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Abstract. — We introduce a potential of multipartite entanglement for a system of n qubits, as

the average over all balanced bipartitions of a bipartite entanglement measure, the purity. We study
in detail its expression and look for its minimizers, the maximally multipartite entangled states. They

have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible
bipartitions. We investigate their structure and consider several examples for small n.
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1. Introduction

Entanglement is one of the most striking features of quantum phenomena [41]. It
plays very important roles in quantum information processing such as quantum
computation [37], quantum teleportation [6] (for discussions on experimental
realizations see [11, 12, 25, 38]), dense coding [7] and quantum cryptographic
schemes [17, 18, 24]. Nevertheless, the quantification of multipartite entangle-
ment is no simple matter.

Entanglement is intimately related to the very mathematical structure of quan-
tum mechanics and complex Hilbert spaces. In particular it is a straightforward
consequence of linearity (superposition principle) in tensor product Hilbert spaces
(composite quantum systems).

Consider a quantum system composed of two parts (e.g. two particles): part
A, whose Hilbert space is HA, and part B, whose Hilbert space is HB. According
to quantum mechanics, the composite system lives in the tensor product Hilbert
space H ¼ HA nHB. The most familiar example is that of two spinless particles,
whose Hilbert space is L2ðR3ÞnL2ðR3ÞGL2ðR6Þ: The linearity of H implies
that the states jc4 of the composite system H are linear combinations of product
states, namely,

jc4 ¼
X
ij

zijjji4n jwj4;

with jji4 a HA and jwj4 a HB. This entails interference among probability ampli-
tudes of two-particle states, that is the analogous of the simpler case of one-
particle interference. For example, the probability amplitude of having both
particle A in state jj14 and particle B in state jw14 interferes with the probability
amplitude of having both particle A in state jj24 and particle B in state jw24. As a



consequence there exist correlations of quantum nature –entanglement– between
quantum subsystems. These correlations are stronger than the classical ones, in
the sense that they violate a class of inequalities, named after Bell, that must be
satisfied by all classical correlations [41].

The most striking violation of Bell’s inequalities is given by a particular
class of states: maximally entangled states. The simplest example is that of two
spin-1=2 systems (or qubits), whose Hilbert space is C2 nC2, in the singlet state

jF4 ¼ ðj04n j14� j14n j04Þ=
ffiffiffi
2

p
;

where fj04; j14g is the natural basis of C2, representing spin up or down in a
given direction. The expectation value of any local observable O of the first spin
is given by

3FjOn 1jF4 ¼ 1

2
30jOj04þ 1

2
31jOj14 ¼ TrðrAOÞ;

and thus is an incoherent average corresponding to a completely mixed reduced
density matrix of the first spin rA ¼ 1=2. Analogously for the second spin. There-
fore, spin measurements in a given, arbitrary, direction over an ensemble of
pairs prepared in a singlet state will result in a completely random sequence
of 0 and 1. On the other hand, the results of joined local measurements exhibit
strong correlations, due to the fact that the total spin is 0: the two spins are
always found pointing in opposite directions. The two random sequences are
exactly complementary.

Maximally entangled states are characterized by the property, just shown for
the two-qubit singlet state, that to a perfect knowledge of the state of the compos-
ite system corresponds a complete ignorance of the states of its two parts. More
precisely, although the composite system is in a well determined pure state, its
two parts are in completely mixed states. See Corollary 3. Therefore, all informa-
tion is totally shared by the two parts. Note that this situation is strongly at vari-
ance with the classical case, in which a complete knowledge of the total system is
equivalent to a complete knowledge of both its parts. In quantum mechanics this
is only a necessary condition.

In general, the degree of bipartite entanglement of a quantum system can
range from a maximum, when its two parts are in completely mixed states, to a
minimum, when its two parts are in pure states, and thus a complete knowledge
of both subsystems implies a complete knowledge of the entire system, as in the
classical case. This is the case of separable, or unentangled, states jc4 ¼ jj4n jw4,
that have no correlations between the two parts and, thus, no shared information.

The degree of bipartite entanglement [49] of a composed quantum system can
be consistently quantified, as in Definition 8, in terms of the purity of the reduced
density matrix of one of the two subsystems (purity can be proven to be the same
for both, see Lemma 2). A lower value of purity will correspond to a larger value
of entanglement.

On the other hand, there is no unique way of quantifying multipartite entan-
glement [4], that is entanglement among n given parties of a given quantum sys-
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tem. Di¤erent definitions often do not agree with each other, because they adopt
di¤erent strategies, focus on di¤erent aspects and capture di¤erent features of this
quantum phenomenon [14, 15, 33, 36, 48]. There is a profound reason behind this
manifest disadvantage: the number of real numbers, i.e. the invariants under local
unitary transformations [1, 2, 3], needed to quantify multipartite entanglement
grows exponentially with the size of the system, so that the definition of appropri-
ate entanglement measures, able to summarize the most salient global features of
entanglement, can be very di‰cult.

A natural generalization of the bipartite case is to quantify the entanglement
among n parties by considering the average purity over subsystems [21, 22]. In
this paper we will follow this strategy and, in particular, we will consider systems
of n qubits.

After introducing notation and discussing some results about bipartite entan-
glement in Section 2, we move to multipartite entanglement and study the proper-
ties of the potential of multipartite entanglement (i.e. the average purity over bal-
anced bipartitions), Definition 10, and of its minimizers, i.e. quantum states with
the maximal degree of multipartite entanglement. In the ideal situation, the bi-
partite entanglement of such states is not only maximal, but also does not depend
on the way one decides to bipartite the total system into two subsystems. See
Definition 9. Our approach is based on the action of the permutation group on
the Fourier coe‰cients of the quantum state and thus is of combinatoric nature.

The potential of multipartite entanglement, Eq. (32) of Theorem 9, is a quartic
Hamiltonian

pMEðzÞ ¼
X

k;k 0; l; l 0

Dðk; k 0; l; l 0; ½n=2�Þ zk zk 0 zl zl 0 ;

where z ¼ ðzkÞ, with k ¼ ðk1; � � � ; knÞ a f0; 1gn is the vector of the Fourier coe‰-
cients of the state of a system of n qubit in the computational basis

jc4 ¼
X
k

zkjk14n jk24n � � � jkn4:

One of the aims of this paper is to investigate the complex structure of the long-
range coupling function D, that appears in the above expression. This is accom-
plished in Theorems 10, 11 and 13, and in Corollary 5. In particular, a measure
of the complexity of the potential of multipartite entanglement is given by the
number of its nontrivial interfering terms, that scales like 2n�33n (see Theorem 12
and the following remark).

Sections 4 and 5 will then be devoted to investigate maximally multipartite
entangled states (MMES) [21], i.e. the minimizers of the potential of multipartite
entanglement. In particular, the structure of perfect MMES, i.e. minimizers that
are maximally entangled with respect to any bipartition, is analyzed in Section 4:
by making use of a probabilistic approach, Theorem 15 gives a complete charac-
terization of their population probability vectors ðjzkj2Þ, while Theorem 16 ex-
hibits the equations that must be satisfied by their phases ðzkÞ ¼ ðzk=jzkjÞ. The
number of equations quickly overcomes the number of variables, since their ratio
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scales as 2nþ1=
ffiffiffi
n

p
with the number n of qubits. See Theorem 17 and following

remark. Therefore, for large systems it becomes more and more di‰cult to have
a perfect MMES solution, unless symmetries subtly conspire to reduce the
number of independent equations. In fact, the existence of perfect MMES for
na 6, nA 4, will be proven by explicit construction in Section 5, while it is
known [46, 42–44] that for nb 8 they do not exist. The case n ¼ 7 remains
open, although there is numerical evidence that no perfect MMES exist [21]. In
conclusion, apart from some special small values of n, not all bipartitions can
have minimal purity (maximal entanglement) and the requirement that a given
bipartition be in a maximally entangled state collides with the same requirement
for a di¤erent bipartition. Thus, the bipartitions of a general MMES are in a frus-
trated configuration, and this makes the whole subject richer and very interesting.

Since, according to the structure theorem 15, a perfect MMES can have a
uniform population probability vector ðjzkj2Þ ¼ ð1=N; � � � ; 1=NÞ with N ¼ 2n, in
Section 5 we focus on this class of uniform states, and restrict our quest to it.
We will explicitly construct perfect MMES with uniform population, and will
easily characterize the fully factorized states, i.e. the maximizers of the potential
of multipartite entanglement that have uniform probability vectors. By pushing
even further our simplifying assumptions, we will explicitly show that, at least
for na 6, the potential admits minimizers and maximizers in the very restricted
class of uniform states with real phases, ðzkÞ ¼ ðzk=

ffiffiffiffiffi
N

p
Þ, with zk a fþ1;�1g.

This states can be naturally mapped onto the set of binary sequences of length
N ¼ 2n, and the potential of multipartite entanglement becomes a quartic Ham-
iltonian on binary sequences (or classical spins). It is then quite natural to inves-
tigate whether there is any relation between the minimizing sequences of pME and
the low correlation sequences that minimize similar long-range Hamiltonians
studied in [34, 35, 9, 10], which quantify all possible correlations in a binary
string. However, we will leave this problem for a future publication.

A final remark is in order. The study of the minimizers of pMEðzÞ can be em-
bedded in a statistical mechanical framework [20]. Let us consider the partition
function of a system with Hamiltonian pMEðzÞ at a fictitious temperature b�1,

ZN ¼
Z

expð�b pMEðzÞÞdmðzÞ;

where m is the uniform measure (of typical states) on the hypersphere
fz a CN j

P
k jzkj

2 ¼ 1g induced by the Haar measure on UðNÞ. The value of
the free energy FNðbÞ ¼ �b�1 lnZN , will become that of the minimum of the
Hamiltonian pMEðzÞ when the temperature tends to zero, that is b ! l, and
only those configurations that minimize the Hamiltonian survive, namely the
maximally multipartite entangled states. In general b, as a Lagrange multiplier,
fixes the average value of entanglement, larger values of b corresponding to a
higher multipartite entanglement. In particular, for b ! 0 one is looking at the
typical states. Remarkably, there is a physically appealing interpretation even
for negative temperatures: for b ! �l, those configurations are selected that
maximize the Hamiltonian, that is fully factorized states.
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This approach has proven to be very useful in the (much simpler) case of
bipartite entanglement, when the potential of multipartite entanglement reduces
to the purity pA of one of the two component subsystems, and in the thermody-
namical limit N ! l, the existence of two phase transitions, characterized by
di¤erent spectra of the reduced density matrices, has been shown [23].

