�fn;x dx dt

¼ I1;n þI2;n þI3;n þI4;n

Before to estimate I1;n, we note that in the region fðx; tÞ a DT : u2ðx; tÞb 0g we
have I1;n ¼ 0, so that we can confine ourselves to the region

~DDT ¼ fðx; tÞ a DT : u2ðx; tÞ < 0g:

Then, to estimate I1;n we use Cauchy’s inequality along with conditions (3.1),
(F.4), (3.11) and estimate (3.25), i.e.

I1;n a

ZZ
~DDT

½s2ðu2Þ � s1ðu2Þ�
A

1=2
n

A1=2
n jfn; tj dx dtð3:27Þ

a d̂d

ZZ
~DDT

js2ðu2Þ � s1ðu2Þj2

An

dx dtþ 1

4 d̂d

ZZ
~DDT

Anf
2
n; t dx dt

a d̂dCse

ZZ
~DDT

js2ðu2Þ � s1ðu2Þj
A

A

An

dx dtþ C2

4 d̂d
jjA1=2

n znjj2L2ðDT Þ

aC3d̂deþ
C2

4 d̂d
jjA1=2

n znjj2L2ðDT Þ;

where d̂d is a positive constant to be defined later. For what I2;n is concerned, re-
calling assumption (3.2) and estimate (3.24), we apply again Cauchy’s inequality
with the constant d̂d and get

I2;n a

ZZ
DT

jk2ðu2Þ � k1ðu2Þj jfn;xj dx dtð3:28Þ

a d̂d

ZZ
DT

jk2ðu2Þ � k1ðu2Þj2 dx dtþ
1

4 d̂d

ZZ
DT

jfn;xj
2
dx dt

aC4d̂de
2 þ C1

4 d̂d
jjA1=2

n znjj2L2ðDT Þ;
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Then, using again property (3.11), estimate (3.22) along with property (2.5) on
juiðx; tÞj, ði ¼ 1; 2Þ, we apply Cauchy’s and Hölder’s inequality to obtain the fol-
lowing estimate

I3;n a

ZZ
DT

ju1 � u2j
jAn � Aj
A

1=2
n

A1=2
n fn; t dx dtð3:29Þ

aM 2d̂d

ZZ
DT

jAn � Aj2

An

dx dtþ C8

4 d̂d
jjA1=2

n znjj2L2ðDT Þ

aM 2d̂d 1� A

An

����
����

����
����
L2ðDT Þ

jjAn � AjjL2ðDT Þ þ
C2

4 d̂d
jjA1=2

n znjj2L2ðDT Þ

aC5d̂djjAn � AjjL2ðDT Þ þ
C2

4 d̂d
jjA1=2

n znjj2L2ðDT Þ:

Finally,

I4;n a d̂d

ZZ
DT

ju1 � u2j2jBn � Bj1=2 dx dtþ 1

4 d̂d

ZZ
DT

jfn;xj
2
dx dtð3:30Þ

aC6d̂djjBn � BjjL2ðDT Þ þ
C1

4 d̂d
jjA1=2

n znjj2L2ðDT Þ:

Let us exploit estimates (3.27)–(3.30) into expression (3.26), i.e.

ZZ
DT

ðu1 � u2ÞAnzn dx dtaC3d̂deþ
C2

4 d̂d
jjA1=2

n znjj2L2ðDT Þð3:31Þ

þ C4d̂de
2 þ C1

4 d̂d
jjA1=2

n znjj2L2ðDT Þ

þ C5d̂djjAn � AjjL2ðDT Þ þ
C2

4 d̂d
jjA1=2

n znjj2L2ðDT Þ

þ C6d̂djjBn � BjjL2ðDT Þ þ
C1

4 d̂d
jjA1=2

n znjj2L2ðDT Þ;

so that, choosing d̂d ¼ ðC1 þ C2Þ we haveZZ
DT

ðu1 � u2ÞAnzn dx dtaC3d̂deþ C4d̂de
2 þ C5d̂djjAn � AjjL2ðDT Þð3:32Þ

þ C6d̂djjBn � BjjL2ðDT Þ þ
1

2
jjA1=2

n znjj2L2ðDT Þ

aC7eþQðnÞ þ 1

2
jjA1=2

n znjj2L2ðDT Þ;

where

QðnÞ ¼ d̂d½C5d̂djjAn � AjjL2ðDT Þ þ C6jjBn � BjjL2ðDT Þ� ! 0 as n ! l:
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Finally, passing to the limit in (3.32) with n ! l we obtainZZ
DT