In order to investigate the statistical mechanics of the richer and more com-
plex case of multipartite entanglement, and possibly to unveil its phase transi-
tions, it is necessary to study in detail the structure of the potential of multipartite
entanglement pME and of the highly entangled states that give rise to its low
energy landscape, the MMES. This paper is completely devoted to such a study.

2. Bipartite entanglement

In this section we will set up the notation and we will prove some results about
bipartite entanglement that will be used in the following. We will show how the
entanglement of a bipartite system in a pure state is related to the non-vanishing
eigenvalues of the reduced density matrix of one of its parts. In particular, in Cor-
ollary 3 we will show that in an unentangled, separable, state of a composed sys-
tem the reduced density matrices of its two parts are pure, i.e. are 1-dimensional
projections and thus have only one non-vanishing eigenvalue, that equals 1. On
the other hand, a bipartite system is in a maximally entangled state if and only
if the reduced density matrix of its smaller part is completely mixed, i.e. is pro-
portional to the identity operator and all its eigenvalues are equal and di¤erent
from 0.

Therefore, as a measure of bipartite entanglement one can use the purity, i.e.
the sum of the squared eigenvalues, of the reduced density matrix of the smaller
party. We will do this in Definition 8. One can show that purity ranges in a com-
pact interval, its minimum corresponding to maximally bipartite entangled states
and its maximum to the bipartite separable ones. This simple result, which is the
content of Lemma 3, together with the explicit expression of the purity as a func-
tion of the Fourier coe‰cients of the state, as given in Theorem 6 and its corol-
lary, will play a crucial role in the following.

Let us start with some basic definitions.

Definition 1 (Qubit). A qubit (or spin) is a quantum system with a two-
dimensional Hilbert space hGC2. The computational basis fj04; j14g is a privi-
leged orthonormal basis.

Definition 2 (System of qubits). A system S ¼ f1; 2; . . . ; ng of n qubits is
a quantum system with a 2n dimensional Hilbert space HS ¼ e

i aS hi , with
hi GC2. Its pure states are the normalized vectors jc4 a HS with 3cjc4 ¼ 1, and
can be expressed in the computational bases as

jc4 ¼
X
k aX n

zkjk4; zk a C;
X
k aX n

jzkj2 ¼ 1;ð1Þ
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where k ¼ ðkiÞi aS ¼ ðk1; k2; . . . ; knÞ, with ki a X ¼ f0; 1g, and

jk4 ¼ jk4S ¼ e
i aSjki4i; jki4i a hi:ð2Þ

Definition 3 (Bipartition). A bipartition of the system S is a pair ðA;AÞ, with
1a nA a n

A
, where AHS, A ¼ SnA (i.e. S ¼ Aþ A) and nA ¼ jAj, the cardinal-

ity of A. The bipartition is said to be balanced if A is maximal, that is nA ¼ ½n=2�
(and n

A
¼ ½ðnþ 1Þ=2�), with ½x� ¼ integer part of x.

Remark 1. There is a one to one correspondence among bipartitions and non-
empty subsets of S of dimension not exceeding n=2. Given a bipartition ðA;AÞ,
the total Hilbert space is accordingly partitioned into HS ¼ HA nH

A
, where

HA ¼ e
i aA hi, with NA ¼ dimHA ¼ 2nA , is the Hilbert space of the ensemble A

of nA qubits.

Definition 4 (Entanglement). A state jc4 a HS is said to be separable with
respect to the bipartition ðA;AÞ if it can be expressed as a tensor product
jc4 ¼ jf4A n jw4

A
for some jf4A a HA and jw4

A
a H

A
. A state that is not sepa-

rable is called entangled.

The following lemma is a powerful tool in the study of entanglement.

Lemma 1 (Schmidt decomposition). Given a bipartition ðA;AÞ, every state
jc4 a HS can be written in the form

jc4 ¼
X
k aY

ffiffiffiffiffi
lk

p
juk4A n jvk4A;ð3Þ

with lk > 0,
P

lk ¼ 1, Y HX nA, and where fjuk4AgHHA, fjvk4AgHH
A

are
orthonormal sets. The set of Schmidt coe‰cients flkg is unique.

Proof. In the computational basis jc4 ¼
P

l aX nA

P
m aX

n
A
tlmjl4A n jm4A: The

matrix t ¼ ðtlmÞ considered as an operator from CN
A to CNA admits a singular

value decomposition t ¼
P

k aY

ffiffiffiffiffi
lk

p
uðkÞvðkÞ�, for some Y HXnA , with fuðkÞgH

CNA and fvðkÞgHCN
A orthonormal sets, and lk > 0 [30]. One gets 1 ¼ 3cjc4 ¼

Tr ðt�tÞ ¼
P

lk. The desired result immediately follows, with juk4A ¼
P

l u
ðkÞ
l jl4A

and jvk4A ¼
P

m vðkÞm jm4
A
. r

It follows immediately that

Theorem 1. A bipartite state jc4 is separable with respect to the bipartition
ðA;AÞ i¤ the set of Schmidt coe‰cients reduces to f1g. r

Remark 2. In general, one wants also a measure that quantifies the entangle-
ment of a bipartite state, i.e. how much the given state di¤ers from a separable
one. To this purpose, note that one can associate to the Schmidt coe‰cients of a
given bipartition fll ; l a Y HXnAg a probability distribution p over the finite
space XnA , in the following way:
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pðlÞ ¼ ll for l a Y

0 otherwise.

�
ð4Þ

Therefore, it is natural to consider as a measure of bipartite entanglement the
distance of the probability vector p from the set SEP of the separable vectors,
concentrated at a point,

SEP ¼ fpð�Þ ¼ d‘ð�Þg‘ aX nA ;ð5Þ

where d‘ð�Þ ¼ df‘gð�Þ. Here dC is the characteristic function of set C,

dCðxÞ ¼
1 if x a C

0 if x c C.

�
ð6Þ

We consider the distance derived from the L1 norm,

dðp1; p2Þ ¼
1

2

X
l aX nA

jp1ðlÞ � p2ðlÞj:ð7Þ

It is easy to see that 0a dðp1; p2Þa 1 and that dðp1; p2Þ ¼
P

l ½ p1ðlÞ � p2ðlÞ�þ,
where ½��þ denotes the positive part. Therefore, if p is the probability vector asso-
ciated to the Schmidt coe‰cients fllg of the state jc4 in the bipartition ðA;AÞ,
one gets

min
q a SEP

dðp; qÞ ¼ 1�max
l

ll :ð8Þ

This motivates the following

Definition 5 (Entanglement measure). A measure of the entanglement of state
jc4 with respect to the bipartition ðA;AÞ is given by

EAðjc4Þ ¼
NA

NA � 1

�
1�max

l
ll
�
;ð9Þ

where the maximum is taken over the set of the Schmidt coe‰cients fllg of the
state in the given bipartition and NA ¼ 2nA .

By noting that, due to normalization, N�1
A a maxk lk a 1, it follows that

Theorem 2. One gets 0aEAðjc4Þa 1. Moreover EAðjc4Þ ¼ 0 i¤ jc4 is sepa-
rable with respect to the bipartition ðA;AÞ . r

On the other hand, states that maximize the entanglement measure EA are the
main interest of this paper

Definition 6 (Maximally bipartite entangled states). A state jc4 that satisfies
EAðjc4Þ ¼ 1 is called a maximally bipartite entangled state with respect to the
bipartition ðA;AÞ.
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Theorem 3 (Local unitary invariance). A state jc4 is maximally entangled
with respect to the bipartition ðA;AÞ i¤

jc4 ¼ N
�1=2
A

X
l aX nA

UAjl4A nUAjl4
A
;ð10Þ

where UA and UA are (local) unitary operators in HA and H
A
, respectively.

Proof. A state jc4 is maximally entangled i¤ EAðjc4Þ ¼ 1, i.e., maxklk ¼ 1=NA.
Thus its probability vector is completely mixed, lk ¼ 1=NA ok a XnA . From
Lemma 1 one gets the thesis where UA (UA) is the local unitary operator in HA

(H
A
) that transforms the computational basis into the Schmidt one, namely

UAjl4A ¼ jul4A (UAjl4
A
¼ jvl4A). r

Remark 3. Note that Eq. (10) implicitly assumes an arbitrary embedding
of X nA in XA and thus, when n

A
> nA, relies on an arbitrariness in the choice of

the subset fjl4
A
gl aX nA of the computational basis of party H

A
.

Remark 4. Note that, while separable states (5) are associated to extremal
probability vectors, concentrated at a point, maximally entangled bipartite states
are associated to completely mixed probability vectors, uniform on XnA . By
Theorem 3, the above property can be used as an equivalent definition of maxi-
mally entangled bipartite states. It has the advantage of being independent of the
particular measure EA.

An immediate consequence of Theorem 3 is the following

Corollary 1. A maximally bipartite entangled state has the following Fourier
coe‰cients in the computational basis

zk ¼ N
�1=2
A

X
l aX nA

UA
kA;l

UA
k
A
;l ; k a X n;ð11Þ

where NA ¼ 2nA and UA
l;l 0 ¼ 3lAjUAjl 0A4 with UA the local unitary operator in HA

that transforms the computational basis into a Schmidt one. r

In fact, there is a link between the set of Schmidt coe‰cients and the reduced
density matrices of subsystems A and A. Recall that

Definition 7 (Reduced density matrix). If r is a density matrix on HA nH
A
,

then the reduced density matrix rA is a density matrix on HA defined by

rA ¼ Tr
A
r;ð12Þ

where Tr
A
is the partial trace over subsystem A.

Remark 5. The reduced density matrix represents the state of a subsystem A,
since it determines the statistics of every (local) observables of A.
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Lemma 2 (Reduced density matrix eigenvalues). [5] Given a pure state in HS,
the reduced density matrices rA and r

A
of subsystems A and A have the same eigen-

values and multiplicities, except possibly for the eigenvalue 0.