ðu1 � u2Þ½s1ðu1Þ � s1ðu2Þ� dx dtaC8e:ð3:33Þ

We note that, because of the monotonicity of s1,

½s1ðu1Þ � s1ðu2Þ�ðu1 � u2Þb 0:

and, recalling assumption (F.1), also the following inequality holds true

1

Ls

ZZ
DT

js1ðu1Þ � s1ðu2Þj2 dx dta
ZZ

DT

ðu1 � u2Þ½s1ðu1Þ � s1ðu2Þ� dx dt:

Exploiting these facts into (3.33), we findZZ
DT

js1ðu1Þ � s1ðu2Þj2 dx dtaC9e:ð3:34Þ

The desired estimate easly follows from (3.34). As a matter of fact, it is su‰cient
to note that

js1ðu1Þ � s2ðu2Þja js1ðu1Þ � s1ðu2Þj þ js2ðu2Þ � s1ðu2Þj

and use Cauchy’s inequality to getZZ
DT

js1ðu1Þ � s2ðu2Þj2 dx dt

a 2

ZZ
DT

js1ðu1Þ � s1ðu2Þj2 dx dtþ
ZZ

DT

js2ðu2Þ � s1ðu2Þj2 dx dt
� �

:

Finally, to the r.h.s. we apply estimate (3.33) along with assumption (3.1) and the
proof is complete. r

Remark 3.3. Notice that for problems such that a saturation region never ap-
pears (i.e. when it is possible to prove uiðx; tÞ < 0 in DT ), estimate (3.33) entails
an L2 estimate for ðu1 � u2Þ, since in such cases the curve s1 is invertible in the
whole domain DT.

Remark 3.4. In case of no gravity, proving Theorem 3.1 becomes simpler. We
report the proof of this particular case in Appendix C. r

Corollary 3.1. If assumptions (H.1)–(H.6) and (F.1)–(F.4) are fulfilled thenZZ
DT

jk1ðu1ðx; tÞÞ � k2ðu2ðx; tÞÞj2 dx dtaN1e:ð3:35Þ

with N1 constant depending on Ls, Cs, Ck, F0, M, M1 and T.
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Proof. As above, it is su‰cient to note that

jk1ðu1Þ � k2ðu2Þja jk1ðu1Þ � k1ðu2Þj þ jk1ðu2Þ � k2ðu2Þj;

and use Cauchy’s inequality to obtainZZ
DT

jk1ðu1Þ � k2ðu2Þj2 dx dt

a 2

ZZ
DT

jk1ðu1Þ � k1ðu2Þj2 dx dtþ 2

ZZ
DT

jk1ðu2Þ � k2ðu2Þj2 dx dt:

To the first integral on the r.h.s. we apply Lemma 3.1 along with estimate (3.33).
To treat the second integral we simply use assumption (3.2). r

Remark 3.5. The results found so far apply also to the original variables y and c,
which are the physical ones. As a matter of fact, let us consider a generalized solu-
tion u a L2ð0;T ;H 2ð0; 1ÞÞ of equation (2.3) and define cðx; tÞ in the following way,

Eðx; tÞ a DT ; cðx; tÞ is such thatð3:36Þ

cðx; tÞ ¼ G�1ðuðx; tÞÞ , uðx; tÞ ¼ Gðcðx; tÞÞ ¼
Z cðx; tÞ

0

KðsÞ ds;

where the Kircho¤ transformation G defined in Section 2 has been used.
By (3.36) the function cðx; tÞ is uniquely defined (almost everywhere) in DT,

thanks to the properties of K. Moreover, let use define

yðx; tÞ ¼ yðcðx; tÞÞ ¼ yðG�1ðuðx; tÞÞÞ ¼ sðuðx; tÞÞ;
Kðx; tÞ ¼ Kðcðx; tÞÞ ¼ KðG�1ðuðx; tÞÞÞ ¼ kðuðx; tÞÞ;

It is easy to check that cðx; tÞ satisfies
ZZ

DT

½yðcÞft � ðKðcÞðcx þ 1ÞÞfx� dx dt ¼
Z 1

0

v0ðxÞfðx; 0Þ dx:ð3:37Þ

for any test function f a C1ðDTÞBL2ð0;T ;H 2ð0; 1ÞÞ with fð0; tÞ ¼ 0 ¼ fð1; tÞ
and fðx;TÞ ¼ 0. Expression (3.37) is the weak form of a Dirichlet problem for
equation (2.2) with initial datum yðx; 0Þ ¼ v0ðxÞ.

Moreover, if ui ði ¼ 1; 2Þ are the generalized solutions corresponding to the pair
fsi; kig, we have

js1ðu1ðx; tÞÞ � s2ðu2ðx; tÞÞj ¼ jy1ðG�1
1 ðu1ðx; tÞÞ � y2ðG�1

2 ðu2ðx; tÞÞj
¼ jy1ðc1ðx; tÞÞ � y2ðc2ðx; tÞÞj

and therefore from Theorem 3.1 we get for yðcÞ an estimate of the same type. Simi-
lary, Corollary 3.1 entails an estimate for KðcÞ. r
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An interesting application of the technique used in Theorem 3.1 lies in the context
of unsteady flows exhibiting a variable viscosity. Such type of problems arise from
models in which the fluid viscosity is a¤ected by physical properties of the me-
dium (such as temperature) or by concentration of chemical species.

We give more details on this topic in Appendix D.

A. Remarks on conditions (F.4)

As stated in Remark 3.1, here we list some su‰cient conditions which guarantee
that property (F.4) is satisfied.

Case A. First of all, we note that if w a ½0;M � then s1ðwÞCs1ð0Þ ¼ ss. More-
over, for any v a ½�M; 0Þ we have

js2ðvÞ � s1ðvÞja ss � s1ðvÞ;

so that

js2ðvÞ � s1ðvÞj
ss � s1ðvÞ

jv� wja jv� wja 2M;

namely (F.4) is satisfied.

Case B. Let us confine ourselves to the case w a ½�M; 0Þ. If in addition s1 does
not degenerate, namely s 0

1ð0�Þ > 0, then (F.4) holds true. Indeed, we know that
there exists u� a ðw; vÞ (or, alternatevely u� a ðv;wÞ if v < w), such that

js1ðwÞ � s1ðvÞj
jw� vj ¼ s 0

1ðu�Þb g ¼ min
½�M;0Þ

s 0
1 > 0:

Hence,

js2ðvÞ � s1ðvÞj
js1ðwÞ � s1ðvÞj

jw� vja js2ðvÞ � s1ðvÞjg�1
a 2ssg

�1:

Of course, the same argument remains valid if the non-degenerate curve is s2. In
such a case we exchange the roles of s1 and s2 in the proof of Theorem 3.1 so
that we require that condition (F.4) is fulfilled by s2 and we proceed as above.

Case C. In general, the following result holds true,

Proposition A.1. If w a ½�M; 0Þ and there exist two constants m > 0 and
N2 > 0 such that Ev a ½�m; 0Þ the following properties are satisfied

s 0
1ðvÞ

½ss � s1ðvÞ�
bN2 > 0;ðA:1Þ

s2ðvÞb s1ðvÞ;ðA:2Þ

then s1 fulfills property (F.4).
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Proof. Let us introduce again u� a ½�M; 0Þ such that

s 0
1ðu�Þ ¼ js1ðwÞ � s1ðvÞj

jw� vj :

If u� a�m < 0 then,

s 0
1ðu�Þb ĝg ¼ min

½�M;�m�
s 0
1 > 0;

and we can proceed as in the non-degenerate case (see Case A).
On the other hand, if u� a ð�m; 0Þ then assumption (A.1) is valid and so

s 0
1ðu�ÞbN2½ss � s1ðu�Þ�:ðA:3Þ

Let us assume that w < v ) u� < v. Hence, s1ðu�Þ < s1ðvÞ and ½ss � s1ðu�Þ� >
½ss � s1ðvÞ�, so that (A.3) yields

s 0
1ðu�Þ > ½ss � s1ðvÞ�:

Therefore,

js2ðvÞ � s1ðvÞj
js1ðwÞ � s1ðvÞj

jw� vj < jss � s1ðvÞj þ jss � s2ðvÞj
N2½ss � s1ðvÞ�

<
1

N2
1þ jss � s2ðvÞj

ss � s1ðvÞ

� 	
<

2

N2
;

where last inequality holds true because of �m < u� < v and so s2ðvÞ > s1ðvÞ due
to assumption (A.2).