Proof. From Lemma 1, one gets rA ¼ Tr
A
jc43cj ¼

P
lkjuk43ukj, and r

A
¼

TrA jc43cj ¼
P

lkjvk43vkj. r

Remark 6. From the proof of Lemma 2 one sees that the Schmidt coe‰cients
of a bipartite state are the nonzero eigenvalues of the partial density matrices of
the two parties (and the vectors of the Schmidt decomposition are the corre-
sponding eigenvectors). Therefore, from Remark 2 and Definition 5 we obtain

Corollary 2. Given a state jc4 a HS and a bipartition ðA;AÞ one gets

EAðjc4Þ ¼
NA

NA � 1
minfkrA � jf43fjk1 : jf4 a HA; 3fjf4 ¼ 1gð13Þ

¼ NA

NA � 1
ð1� krAkÞ;

where k � k1 ¼ Tr j � j is the trace norm and k � k is the operator norm. r

Moreover,

Corollary 3. Given a bipartition ðA;AÞ, a state jc4 a HS is separable i¤
rA ¼ jf43fj for some normalized jf4 a HA and is maximally entangled i¤
rA ¼ 1=NA. r

As an alternative measure of the bipartite entanglement between the two
subsets, which is more suitable to analytical treatment, we consider the linear
entropy of subsystem A.

Definition 8 (Linear entropy and purity). A measure of the entanglement of
state jc4 with respect to the bipartition ðA;AÞ is given by

LAðjc4Þ ¼
NA

NA � 1
ð1� pAðjc4ÞÞ;ð14Þ

where NA ¼ 2nA , and

pAðjc4Þ ¼ TrA r2A ; rA ¼ Tr
A
jc43cjð15Þ

is the purity of subsystem A.

By noting that pAðjc4Þ ¼
P

l l
2
l , where fllg is the set of the Schmidt coe‰cients

of the state in the given bipartition it follows that

Lemma 3 (Purity bounds). Given a state jc4 a HS and a bipartition ðA;AÞ, one
has pAðjc4Þ ¼ p

A
ðjc4Þ and
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1=NA a pAðjc4Þa 1:ð16Þ

Moreover, pAðjc4Þ ¼ 1 and pAðjc4Þ ¼ 1=NA i¤ jc4 is, respectively, separable and
maximally entangled with respect to the given bipartition.

Proof. The quadratic form pAðjc4Þ ¼
P

l l
2
l reaches its extremal values in the

simplex DNA ¼ fðll Þl aX nA j0a ll a 1;
P

l ll ¼ 1g. The maximum is reached on
the frontier, ll ¼ d‘ðlÞ for some 1a ‘a nA, while the minimum is attained at
the interior point where dpAðjc4Þ ¼ 0, i.e. ll ¼ 1=NA. By Theorems 1 and 3 one
gets the thesis. r

It follows that LAðjc4Þ has a behavior similar to EAðjc4Þ. In particular,

Theorem 4 (Linear entropy bounds). One gets 0aLAðjc4Þa 1. Moreover
LAðjc4Þ ¼ 0 i¤ jc4 is separable with respect to the bipartition ðA;AÞ, while
LAðjc4Þ ¼ 1 i¤ jc4 is maximally entangled with respect to the bipartition ðA;AÞ.

r

Remark 7. Let us consider a system composed of an even number n of qubits
and a balanced bipartition ðA;AÞ. The information contained in a maximally bi-
partite entangled state jc4 is not locally accessible by party A or A, because, by
Corollary 3, their partial density matrices are maximally mixed, rA ¼ r

A
¼ 1=NA.

Rather, all information is totally shared by them. Note that if n is odd, ac-
cording to Lemma 2, r

A
cannot be maximally mixed. Rather, r

A
¼ P=NA, where

P ¼ 1� jv43vj is a codimension-1 projection, jv4 being the normalized eigen-
vector belonging to the eigenvalue 0. Note that it is the constraint that the total
system is in a pure state that prevents r

A
from being of maximal rank.

If the bipartition is not balanced, one gets

Theorem 5 (Smaller subsystems). A state jc4 maximally entangled with respect
to the bipartition ðA;AÞ, is maximally entangled with respect to every bipartitions
ðB;BÞ with BHA.

Proof. The Theorem is a consequence of Corollary 3 and the property that
if subsystem A has a maximally mixed density matrix, rA ¼ 1=NA, the density
matrix of every smaller part BHA is again maximally mixed, rB ¼ TrBB A rA ¼
1=NB. r

The explicit expressions of the reduced density matrix and its purity in terms of
the Fourier coe‰cient of the state are given by the following

Theorem 6 (Fourier expression of purity. Form 1). Given a bipartition ðA;AÞ
and a state jc4 a HS, one gets

rA ¼
X

k; l aX n

zkzl dk
A
; l
A
jkA43lAjð17Þ
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and

pAðzÞ ¼
X

k;k 0; l; l 0 aX n

zkzk 0zlzl 0dkA; l 0Adk 0
A; lAdkA; lAdk

0
A
; l 0

A
;ð18Þ

where kA ¼ ðkiÞi aA, jl4A ¼ e
i aAjli4i a HA, dk;l ¼ dl;k ¼ dfkgðlÞ, and

z ¼ ðzkÞk aX n a S2N�1; S2N�1 ¼
�
z a CN :

X
jzkj2 ¼ 1

�
;ð19Þ

with N ¼ 2n, are the Fourier coe‰cients of jc4 in the computational basis, intro-
duced in Definition 2.

Proof. State jc4 can be written accordingly to the bipartition ðA;AÞ as

jc4 ¼
X
k aX n

zkjkA4A n jk
A
4
A
;

By plugging this expression into that of rA and pA given in Definition 8 the results
follow. r

Remark 8. Consider a reference bipartition into two blocks of contiguous
qubits ðC;CÞ, namely C ¼ f1; 2; . . . ; nAg, then

pCðzÞ ¼
X

l; l 0 aX nA

X
m;m 0 aX

n
A

zðl;mÞzðl 0;m 0Þzðl 0;mÞzðl;m 0Þ;ð20Þ

where ðl;mÞ ¼ ðl1; . . . ; lnA ;m1; . . . ;mn
A
Þ a Xn.

Note that A ¼ pðCÞ for a suitable permutation p of S. In fact, there is a
bijection,

F : p a PnA
n N ðpðCÞ; pðCÞÞ;ð21Þ

between the subset

PnA
n ¼ fp a PnjpðiÞ < pði þ 1Þ; 1a ia n� 1; iA nAgð22Þ

of the permutation group Pn and the set of all bipartitions ðA;AÞ of dimension
nA. We can write

jc4 ¼
X
k aX n

zkjkpðCÞ4pðCÞ n jk
pðCÞ4pðCÞð23Þ

¼
X

l aX nA

X
m aX

n
A

zp�1ððl;mÞÞjl4C n jm4
C
;

whence, for A ¼ pðCÞ,

pAðzÞ ¼
X

l; l 0 a X nA

X
m;m 0 aX

n
A

zp�1ðl;mÞzp�1ðl 0;m 0Þzp�1ðl 0;mÞzp�1ðl;m 0Þ:ð24Þ

For generic bipartitions we have the following
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Corollary 4 (Purity. Form 2).

pAðzÞ ¼
X

k;h aX n

zk zkah zkahA zkah
A

ð25Þ

¼
X
k aXS

X
l aXA

X
m aXA

zk zka lam zka l zkam

were XA and XA are viewed as subspaces of XS with the natural injection, and
aa b ¼ ðai a biÞi aS ¼ ðai þ bi mod2Þi aS is the XOR operation.

Proof. By substituting in (18) k 0 ¼ ha k, one gets

pAðzÞ ¼
X

k;h; l; l 0 aX n

zkzkahzlzl 0dkA; l 0AdkAahA; lAdkA; lAdkAah
A
; l 0

A

¼
X

k;h; l; l 0 aX n

zkzkahzlzl 0dkahA; l dkah
A
; l 0

¼
X

k;h aX n

zkzkahzkahAzkah
A
;

which is the first desired equality. The second equality follows by the identifica-
tions l ¼ hA a XA and m ¼ h

A
a XA. r

Remark 9. The space X n is an n-dimensional vector space over the finite field
X ¼ Z2 with the standard addition and multiplication mod 2. In this respect the
XOR operation is nothing but the usual sum of vectors of XS and XA and XA are
vector subspaces.

Remark 10. Note that (25) can be split into three parts

pAðzÞ ¼
X
k aX n

jzkj4 þ
X
k aXS

X
l aXA

�

jzkj2jzka l j2 þ
X
k aXS

X
m aXA

�

jzkj2jzkamj2ð26Þ

þ
X
k aXS

X
l aXA

�

X
m aXA

�

Re½zk zka lam zka l zkam�;

where XA
� ¼ XAnf0g.

It is an easy exercise to check that the number of monomials jzkj4 is
N

ð1Þ
tot ¼ 2n, the number of monomials jzkj2jzhj2 with kA h is

N
ð2Þ
tot ¼ 2nð2nA þ 2nA � 2Þ;ð27Þ

and the number of monomials Re½zkzlzmzn� with distinct indices is

N
ð4Þ
tot ¼ 2nð2nA � 1Þð2nA � 1Þ:ð28Þ
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One gets N
ð1Þ
tot þN

ð2Þ
tot þN

ð4Þ
tot ¼ 22n, in agreement with the first equality in

(25). Moreover, the number of distinct monomials of the various types are
Nð1Þ ¼ N

ð1Þ
tot , N

ð2Þ ¼ N
ð2Þ
tot=2, and Nð4Þ ¼ N

ð4Þ
tot=4.

3. Multipartite entanglement

The aim of this section is to generalize the ideas of the previous section to the case
of multipartite entanglement. We require that the information in a maximally
multipartite entangled state be distributed as well as possible. In the ideal case
this would mean that

Definition 9 (Perfect MMES). A state jc4 maximally entangled with respect
to every bipartition ðA;AÞ is called a perfect maximally multipartite entangled
state (perfect MMES).

Theorem 7 (Perfect MMES characterization). The following statements are
equivalent:

1. jc4 a HS is a perfect MMES;
2. rA ¼ 1=NA for every subsystem AHS with nA a n=2;
3. rA ¼ 1=NA for every maximal subsystem AHS;
4. EAðjc4Þ ¼ LAðjc4Þ ¼ 1 for every balanced bipartition ðA;AÞ;
5. pAðjc4Þ ¼ 1=NA for every balanced bipartition ðA;AÞ.