Finally, if v < w, then u� a ðv;wÞ and s1ðu�Þ < s1ðwÞ, so that (A.3) implies

½ss � s1ðu�Þ� > ½ss � s1ðwÞ� ) s 0
1ðu�Þ > N2½ss � s1ðwÞ�:

Thus we have

js2ðvÞ � s1ðvÞj
js1ðwÞ � s1ðvÞj

jw� vj

a
js2ðvÞ � s2ðwÞj
js1ðwÞ � s1ðvÞj

jw� vj þ js2ðwÞ � s1ðwÞj
js1ðwÞ � s1ðvÞj

jw� vj þ jw� vj
� �

a
1

N2

ss � s2ðwÞ
ss � s1ðwÞ

þ js2ðwÞ � s1ðwÞj
ss � s1ðwÞ

� �
þ 2M

a
1

N2

ss � s2ðwÞ
ss � s1ðwÞ

þ 1

� �
þ 2Ma

2

N2
þ 2M;

where in last inequality we have used assumption (A.2) for s1ðwÞ, being �ma
u� < w.

Therefore, in any case we are able to bound the quantity

js2ðvÞ � s1ðvÞj
js1ðwÞ � s1ðvÞj

jw� vj;

namely (F.4) is satisfied. r
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Remark A.1. From a physical point of view, assumptions (A.1), (A.2) are rea-
sonable. As a matter of fact, basically (A.1) requires that as v ! 0� the first deriv-
ative of s1 vanishes less rapidly than ½ss � s1ðvÞ�. For instance, such a property is
satisfied for any function of the type sðvÞ ¼ ss � vp ðp > 0Þ, which is a good ap-
proximation near to 0� for any function representing a saturation curve.

Also condition (A.2) is a nonrestrictive assumption. Indeed, one can suppose that
both s1 and s2 degenerate at v ¼ 0 (otherwise Case B can be applied ) so that these
functions have to satisfy both properties: s1ð0Þ ¼ ss ¼ s2ð0Þ and s 0

1ð0Þ ¼ 0 ¼
s 0
2ð0Þ. Therefore it is reasonable to assume that (at least in a left neighborhood of

0) they are ordered, namely condition (A.2).

B. Proof of estimate (3.23)

Here we prove assertion (3.23).
In particular, let f ðtÞ a continuous function defined on the interval ½0;T �, with

f ðTÞ ¼ 0 and satisfying the integral inequality

Et a ½0;TÞ; 0a f ðtÞa c1

Z T

t

f ðtÞ dtþ c2;

where c1 > 0 and c2 b 0 are given constants. Then,

Et a ½0;TÞ; f ðtÞa c2 expðc1TÞ:

Proof. Define s ¼ ðT � tÞ and

gðsÞ ¼
Z s

0

f ðT � hÞ dh:ðB:1Þ

We have

g 0ðsÞ ¼ f ðT � sÞ ¼ f ðtÞ:ðB:2Þ

moreover, performing the change of variable t ¼ ðT � hÞ into the integral of
(B.1), we easly obtain the following expression

gðsÞ ¼ �
Z T�s

T

f ðtÞ dt ¼
Z T

T�s

f ðtÞ dt ¼
Z T

t

f ðtÞ dt:ðB:3Þ

Therefore, (B.3) and (B.2) together with the assumption on f ðtÞ imply that

g 0ðsÞa c1gðsÞ þ c2:ðB:4Þ

Now, applying the same argument used in the well-known proof of Gronwall’s
lemma (di¤erential form), we get

gðsÞa c2

c1
½expðc1TÞ � 1�:
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so that

f ðtÞa c1gðsÞ þ c2 a c2 expðc1TÞ;

giving the desired estimate on f ðtÞ. r

C. Problems without the gravity term

Let us confine ourselves to the simpler case of equations without gravity term, i.e.
flows described by

½sðuÞ�t ¼ uxx;ðC:1Þ

instead of (2.3).

Proposition C.1. If all the assumptions listed above are fulfilled, then there ex-
ists a positive constant A such thatZ T

0

Z 1

0

jsiðu1ðx; tÞÞ � siðu2ðx; tÞÞj2 dx dtaAe:ðC:2Þ

where i ¼ 1; 2.