Proof. Equivalence between 1 and 2 follows from Definition 9 and Corollary 3.
Statements 2 and 3 are equivalent by Theorem 5. Equivalence between 3 and 4
follows from Definition 6 and Theorem 4. Finally, 4 and 5 are equivalent by
virtue of Lemma 3. r

Remark 11. Note that the requirement that a given balanced bipartition ðA;AÞ
be in a maximally entangled state could collide with the same requirement for a
di¤erent balanced bipartition ðB;BÞ, with BAA. Indeed, the local unitaries UA

and UA in Theorem 3 are in general nonlocal for the bipartition ðB;BÞ. Thus, at
variance with the bipartite case, a perfect MMES cannot exist. This motivates the
following definition.

Definition 10 (MMES). Let us define the potential of multipartite entangle-
ment as

pMEðjc4Þ ¼
� n

½n=2�
��1 X

jAj¼½n=2�
pAðjc4Þ:ð29Þ

A maximally multipartite entangled state (MMES) jj4 is a minimizer of pME,

pMEðjj4Þ ¼ minfpMEðjc4Þ j jc4 a HS; 3cjc4 ¼ 1g:ð30Þ

37multipartite entanglement in qubit systems



The potential pME is linearly related to the generalized global-entanglement mea-
sure introduced by [45, 50], which extend ideas put forward in [36]. It measures

the average bipartite entanglement over all possible
� n

½n=2�
�
balanced bipartition

and thus inherits the bounds on the purity given in Lemma 3, namely,

Lemma 4 (Bounds on pME). The potential of multipartite entanglement satisfies

1=NA a pMEðjc4Þa 1;ð31Þ

with NA ¼ 2½n=2�, for all normalized jc4 a HS. r

The upper and lower bounds are characterized by the following

Theorem 8 (Optimizing states). The upper bound pMEðzÞ ¼ 1 is attained by
the fully factorized states, whose Fourier coe‰cients in the computational basis
z ¼ ðzkÞk aX n are zk ¼

Q
i aS a

i
ki
, with jai0j

2 þ jai1j
2 ¼ 1. On the other hand, the lower

bound pMEðzÞ ¼ 1=NA, if attained, would correspond to a perfect MMES.

Proof. pMEðjc4Þ ¼ 1 i¤ pAðjc4Þ ¼ 1 for all balanced bipartitions ðA;AÞ.
By Lemma 3 this happens i¤ jc4 is separable with respect to all balanced bi-
partitions. Now, note that jc4 ¼ jv14A n jv24A and jc4 ¼ jv34Bn jv44B i¤ jc4 ¼
jv134AB Bn jv144AB Bn jv234AB B

n jv244AB B
. Since for all i a S, fig ¼ B rAr

for a suitable set fArg of maximal subsystems, one has jc4 ¼ e
i aS jvi4i with

3vijvi4 ¼ 1. Thus jc4 ¼
P

k aX n jk4
Q

i aS 3kijvi4, and the first part of the theorem
follows by setting aiki ¼ 3kijvi4. Concerning the second part, pMEðjc4Þ ¼ 1=NA i¤
pAðjc4Þ ¼ 1=NA for all balanced bipartitions ðA;AÞ. By Theorem 7 this happens
i¤ jc4 is a perfect MMES. r

Remark 12. In words, a perfect MMES is characterized by a multipartite
entanglement that is maximum, in the sense that it saturates the minimum of
the purity and such a minimum does not depend on the bipartition. However,
if the minimum of the potential of multipartite entanglement is strictly larger
than the lower bound in Lemma 4, i.e. min pME > 1=NA, it may happen that
di¤erent bipartitions yield di¤erent values of pA, some of them smaller than
min pME, some larger. In such a situation, one can seek those states among the
minimizers that have the lowest variance. This quest can be recast as an optimi-
zation problem [21]. We will not elaborate further on this issue.

Now we will examine in more details the potential of multipartite entanglement
and we will determine its form.

Theorem 9 (Fourier expression of pME. Form 1). Given a state jc4 a HS, the
potential of multipartite entanglement has the following expression in terms of its
Fourier coe‰cients in the computational basis z ¼ ðzkÞk aX n

pMEðzÞ ¼
X

k;k 0; l; l 0 aX n

Dðk; k 0; l; l 0; ½n=2�Þ zk zk 0 zl zl 0 ;ð32Þ
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with a coupling function

Dðk; k 0; l; l 0; nAÞ ¼
1

2
~DDðk; k 0; l; l 0; nAÞ þ

1

2
~DDðk 0; k; l; l 0; nAÞ:ð33Þ

where

~DDðk; k 0; l; l 0; nAÞ ¼
� n

nA

��1 X
jAj¼nA

dkA; l 0Adk 0
A; lAdkA; lAdk

0
A
; l 0

A
:ð34Þ

Proof. The result follows by plugging the expression (18) of pA given by
Theorem 6 into (29) of Definition 10, and by symmetrizing. r

Remark 13. In the spirit of Remark 8, it is easy to see that the average can be
extended to the whole permutation group, yielding

~DDðk; k 0; l; l 0; jCjÞ ¼ 1

n!

X
p aPn

dkpðCÞ; l 0pðCÞdk 0
pðCÞ; lpðCÞdkpðCÞ; lpðCÞ

dk 0
pðCÞ; l

0
pðCÞ

:ð35Þ

Remark 14. Note that ~DD would have served as well as D as a coupling function,
namely

pMEðzÞ ¼
X

k;k 0; l; l 0 aX n

~DDðk; k 0; l; l 0; ½n=2�Þ zk zk 0 zl zl 0 :ð36Þ

However, while

~DDðk; k 0; l; l 0; nAÞ ¼ ~DDðl; l 0; k; k 0; nAÞ;

which ensures the reality of pME, one gets

~DDðk 0; k; l; l 0; nAÞ ¼ ~DDðk; k 0; l 0; l; nAÞ ¼ ~DDðk; k 0; l 0; l; n
A
Þ:

Thus, ~DDðk; k 0; l; l 0; ½n=2�Þ is a symmetric function of the pairs ðk; k 0Þ and ðl; l 0Þ
only if n is even, when ½n=2� ¼ n=2 ¼ nA ¼ n

A
. Since pME does not depend on

the antisymmetric part of the coupling function, we shall use the symmetric
coupling function D. We summarize its properties, which easily derive from this
Remark in the following

Lemma 5 (Coupling function symmetries). The coupling function D : X 2n �
X 2n �N ! Q has the following symmetries

Dðk; k 0; l; l 0; nAÞ ¼ Dðk 0; k; l; l 0; nAÞ ¼ Dðl; l 0; k; k 0; nAÞ;ð37Þ

for every k; k 0; l; l 0 a Xn and every nA with 1a nA a n� 1. r

The following definition and the subsequent lemma are the main ingredients for
determining the explicit expression of the coupling function D.
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Definition 11 (Admissible set). Let us define the admissible set as the set of all
quadruples of sequences that yield a nonvanishing contribution to the function ~DD,
that is

QnA ¼ fðk; k 0; l; l 0Þ a X 4njkA ¼ l 0A; k
0
A ¼ lA; and k

A
¼ l

A
; k 0

A
¼ l 0

A
;ð38Þ

for some ðA;AÞ with jAj ¼ nAg:

Obviously,

QnA HQ ¼
[

0a sa n

Qs:ð39Þ

Lemma 6 (Admissible set characterization). The set Q is the kernel of the
function q : X 4n ! X n,

qðk; k 0; l; l 0Þ ¼ ððka lÞaðk 0a l 0ÞÞbððka l 0Þaðk 0a lÞÞ;ð40Þ

where aa b ¼ ðai a biÞi aS ¼ ðai þ bi mod 2Þi aS is the XOR operation, aab ¼
ðaiabiÞi aS ¼ ðai þ bi þ aibi mod2Þi aS the OR operation, and abb ¼ ðaibbiÞi aS ¼
ðaibiÞi aS the AND operation.

Proof. The proof consists in a straightforward application of the above defined
binary operations:

Q ¼ fðk; k 0; l; l 0ÞjkA ¼ l 0A; k
0
A ¼ lA; kA ¼ l

A
; k 0

A
¼ l 0

A
; for some AHSg

¼ fki ¼ l 0i; k
0
i ¼ li; kj ¼ lj; k

0
j ¼ l 0j; with i a A; j a Ag

¼ fki a l 0i ¼ 0; k 0
i a li ¼ 0; kj a lj ¼ 0; k 0

j a l 0j; with i a A; j a Ag
¼ fðki a l 0iÞaðk 0

i a liÞ ¼ 0; ðkj a ljÞaðk 0
j a l 0jÞ ¼ 0; i a A; j a Ag

¼ fððki a l 0iÞaðk 0
i a liÞÞbððki a liÞaðk 0

i a l 0iÞÞ ¼ 0; i a Sg
¼ fððka l 0Þaðk 0a lÞÞbððka lÞaðk 0a l 0ÞÞ ¼ 0g
¼ ker q: r

Remark 15. Note that Xn can be viewed as a product ring (of n copies of
X ¼ Z2) with the addition and multiplication mod 2 defined componentwise,
as usual. In this respect, the XOR operation is the sum aþ b and the AND
operation is the product a � b of elements a and b of the product ring Xn. The
OR operation is nothing but aþ bþ a � b.

After having proven all preparatory lemmata, now we come to the main result
of this section that establishes an explicit form for the coupling function of the
potential of multipartite entanglement.

Theorem 10 (Coupling function). The coupling function D has the following
expression
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Dðk; k 0; l; l 0; nAÞ ¼ gððka lÞaðk 0a l 0Þ; ðka l 0Þaðk 0a lÞ; nAÞ;ð41Þ

where

gða; b; nAÞ ¼ d0ðabbÞ ĝgðjaj; jbj; nAÞ;ð42Þ

with jaj ¼
P

i aS ai, and

ĝgðs; t; nAÞ ¼
1

2

� n

nA

��1h� n� s� t

nA � s

�
þ
� n� s� t

nA � t

�i
:ð43Þ

Proof. Let

a ¼ ðka lÞaðk 0 a l 0Þ and b ¼ ðka l 0Þaðk 0 a lÞ:

By Lemma 6, ðk; k 0; l; l 0Þ a Q i¤ abb ¼ 0, and thus S1 ¼ fi a Sjai ¼ bi ¼ 1g ¼ j.
Therefore,

S ¼ S0 þ A1 þ B1;

where S0 ¼ fi a Sjai ¼ bi ¼ 0g, A1 ¼ fi a Sjai ¼ 1g, and B1 ¼ fi a Sjbi ¼ 1g.
Moreover, it is easy to see that ai ¼ 0 i¤ ki ¼ li and k 0

i ¼ l 0i, with i a S. Thus,
if ðk; k 0; l; l 0Þ a Q, then k

A1
¼ l

A1
and k 0

A1
¼ l 0

A1
, and, analogously, kB1

¼ l 0B1
and

k 0
B1

¼ lB1
. As a consequence, ðk; k 0; l; l 0Þ a QnA i¤ there is a bipartition ðA;AÞ,

with jAj ¼ nA, such that

AHA1 and AHB1;

that is A1 HA and B1 HA. In other words, ðk; k 0; l; l 0Þ a QnA i¤ ðk; k 0; l; l 0Þ a Q
and jA1j ¼ jaja nA, jB1j ¼ jbja n

A
. Therefore, we can write

ðk; k 0; l; l 0Þ a QnA iff abb ¼ 0; with jaja nA; jbja n
A
;

whence

~DDðk; k 0; l; l 0; nAÞ ¼ d0ðabbÞ d½0;nA�ðjajÞ d½0;nA�ðjbjÞ
� n

nA

��1

#ðk; k 0; l; l 0Þ;

where #ðk; k 0; l; l 0Þ is the number of terms of the sum (34) that contribute to
the function ~DD in Theorem 9.

Now, according to the above conclusions, for a given admissible quadruple
ðk; k 0; l; l 0Þ a QnA the number of terms #ðk; k 0; l; l 0Þ is given by the number of

bipartitions ðA;AÞ with jAj ¼ nA and with AHB1 ¼ A1 þ S0 and AHA1 ¼
B1 þ S0. Since ABA ¼ j, A1 HA and B1 HA, parties A and A contend only
for S0 ¼ S0BAþ S0BA, namely

A ¼ A1 þ S0BA and A ¼ B1 þ S0BA:
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Thus, their number equals the number of ways that jAnA1j objects can be chosen
from among jS0j objects. But jAnA1j ¼ jAj � jA1j ¼ nA � jaj and jS0j ¼ jSj�
jA1j � jB1j ¼ n� jaj � jbj. Therefore,

#ðk; k 0; l; l 0Þ ¼
� n� jaj � jbj

nA � jaj
�
:

By putting all together, and by stipulating that the binomial coe‰cient is zero
when its arguments are negative, we obtain the stated form of the functions ~DD
and its symmetric part D. r

Remark 16. It is not di‰cult to see that an alternative form of ĝg is the
following

ĝgðs; t; nAÞ ¼
1

2

� n

s; t

��1h� nA

s

�� n
A

t

�
þ
� nA

t

�� n
A

s

�i
;ð44Þ

where � n

s; t

�
¼ n!

s! t! ðn� s� tÞ!

is the multinomial coe‰cient.

By using the explicit form of the coupling function D one can give the poten-
tial of multipartite entanglement a di¤erent form that has the advantage of being
a sum over three indices only.

Theorem 11 (pME. Form 2). The potential of multipartite entanglement can be
written as

pMEðzÞ ¼
X

k; l;m aX n

gðl;m; ½n=2�Þ Re½zk zka lam zka l zkam�:ð45Þ

Proof. Since ka 0 ¼ k,

Q ¼ fðk; k 0; l; l 0ÞjkA ¼ l 0A; k
0
A ¼ lA; kA ¼ l

A
; k 0

A
¼ l 0

A
; for some AHSg

¼ fkA ¼ l 0A; k
0
A a lA ¼ 0; k

A
¼ l

A
; k 0

A
a l 0

A
¼ 0g

¼ fkA ¼ l 0A a k 0
A a lA; k

0
A a lA ¼ 0; k

A
¼ l

A
a k 0

A
a l 0

A
; k 0

A
a l 0

A
¼ 0g

¼ fk ¼ k 0 a la l 0; k 0
A a lA ¼ 0; k 0

A
a l 0

A
¼ 0g

¼ fk ¼ k 0 a la l 0; ðk 0a lÞbðk 0a l 0Þ ¼ 0g:

Moreover, since ka k ¼ 0, substituting for k ¼ k 0 a la l 0 one gets a ¼
ðka lÞaðk 0a l 0Þ ¼ k 0 a l 0 and b ¼ ðka l 0Þaðk 0a lÞ ¼ k 0a l. Therefore,

Dðk; k 0; l; l 0; nAÞ ¼ dk;k 0a la l 0 gðk 0a l 0; k 0 a l; nAÞ;
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whence

pMEðzÞ ¼
X

k 0; l; l 0 aX n

gðk 0 a l 0; k 0 a l; ½n=2�Þ zk 0a la l 0 zk 0 zl zl 0 :

By setting l 0 ¼ la k 0 and l ¼ ma k 0, one obtains

pMEðzÞ ¼
X

k 0; l;m aX n

gðl;m; ½n=2�Þ zk 0a lam zk 0 zk 0am zk 0a l :

The thesis follows from the reality of pMEðzÞ. r

In analogy with the bipartite case examined in Remark 10, the sum in (45) can be
split into three terms.

Corollary 5 (pME. Form 3).

pMEðzÞ ¼
X
k aX n

jzkj4 þ 2
X
k aX n

X
l aX n

�

ĝgðjlj; 0; ½n=2�Þ jzkj2jzka l j2ð46Þ

þ
X
k aX n

X
l;m a X n

�

gðl;m; ½n=2�Þ Re½zk zka lam zka l zkam�;

where X n
� ¼ Xnnf0g.

Proof. The monomials jzkj4 are obtained from (45) when l ¼ m ¼ 0. In such a
case gð0; 0; ½n=2�Þ ¼ ĝgð0; 0; ½n=2�Þ ¼ 1. On the other hand, the monomials jzkj2jzhj2
with kA h are obtained when either l ¼ 0 or m ¼ 0. In such a case, since
d0ðlb0Þ ¼ 1 for all l a Xn, gðl; 0; ½n=2�Þ ¼ gð0; l; ½n=2�Þ ¼ ĝgðjlj; 0; ½n=2�Þ. r

A measure of the complexity of the potential of multipartite entanglement is
given by the number of its terms. In particular, as we will see in the following,
the crucial ones are the interfering monomials Re½zkzlzmzn�.

Theorem 12 (Number of terms in pME). Consider pMEðzÞ. The number of dis-
tinct monomials jzkj4 and the number of distinct monomials jzkj2jzhj2 with kA h
are

Nð1Þ ¼ 2n; Nð2Þ ¼ 22n�2 � 2n�1 þ 2n

3þ ð�1Þn
� n

½n=2�
�
;ð47Þ

respectively. The number of distinct monomials Re½zkzlzmzn� with distinct indices is

Nð4Þ ¼ 2n�3
X

1as; ta nþ1
2½ �

� n

s

�� n� s

t

�
¼ 2n�3

X
1as; ta nþ1

2½ �

� n

s; t

�
:ð48Þ
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Proof. The total number of terms of the sum in (45) is given by

Ntot ¼
X

k; l;m aX n

dQ�ðgðl;m; ½n=2�ÞÞ

¼ 2n
X

l;m aX n

d0ðlbmÞ d 0;nþ1
2½ �ðjljÞ d 0;nþ1

2½ �ðjmjÞ

¼ 2n
X

0as; ta nþ1
2½ �

X
l;m aX n

d0ðlbmÞ dsðjljÞ dtðjmjÞ

¼ 2n
X

0as; ta nþ1
2½ �

X
l aX n

dsðjljÞ
X

m aX n�s

dtðjmjÞ

¼ 2n
X

0as; ta nþ1
2½ �

� n

s

�� n� s

t

�
:

Therefore, the total number of monomials jzkj4 is

N
ð1Þ
tot ¼

X
k aX n

dQ�ðgð0; 0; ½n=2�ÞÞ ¼ 2n
� n

0

�� n

0

�
¼ 2n;

while the total number of monomials jzkj2jzhj2 with kAh is

N
ð2Þ
tot ¼ 2

X
k aX n

X
l aX n

�

dQ�ðgðl; 0; ½n=2�ÞÞ ¼ 2nþ1
X

1ata nþ1
2½ �

� n

0

�� n

t

�

¼ 2n
X

1ata nþ1
2½ �

h� n

t

�
þ
� n

n� t

�i

¼ 2n
X

1ata nþ1
2½ �

� n

t

�
þ 2n

X
n
2½ �a ta n

� n

t

�

¼ 2n
X

1atan

� n

t

�
þ 2n

X
n
2½ �ata nþ1

2½ �

� n

t

�

¼ 22n � 2n þ 2n
X

n
2½ �ata nþ1

2½ �

� n

½n=2�

�

¼ 22n � 2n þ 2nþ2

3þ ð�1Þn
� n

½n=2�

�
:

On the other hand, the total number of monomials Re½zkzlzmzn� with distinct
indices reads

N
ð4Þ
tot ¼

X
k aX n

X
l;m aX n

�

dQ� ðgðl;m; ½n=2�ÞÞ ¼ 2n
X

1as; ta nþ1
2½ �

�
n

s

��
n� s

t

�
:
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The results follow, since by symmetry, the numbers of distinct monomials are
Nð1Þ ¼ N

ð1Þ
tot , N

ð2Þ ¼ N
ð2Þ
tot =4, and Nð4Þ ¼ N

ð4Þ
tot =8. r

Remark 17. For large values of n, by making use of Stirling’s approximation
one gets

�
n

n=2

�
P 2n

ffiffiffiffiffi
2

pn

r
;

hence, from (47)

Nð2Þ P 22n�2

	
1þ 4

3þ ð�1Þn

ffiffiffiffiffi
2

pn

r 

; n ! l:ð49Þ

The asymptotics of Nð4Þ is a little more elaborated. First note that, by Stirling,

Nð4Þ P 2n�3
X

1a s; ta nþ1
2½ �

1

2pn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
n
t
n
ð1� s

n
� t

n
Þ

p exp
�
nH

� s

n
;
t

n

��
;

where the function H : D2 ! R, defined on the simplex D2 ¼ fðx; yÞ a
½0; 1�2 j xþ y ¼ 1g, is the entropy

Hðx; yÞ ¼ �x log x� y log y� ð1� x� yÞ log ð1� x� yÞ:

Then, for n ! l, by using the same arguments as in the proof of Laplace–
De Moivre theorem [29], one can show that

Nð4Þ P 2n�33n; n ! l:ð50Þ

The numbers of di¤erent types of monomials appearing in pMEðzÞ, as well as their
asymptotic expansions, are given in Table 1.