Proof. We prove the assertion for i ¼ 1. The weak form of equation (C.1) isZZ
DT

½sðuÞft � uxfx� dx dt ¼ 0

for any test function2 f. So considering s1 and s2,ZZ
DT

f½s1ðu1Þ � s2ðu2Þ�ft � ½u1;x � u2;x�fxg dx dt ¼ 0ðC:3Þ

In particular, following the technique used in [19], we can take an arbitrary
t1 a ð0;T � and select the following test function

fðx; tÞ ¼

Z t1

t

½u1ðx; sÞ � u2ðx; sÞ� ds; if 0 < ta t1;

0 if t1 a taT :

8<
:ðC:4Þ

Then expression (C.3) reads asZZ
DT

½s1ðu1Þ � s2ðu2Þ�ðu1 � u2Þ dx dtðC:5Þ

�
Z T

0

Z 1

0

ðu1 � u2Þx
Z t1

t

½u1ðx; sÞ � u2ðx; sÞ�x ds
� 	

dx dt ¼ 0:

2The properties to be satisfied by f depend on the type of boundary condition we are dealing
with.
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We note that

1

2

d

dt

Z T

t

½ðu1 � u2Þðx; sÞ�x ds
� �2

ðC:6Þ

¼ �½ðu1 � u2Þðx; tÞ�x
Z T

t

½ðu1 � u2Þðx; sÞ�x ds;

and so, if in (C.5) we replace the term in the square brackets with (C.6) and inte-
grate in time between 0 an T , we obtain

ZZ
DT

½s1ðu1Þ � s2ðu2Þ�ðu1 � u2Þ dx dtþ
1

2

Z 1

0

Z t1

t

½ðu1 � u2Þðx; sÞ�x ds
� �2

dx ¼ 0

which implies Z T

0

Z 1

0

½s1ðu1Þ � s2ðu2Þ�ðu1 � u2Þ dx dta 0:

Next, adding and subtracting the term s1ðu2Þ within the integral, we have

Z T

0

Z 1

0

½s1ðu1Þ � s1ðu2Þ�ðu1 � u2Þ dx dtðC:7Þ

a

Z T

0

Z 1

0

½s1ðu2Þ � s2ðu2Þ�ðu2 � u1Þ dx dt:

Now, because of the monotonicity of s1, we have that

½s1ðu1Þ � s1ðu2Þ�ðu1 � u2Þb 0;

for any pair u1, u2. This implies that the previous expression can be written also
as Z T

0

Z 1

0

js1ðu1Þ � s1ðu2Þj ju1 � u2j dx dtðC:8Þ

a

Z T

0

Z 1

0

½s1ðu2Þ � s2ðu2Þ�ðu2 � u1Þ dx dt:

Exploiting (F.1), we have also

1

Ls

Z T

0

Z 1

0

ðs1ðu1Þ � s1ðu2ÞÞ2 dx dtðC:9Þ

a

Z T

0

Z 1

0

js1ðu1Þ � s1ðu2Þj ju1 � u2j dx dt;
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hence, recalling (C.7),

1

Ls

ZZ
DT

½s1ðu1Þ � s1ðu2Þ�2 dx dta
ffiffiffiffi
T

p
jjs1 � s2jjL2ðDT Þjju1 � u2jjl:

Finally, from properties (2.5) and (2.6) we haveZ T

0

Z 1

0

ðs1ðu1Þ � s1ðu2ÞÞ2 dx dtaAe: r

D. A particular case: continuous dependence on viscosity

We consider a viscosity dependence on time and space and look at how a solution
of Richards’ equation is a¤ected by this phenomenon.

Moreover, since the procedure is quite similar to the one presented in Section
3, we do not show every detail of the proofs.

Let us consider in the domain DT ¼ ð0; 1Þ � ð0;TÞ a slight di¤erent form of
equation (2.2), i.e.

½yðcÞ�t ¼
KðcÞ
mðx; tÞ ðcx þ 1Þ

� 	
x

ðD:1Þ

where m is the fluid viscosity and K is the relative permeability of medium3. After
the transormation G, defined as

uðx; tÞ ¼ Gðcðx; tÞÞ ¼
Z cðx; tÞ

0

KðsÞ ds;

equation (2.2) reads as

½sðuÞ�t ¼
1

m
ðux þ kðuÞÞ

� 	
x

;ðD:2Þ

where kðuÞ ¼ KðG�1ðuÞÞ and the function sðuÞ ¼ yðG�1ðuÞÞ beheaves like y.
For y, K, k and s we stipulate all the assumptions (H.1)–(H.6) and (F.1)–(F.3)

made in Section 2. Consider now the Dirichlet problem given by (D.2) endowed
with the following conditions

sðuðx; 0ÞÞ ¼ v0ðxÞ;ðD:3Þ
uð0; tÞ ¼ f ðtÞ;ðD:4Þ
uð1; tÞ ¼ gðtÞ;ðD:5Þ

3Actually, in general we refer as relative permeability to the quantity rgKðcÞ, being r and g the

water density and gravity acceleration, respectevely. Here we include these constants into the func-
tion K to make the notation simpler.
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where v0ðxÞ, f ðtÞ and gðtÞ are suitable data, and assume m satisfies the following
properties

m a C1ðDTÞ; 0 < aa mðx; tÞa b; Eðx; tÞ a DT :ðD:6Þ

We give the following

Definition D.1. We call weak solution of problem (D.2)–(D.5) a function
u a L2ð0;T ;Hð0; 1ÞÞ such that

ZZ
DT

sðuÞft �
1

m
ðux þ kðuÞÞ

� 	
fx

� �
dx dt ¼

Z 1

0

v0ðxÞfðx; 0Þ dx;ðD:7Þ

for all f a C1ðDTÞ.

The following existence and uniqueness result can be proved

Theorem D.1. If assumptions (D.6) and (H.1)–(H.6), (F.1)–(F.3) of Section 2
are fulfilled, then there exists a unique solution u of problem (D.2)–(D.5), in the
sense of Definition D.1. Moreover, the following estimates hold true

jjujjlaM;ðD:8Þ
jjuxjjlaM1;ðD:9Þ

where the constants depend on the initial and boundary data and coe‰cients.

Proof (sketch). To prove the assertion the well-known technique of parabolic
regularization can be applied. One can follow the proof given for the classical
problem (see [14], for instance) since the presence of the term

�
1
m

�
in the elliptic

part does not entail additional di‰culties thanks to assumption (D.6). r

Now, let us assume there exist two functions, m1, m2 satisfying (D.6) and that
there exists a constant e > 0 such that

jjm1 � m2jjL2ðDT Þ a e:ðD:10Þ

Calling u1 and u2 the weak solution corresponding to m1 and m2, respectively, we
prove the analogous of Theorem 3.1, i.e.

Theorem D.2. If assumptions (H.1)–(H.6) and (F.1)–(F.4) of Section 2 are ful-
filled then

�Z T

0

Z 1

0

jsðu1ðx; tÞÞ � sðu2ðx; tÞÞj2 dx dt
�1=2

aC1e;ðD:11Þ
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and

�Z T

0

Z 1

0

jkðu1ðx; tÞÞ � kðu2ðx; tÞÞj2 dx dt
�1=2

aC2e:ðD:12Þ

where C1 and C2 are constant depending on a, b, Ls, Cs, Ck, M, and T.

Proof (sketch). If one considers test functions

f a C1ðDTÞBL2ð0;T ;H 2
0 ð0; 1ÞÞ;

the weak form (D.7) can be rewritten asZZ
DT

sðuÞft þ
u

m
fxx �

kðuÞ
m

fx

� �
dx dt ¼

Z 1

0

fðx; 0Þv0ðxÞ dx:ðD:13Þ

Subtracting the equations for u1 and u2 corresponding to (D.13), and adding and
subtracting the appropriate terms, we getZZ

DT

½sðu1Þ � sðu2Þ�ft þ
1

m1
ðu1 � u2Þfxx þ

� m2 � m1
m1m2

�
u2fxx

� �
dx dtðD:14Þ

¼
ZZ

DT

1

m1
½kðu1Þ � kðu2Þ�fx þ

m2 � m1
m1m2

ðu1 � u2Þ
� �

dx dt:

Introducing the function

Aðx; tÞ ¼
sðu1ðx; tÞÞ � sðu2ðx; tÞÞ

u1 � u2
; if u1ðx; tÞA u2ðx; tÞ;

0; otherwise:

8<
:

and

Bðx; tÞ ¼
kðu1ðx; tÞÞ � kðu2ðx; tÞÞ

u1 � u2
; if u1ðx; tÞA u2ðx; tÞ;

0; otherwise:

8<
:

we rewrite (D.14) asZZ
DT

ðu1 � u2Þ Aft þ
1

m1
fxx �

1

m1
Bfx

� 	
dx dtðD:15Þ

¼
ZZ

DT

� m2 � m1
m1m2

�
ðu2fxx � kðu2ÞfxÞ dx dt:

Then we select as test function the solution of the regularized backward parabolic
equation and we proceed as in Theorem 3.1, getting appropriate etimates. We
omit further details of the proof. r
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Università di Roma ‘‘La Sapienza’’

Via A.Scarpa 16, 00161 Roma, Italy

gianni@dmmm.uniroma1.it

24 i. borsi et al.


	mk1
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk2
	mk20
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk21
	mk22
	mkEnd-page