We conclude the section by exhibiting another form of multipartite entangle-
ment.

Table 1. Number of monomials in pMEðzÞ.
n Nð1Þ Nð2Þ Nð4Þ

2 4 4 1
3 8 24 12
4 16 80 84
5 32 400 680
6 64 1312 4000
7 128 6272 28672
8 256 20736 162624
n !l 2n 22n�2 2n�33n
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Theorem 13 (pME. Form 4). The potential of multipartite entanglement can be
written as

pMEðzÞ ¼ 1� 1

2

X
k; l;m aX n

gðl;m; ½n=2�Þ jzk zka lam � zka l zkamj2:ð51Þ

Proof. Let us consider (45). By substituting the identity

Re½zk zka lam zka l zkam� ¼ � 1

2
jzk zka lam � zka l zkamj2

þ 1

2
jzk zka lamj2 þ

1

2
jzka l zkamj2;

one gets

pMEðzÞ ¼ � 1

2

X
k; l;m aX n

gðl;m; ½n=2�Þ jzk zka lam � zka l zkamj2

þ 1

2

X
k; l;m aX n

gðl;m; ½n=2�Þ ðjzk zka lamj2 þ jzka l zkamj2Þ:

Now, by simple manipulations,X
k aX n

jzka l zkamj2 ¼
X
k aX n

jzk zka lamj2

and X
k; l;m aX n

gðl;m; ½n=2�Þ jzk zka lamj2 ¼
X

k; l aX n

jzk zka l j2
X
m aX n

gðlam;m; ½n=2�Þ:

Thus,

pMEðzÞ ¼ � 1

2

X
k; l;m aX n

gðl;m; ½n=2�Þ jzk zka lam � zka l zkamj2

þ
X

k; l aX n

jzk zka l j2
X
m aX n

gðlam;m; ½n=2�Þ:

Let us assume for a moment thatX
m aX n

gðlam;m; ½n=2�Þ ¼ 1; ol a Xn:ð52Þ

Then, the result follows by normalization (19), z a S2N�1, since

X
k; l aX n

jzk zka l j2 ¼
� X

k aX n

jzkj2
�2

¼ 1:

In fact, equality (52), is a consequence of the following lemma, for nA ¼ ½n=2�. r
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Lemma 7. The following equality holds

Y ¼
X
m aX n

gðlam;m; nAÞ ¼ 1; ol a Xn; onA a S:ð53Þ

Proof. From Eq. (42) in Theorem 10 we get

Y ¼
X
m aX n

d0ððlamÞbmÞ ĝgðjlamj; jmj; nAÞ:

Let us define the set B ¼ fi a S j li ¼ 0gHS, so that lB ¼ 0. We get ðlamÞb
m ¼ 0 i¤ mB ¼ 0 and ðlBamBÞbmB ¼ 0. But the second equality is identically
satisfied, because lB is a vector of all 1. Thus d0ððlamÞbmÞ ¼ d0ðmBÞ and we get

Y ¼
X
m aX n

d0ðmBÞ ĝgðjlBamBj; jmBj; nAÞ

¼
X
m aXr

ĝgðj11 � � � 1amj; jmj; nAÞ

¼
X
m aXr

ĝgðr� jmj; jmj; nAÞ

¼
X
m aXr

X
0atar

dtðjmjÞ ĝgðr� t; t; nAÞ ¼
X

0atar

� r

t

�
ĝgðr� t; t; nAÞ;

where r ¼ jBj ¼ jlj: Let us now use the form (44) of the function ĝg given in Re-
mark 16,

Y ¼ 1

2

X
0atar

� r

t

�� n

r� t; t

��1h� nA

r� t

�� n
A

t

�
þ
� nA

t

�� n
A

r� t

�i

¼ 1

2

� n

r

��1 X
0atar

h� nA
r� t

�� n
A

t

�
þ
� nA

t

�� n
A

r� t

�i

¼
� n

r

��1 X
0atar

� nA
t

�� n
A

r� t

�
:

By recalling Vandermonde’s identity [16],X
j

�m

nj

�� n�m

k � j

�
¼

� n

k

�
;

since nA þ n
A
¼ n, we get

Y ¼
� n

r

��1 X
0atar

� nA

t

�� n� nA

r� t

�
¼

� n

r

��1� n

r

�
¼ 1: r

Remark 18. Recall that, by Theorem 8, the potential of multipartite entangle-
ment attains its upper bound pMEðzÞ ¼ 1 on fully factorized states. Thus in (51)
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the nonegative sum which is subtracted from unity represents the amount of
entanglement of jc4, and MMES are those states that maximizes the distances
jzk zka lam � zka l zkamj2. In fact, the average over balanced bipartition of the
linear entropy (14) yields

LMEðzÞ ¼
NA

NA � 1
ð1� pMEðzÞÞ;ð54Þ

with NA ¼ 2½N=2�. Thus, apart from a normalization factor, the sum in (51) is
nothing but the average linear entropy. Note that the number of terms in the
sum is Nð4Þ given in (48), since the terms with l ¼ 0 or m ¼ 0 identically vanish.

Remark 19. In the spirit of the above Remark, one can prove Theorem 13 by
following a di¤erent path. First, one can easily write an expression analogous
to (8) for the purity pAðzÞ of a given bipartition. Incidentally, this would give
an explicit expression of LAðzÞ. Then, one considers the average over balanced
bipartitions and, by noting that the proofs of Theorems 10 and 11 do not de-
pend on the particular form of the monomials zkzlzmzn, that can be replaced by
jzkzl � zmznj2, one obtains the desired result. By comparing the two proofs, since
the average of 1 is 1, one can easily distillate an alternative combinatoric proof
of Vandermonde’s identity.

Example 1. Consider n ¼ 2 qubits. One gets

pMEðzÞ ¼ jz00j4 þ jz01j4 þ jz10j4 þ jz11j4ð55Þ
þ 2ðjz00j2jz01j2 þ jz00j2jz10j2 þ jz11j2jz01j2 þ jz11j2jz10j2Þ
þ 4Reðz00z01z10z11Þ

¼ 1� 2jz00z11 � z01z10j2:

The first equality follows from Corollary 5, while the second equality derives from
Theorem 13. Note that the number of terms Nð1Þ ¼ Nð2Þ ¼ 4 and Nð4Þ ¼ 1 is in
agreement with the counting of Theorem 12 and Remark 18. See Table 1.

Example 2. For 3 qubits we will give the potential of multipartite entanglement
in the form 4 of Theorem 13:

pMEðzÞ ¼ 1� 2
X
p aC3

ðjzpð000Þzpð011Þ � zpð001Þzpð010Þj2ð56Þ

þ jzpð100Þzpð111Þ � zpð101Þzpð110Þj2

þ 1

3
jzpð100Þzpð011Þ � zpð101Þzpð010Þj2

þ 1

3
jzpð000Þzpð111Þ � zpð001Þzpð110Þj2Þ;
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where the sum is over the 3 cyclic permutations

C3 ¼ fsi j sð1; 2; 3Þ ¼ ð2; 3; 1Þ; i ¼ 0; 1; 2gð57Þ

of the qubits S ¼ f1; 2; 3g. Here pðkÞ denotes the natural action of the permuta-
tion group on k,

Pn � Xn b ðp; kÞ N pðkÞ ¼ ðkpðiÞÞi aS a X n:ð58Þ

In agreement with Remark 18, the number of distinct terms is Nð4Þ ¼ 3� 4 ¼ 12.
See Table 1.

Now we will focus on the problem of the existence of perfect MMES. In par-
ticular we will try to construct them by using characterization 2 of Theorem 7.
It is not obvious that a state with pME ¼ 1=NA exists: in order to find a solution
one must solve for rA ¼ 1=NA; o ðA;AÞ, and this set of equations might not admit
a solution.

4. Perfect MMES. Probabilistic approach

We will look more closely at the equations

rA ¼ 1=NA; for every subsystem AHS with jAja n=2;ð59Þ

that, according to Theorem 7, characterize a perfect MMES. Although we could
consider only maximal subsets AHS, with jAj ¼ ½n=2�, it will be more conve-
nient to consider also smaller subsets A.

Let us first consider the diagonal elements in the computational basis
fj‘4Ag‘ aX nA HHA. By Eq. (17) of Theorem 6, one gets

3‘jrAj‘4 ¼
X

k; l aX n

zkzl dk
A
; l
A
dkA; ‘ dlA; ‘ ¼

X
k; l aX n

zkzl dk; l dkA; ‘ ¼
X
k aX n

jzkj2dkA; ‘:ð60Þ

Therefore, from (59) we obtain

3‘jrAj‘4 ¼
X
k aX n

jzkj2dkA; ‘ ¼ 1=NA;ð61Þ

with NA ¼ 2jAj, o‘ a X jAj, oAHS, with jAja n=2.
Now note that, due to normalization,

P
jzkj2 ¼ 1, we can look at ðjzkj2Þk aX n

as a probability vector on the finite space Xn of n classical bits. In view of this
interpretation, we will introduce the

Definition 12 (Population probability). Given a state jc4 a HS and its
Fourier coe‰cients ðzkÞk aX n in the computational basis, we define the population
probability vector in the computational basis,

PSðkÞ ¼ jzkj2;ð62Þ
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as the probability of the binary sequence k ¼ ðkiÞi aS a X n. Moreover, let E½��
denote the expectation value with respect to PS,

E½ f ðkÞ� ¼
X
k aX n

f ðkÞPSðkÞ ¼
X
k aX n

f ðkÞjzkj2;ð63Þ

for any function f : X n ! C.

According to the above definition, Eq. (61) reads

E½dkA; ‘� ¼ 2�jAj; o‘ a X jAj; oAHS; with jAja n=2:ð64Þ

By noting that the above expectation value is nothing but the marginal probabil-
ity distribution

E½dkA; ‘� ¼ PAð‘Þ;ð65Þ

we have arrived at the following

Theorem 14. A necessary condition for a state jc4 a HS to be a perfect MMES
is that all the marginals over nA a n=2 variables of its population probability vector
in the computational basis PSðkÞ ¼ jzkj2, are completely random:

PAð‘Þ ¼ 2�jAj; o‘ a X jAj; oAHS; with jAja n=2:ð66Þ r

Remark 20. For A ¼ pðCÞ with p a Pn and C ¼ f1; 2; . . . ; nAg one can write

E

�YnA
j¼1

dkpð jÞ; ‘j

�
¼ 2�nA ; o‘ a XnA ; op a Pn; with nA a n=2;ð67Þ

which means that

PpðCÞð‘Þ ¼ 2�nA ; o‘ a X nA ; op a Pn; with nA a n=2:ð68Þ

Remark 21. According to Theorem 14, a first step in the problem of seeking
perfect MMES is the following: Search for all probability functions on Xn, whose
marginals on nA a n=2 variables are uniform.

The solution to this problem is given by the following

Theorem 15 (Perfect MMES population). The population probability vector in
the computational basis of a perfect MMES of n qubits has the form

jzkj2 ¼ PSðkÞ ¼ 2�n þ
X

n
2<ran

X
j a ½Sr�

c
ðrÞ
j

Y
1alar

ð2kjl � 1Þ; k a S;ð69Þ

for some c
ðrÞ
j a R, where ½Sr� ¼ fð j1; . . . ; jrÞ a Srjj1 < j2 < � � � < jrg denotes the

set of ordered vectors of Sr.
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Proof. Note that any function on X n is a multilinear function of the compo-
nents of k a Xn, because k2

i ¼ ki. Therefore, we can write

PSðkÞ ¼ cð0Þ þ
X
r aS

X
j a ½Sr�

c
ðrÞ
j

Y
1alar

ð2kjl � 1Þ;

which depends on the real parameters c
ðrÞ
j a R, whose number is

1þ
X
r aS

j½Sr�j ¼
X
r aS

�
n

r

�
¼ 2n:

The normalization of PS implies that

1 ¼
X
k aX n

PSðkÞ ¼ 2ncð0Þ þ
X
r aS

X
j a ½Sr�

c
ðrÞ
j

Y
1alar

X
kjl aX

ð2kjl � 1Þ ¼ 2ncð0Þ;

that is

cð0Þ ¼ 2�n:

Let us now consider a subset with one element A ¼ f jg, with j a S. For any
kj a X one must have

1

2
¼ Pf jgðkjÞ ¼

X
k aXA

PSðkÞ ¼ 2n�1cð0Þ þ c
ð1Þ
j ð2kj � 1Þ ¼ 1

2
þ c

ð1Þ
j ð2kj � 1Þ;

that is

c
ð1Þ
j ¼ 0; j a S:

Analogously, for a subset with two elements A ¼ f j1; j2g,

2�2 ¼ PAðkj1 ; kj2Þ ¼
X
k aXA

PSðkÞ ¼ 2�2 þ c
ð2Þ
ð j1; j2Þð2kj1 � 1Þð2kj2 � 1Þ;

that is

c
ð2Þ
j ¼ 0; j a ½S2�:

By induction we get

c
ðrÞ
j ¼ 0; oj a ½Sr�; for 1a ra n=2;

and the result follows. r

Remark 22. The range of the free parameters c
ðrÞ
j is determined by the inequal-

ities 0aPSðkÞa 1, ok a S. Their number is given by
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X
n
2<ran

j½Sr�j ¼
X

n
2<ran

� n

r

�
¼ 1

2

X
n
2<ran

h� n

r

�
þ
� n

n� r

�i
ð70Þ

¼ 1

2

X
0ar<n

2

� n

r

�
þ 1

2

X
n
2<ran

� n

r

�

¼ 2n�1 � 1þ ð�1Þn

4

� n

½n=2�

�
:

The particular solution c
ðrÞ
j ¼ 0 for all r a S that yields a uniform probability

PSðkÞ ¼ 2�n will play a role in the following.

Theorem 15 completely determines the structure of the moduli rk ¼ jzkj ¼ffiffiffiffiffiffiffiffiffiffiffiffi
PSðkÞ

p
of the Fourier coe‰cients zk of a perfect MMES in the computational

basis. However this is only half of the work. In fact, the easy one. It remains to
determine the phases, defined in the following

Definition 13. A state jc4 a HS can be expressed in the computational basis as

jc4 ¼
X
k aX n

zkjk4; zk ¼ rkzk;ð71Þ

where the Fourier moduli belongs to the intersection of the positive hyperoctant
with a hypersphere

r a ðRþÞN BSN�1 ¼ fðrkÞk aX n j rk a Rþ;
X
k

r2k ¼ 1g; N ¼ 2n;ð72Þ

while the Fourier phases belongs to the torus TN ¼ ðS1ÞN

z a TN ¼ fðzkÞk aX n j zk a C; jzkj ¼ 1g:ð73Þ

We will now show that the phases z of a perfect MMES are solutions to the
system of the o¤-diagonal elements of the equation rA ¼ 1=NA.

Theorem 16 (Perfect MMES phases). A state jc4 a HS is a perfect MMES i¤
its Fourier phases z in the computational basis are solutions to the equations

X
m aXA

r‘amr‘ 0amz‘amz‘0am ¼ 0;ð74Þ

o‘; ‘0 a XA; ‘A ‘0; oAHS; jAj ¼ ½n=2�;

where rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
PSðkÞ

p
, with the population probability vector PSðkÞ given in Theorem

15, for some coe‰cients c
ðrÞ
j a R.
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Proof. The o¤-diagonal elements of rA in Eq. (17) of Theorem 6 read

3‘jrAj‘ 04 ¼
X

k; l aX n

zkzldk
A
;l
A
dkA;‘dlA;‘0 ¼

X
k
A
aXA

z‘ak
A
z‘ 0ak

A
;

o‘; ‘0 a XA, ‘A ‘0. Thus, by Equation (59), Definition 13 and Theorem 15 one
gets the desired result. r

Remark 23. An alternative form of (74) in terms of the permutation group isX
k; l aX n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSðkÞPSðlÞ

p
zkzl

Y
n
2< jan

dkpð jÞ;lpð jÞ

Y
1a jan

2

dkpð jÞ; ‘j

Y
1a jan

2

dlpð jÞ; ‘0j ¼ 0;ð75Þ

op a Pn; o‘; ‘0 a X nA ; ‘A ‘0: 1a nA a n=2:

Let us now investigate whether the system of equations (74) admits a solution or
not. In particular, it is important to count the number of equations and of vari-
ables and to look for which values of n the system is over-determined.

Theorem 17 (Number of equations and variables). The set of equations (74)
determining a perfect MMES is a system of

me ¼ 2½n=2�ð2½n=2� � 1Þ
�

n

½n=2�
�

ð76Þ

real equations involving

mx ¼ 3 � 2n�1 � 1þ ð�1Þn

4

�
n

½n=2�
�

ð77Þ

real variables.

Proof. By noting that exchanging ‘ and ‘0 one obtains the complex conjugate,
the counting of real equations coincides with the total counting of equations (74).
Since ‘A ‘0, we get

me ¼ jXAjðjXAj � 1Þ#ðAÞ;

where #ðAÞ is the number of maximal subsets AHS. Now, jXAj ¼ 2½n=2� and

#ðAÞ ¼
�

n

½n=2�
�
, and (76) follows. On the other hand, the variables are the

2n phases z and the parameters c
ðrÞ
j , whose number is given by (70), for a total

number of mx variables.

Remark 24. For large values of n, by Stirling’s approximation one gets

me P 22n
ffiffiffiffiffi
2

np

r
; mx P 3 2n�1; n ! l:ð78Þ

53multipartite entanglement in qubit systems



As shown in Table 2, for nb 4 the number of equations is larger than the number
of variables and the system is overdetermined. Therefore, symmetries must play a
crucial role in order to assure the existence of a solution.

4.1. Examples

4.1.1. Two qubits. Let us consider the case of n ¼ 2 qubits. S ¼ f1; 2g and we
get from (69)

r2k ¼ Pf1;2gðkÞ ¼
1

4
ð1þ cs1s2Þ;ð79Þ

with si ¼ ð2ki � 1Þ, i a S. Normalization and positivity, 0aPf1;2gðkÞa 1,
ok a X 2 imply that c a ½�1; 1�. Equation (74) particularizes to

r00r10z00z10 þ r01r11z01z11 ¼ 0

r00r01z00z01 þ r10r11z10z11 ¼ 0;

�
ð80Þ

and, by noting that r200 ¼ r211 ¼ ð1þ cÞ=4 and r201 ¼ r210 ¼ ð1� cÞ=4, one gets
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
ðz00z10 þ z01z11Þ ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2
p

ðz00z01 þ z10z11Þ ¼ 0

(
:ð81Þ

The above system reduces to a single equationffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
ðz00z11z10z01 þ 1Þ ¼ 0:ð82Þ

1. A first class of solutions is jcj ¼ 1 and arbitrary phases. This yields, for c ¼ 1,
r01 ¼ r10 ¼ 0 and r00 ¼ r11 ¼ 1=

ffiffiffi
2

p
, whence

jc4 ¼ 1ffiffiffi
2

p ðz00j004þ z11j114Þ;ð83Þ

while, for c ¼ �1, r00 ¼ r11 ¼ 0 and r01 ¼ r10 ¼ 1=
ffiffiffi
2

p
whence

Table 2. Number of equations vs number of variables.

n me mx

2 4 5
3 6 12
4 72 21
5 120 48
6 1120 86
7 1960 192
8 16800 349
n !l

ffiffiffiffiffiffiffiffiffiffi
2=np

p
22n 3 2n�1
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jc4 ¼ 1ffiffiffi
2

p ðz01j014þ z10j104Þ:ð84Þ

The above states are known as Bell states. They are, obviously, maximally
bipartite entangled. Indeed, for n ¼ 2 multipartite entanglement reduces to
bipartite entanglement.

2. On the other hand, when jcjA 1, the perfect MMES are

jc4 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
ðz00j004þ z11j114Þ þ

1

2

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
ðz01j014þ z10j104Þ;ð85Þ

where the phases must satisfy the condition

z00z11 ¼ �z01z10:ð86Þ

Therefore,

jc4 ¼ a

ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p

2
ðbj004þ bj114Þ � ia

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p

2
ðgj014þ gj104Þ;ð87Þ

with a ¼ ðz00z11Þ1=2, b ¼ ðz00z11Þ1=2 and g ¼ ðz01z10Þ1=2.
3. The particular case c ¼ 0 corresponds to a uniform amplitude distribution

rk ¼ 1=2, k a X 2. To such a class belong perfect MMES with phases that
are e 1.

jc4 ¼ 1

2

X
k aX 2

zkjk4; zk a f�1;þ1g;
Y
k aX 2

zk ¼ �1:ð88Þ

4.1.2. Three qubits. Let us consider the case of n ¼ 3 qubits. S ¼ f1; 2; 3g and
we get from (69)

r2k ¼ P1;2;3ðkÞ ¼
1

8
ð1þ c1s2s3 þ c2s1s3 þ c3s1s2 þ ds1s2s3Þ;ð89Þ

where si ¼ ð2ki � 1Þ, with i a S. On the other hand, from (74) we obtain

z000z100 þ z001z101 þ z010z110 þ z011z111 ¼ 0

z000z010 þ z001z011 þ z100z110 þ z101z111 ¼ 0

z000z001 þ z010z011 þ z100z101 þ z110z111 ¼ 0

8<
: :ð90Þ

Note that the three equations are obtained by a cyclic permutation of the three
qubits S.

1. If ci ¼ 0 (i a S) and d a ½�1; 1�, one gets from (89)

r2k ¼ 1

8
ð1þ ds1s2s3Þ ¼

1� ð�1Þjkjjdj
8

; k a X 3:ð91Þ
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Thus, ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
ðz000z100 þ z001z101 þ z010z110 þ z011z111Þ ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d2
p

ðz000z010 þ z001z011 þ z100z110 þ z101z111Þ ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
ðz000z001 þ z010z011 þ z100z101 þ z110z111Þ ¼ 0

8><
>: :ð92Þ

(a) If jdj ¼ 1 the phases are arbitrary and the MMES is

jc4 ¼ 1

2
ðz001j0014þ z010j0104þ z100j1004þ z111j1114Þð93Þ

¼ 1

2

X
jkj odd

zkjk4;

when d ¼ 1, and

jc4 ¼ 1

2
ðz000j0004þ z011j0114þ z101j1014þ z110j1104Þð94Þ

¼ 1

2

X
jkj even

zkjk4;

when d ¼ �1
(b) When jdjA 1, the phases must satisfy

z000z100 þ z001z101 ¼ a

z000z010 þ z001z011 ¼ b

z000z001 þ z010z011 ¼ g

z010z110 þ z011z111 ¼ �a

z100z110 þ z101z111 ¼ �b

z100z101 þ z110z111 ¼ �g

8>>>>>>><
>>>>>>>:

;ð95Þ

with jaj; jbj; jgja 2. It is a system of 6 equations in 8 variables. Thus the
general solutions, for fixed d, live on a 5-dimensional manifold. A partic-
ular 3-dimensional submanifold is obtained by a ¼ b ¼ g ¼ 0. In such a
case

z000z100 ¼ �z001z101
z010z110 ¼ �z011z111
z000z010 ¼ �z001z011
z100z110 ¼ �z101z111
z000z001 ¼ �z010z011
z100z101 ¼ �z110z111

8>>>>>>><
>>>>>>>:

:ð96Þ

For example, the following MMES is an element of that manifold when
d ¼ 0
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jc4 ¼ 1ffiffiffi
8

p ð � j0004þ j0014þ j0104þ j0114ð97Þ

þ j1004þ j1014þ j1104� j1114Þ:

As in the case of 2 qubits, this is an example of perfect MMES with uni-
form amplitudes rk ¼ 1=

ffiffiffi
8

p
and real phases zk a f�1; 1g, with k a X 3.

2. If d ¼ 0 and ci ¼ c (i a S) with c a ½�1=3; 1�, one gets

r2k ¼ 1

8
ð1þ cðs1s2 þ s2s3 þ s3s1ÞÞ ¼

1
8 ð1þ 3cÞ for k a f000; 111g
1
8 ð1� cÞ otherwise.

(
ð98Þ

Thus, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3cÞð1� cÞ

p
ðz000z100 þ z011z111Þ

þ ð1� cÞðz001z101 þ z010z110Þ ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3cÞð1� cÞ

p
ðz000z010 þ z101z111Þ

þ ð1� cÞðz001z011 þ z100z110Þ ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3cÞð1� cÞ

p
ðz000z001 þ z110z111Þ

þ ð1� cÞðz010z011 þ z100z101Þ ¼ 0

8>>>>>>><
>>>>>>>:

:ð99Þ

(a) If c ¼ 1 the phases are arbitrary and the perfect MMES is

jc4 ¼ 1ffiffiffi
2

p ðz000j0004þ z111j1114Þ;ð100Þ

As a particular case, when z000 ¼ z111 ¼ 1, one obtains the GHZ state [27].
(b) For c < 1, the solutions live on a 5-dimensional submanifold. Note that if

one tries a solution for which the phases are independent of c one gets

z000z100 þ z011z111 ¼ 0

z000z010 þ z101z111 ¼ 0

z000z001 þ z110z111 ¼ 0

z001z101 þ z010z110 ¼ 0

z001z011 þ z100z110 ¼ 0

z010z011 þ z100z101 ¼ 0

8>>>>>>><
>>>>>>>:

;ð101Þ

that is,

z100z011 ¼ z010z101 ¼ z001z110 ¼ �z000z111
z001z110 þ z010z101 ¼ 0

z001z110 þ z100z011 ¼ 0

z010z101 þ z100z011 ¼ 0

8>><
>>: ;ð102Þ

which has no solutions.
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5. Uniform MMES

According to Theorem 15, a perfect MMES has a population probability vector
in the computational basis given by (69), whose marginals on maximal subsys-
tems are all uniform. In particular, a uniform probability vector is compatible
with a perfect MMES. In this Section we will focus just on this class of states,
that have uniform amplitudes

rk ¼ jzkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
PSðkÞ

p
¼ 1=

ffiffiffiffiffi
N

p
; ok a X n;ð103Þ

and depend only on N ¼ 2n phases.

Definition 14 (Uniform states). A state jc4 a HS of the form

jc4 ¼ 1ffiffiffiffiffi
N

p
X
k aX n

zkjk4; z ¼ ðzkÞ a TN ; N ¼ 2n;ð104Þ

is said to have uniform amplitudes in the computational basis. A state with uniform
amplitudes in the computational basis is also called a uniform state.

First of all, we have a complete characterization of uniform maximizers of the
potential of multipartite entanglement.

Theorem 18 (Fully factorized uniform states). The fully factorized states with
uniform amplitudes, z ¼ z=

ffiffiffiffiffi
N

p
, have zk ¼

Q
i aS z

i
ki
, with ziki a S1, k a Xn.

Proof. The result is an immediate consequence of Theorem 8, by observing that
zk ¼

Q
i aS jaiki jz

i
ki
¼

Q
i aS jaiki j

Q
j a S z

j
kj
¼ zk=

ffiffiffiffiffi
N

p
. r

The various expressions of purity of a bipartition ðA;AÞ considered in Section
2 simplify for uniform states. In particular, by plugging (104) into (26) we find

Theorem 19 (Purity for uniform states). Consider a state with uniform ampli-
tudes in the computational basis z ¼ z=

ffiffiffiffiffi
N

p
, with z a TN. Then for any bipartition

ðA;AÞ,

pAðzÞ ¼
NA þN

A
� 1

N
þ 1

N 2

X
k aXS

X
l aXA

�

X
m aXA

�

Reðzk zka l zka lam zkamÞ;ð105Þ

where NA ¼ 2nA , and N ¼ 2n.

Proof. When z ¼ z=
ffiffiffiffiffi
N

p
, in the first three sums of (26) all terms are equal to

1=N 2. Their number, according toRemark 10, isN
ð1Þ
tot þN

ð2Þ
tot ¼ NðNA þN

A
� 1Þ,

and the result follows. r

Remark 25. Note that the first term on the right-hand side corresponds to the
average entanglement for typical states [22, 26, 31, 32, 39], whose phases are
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uniformly distributed on the torus TN . Thus, the combination of phases in the
second term can increase or reduce the value of the purity with respect to the
typical one (at a fixed bipartition).

Finally observe that, by setting zk ¼ eijk , with jk a ½0; 2pÞ, k a Xn, one gets

pAðzÞ ¼
NA þN

A
� 1

N
ð106Þ

þ 1

N 2

X
k aXS

X
l aXA

�

X
m aXA

�

cosðjk � jka l þ jka lam � jkamÞ:

Remark 26. Note that for a uniform fully factorized state, since zk ¼ zAkAz
A
k
A
,

with zAl ¼
Q

i aA zili , ok a Xn, one gets

zk zka l zka lam zkam ¼ ðzAkAz
A
k
A
ÞðzAkAa lz

A

k
A
ÞðzAkAa lz

A
k
A
amÞðz

A

kA
z
A

k
A
amÞ ¼ 1;ð107Þ

ok a XS, ol a XA, ol a XA. Therefore, all terms of the sum in (105) are 1, and

pAðzÞ ¼
NA þN

A
� 1

N
þ 1

N 2
NðNA � 1ÞðN

A
� 1Þ ¼ 1;ð108Þ

as it should.

The counterpart of Theorem 19 for the potential of multipartite entanglement is
stated in the following

Theorem 20 (Potential for uniform states). If the Fourier amplitudes in the
computational basis are uniform, z ¼ z=

ffiffiffiffiffi
N

p
, with z a TN, then the potential of

multipartite entanglement reads

pMEðzÞ ¼
NA þN

A
� 1

N
ð109Þ

þ 1

N 2

X
k aX n

X
l;m aX n

�

gðl;m; ½n=2�Þ Reðzk zka lam zka l zkamÞ;

where NA ¼ 2½n=2�, N
A
¼ 2½ðnþ1Þ=2�, and N ¼ 2n.

Proof. When z ¼ z=
ffiffiffiffiffi
N

p
, in the first two sums of (46) all terms are equal to

1=N 2 and one obtains

pMEðzÞ ¼
1

N
þ 2

N

X
l aX n

�

ĝgðjlj; 0; ½n=2�Þ

þ 1

N 2

X
k aX n

X
l;m aX n

�

gðl;m; ½n=2�Þ Reðzk zka lam zka l zkamÞ:
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We getX
l aX n

�

ĝgðjlj; 0; nAÞ ¼
X
l aX n

�

X
0asan

dsðjljÞ ĝgðs; 0; nAÞ ¼
X

1asan

�
n

s

�
ĝgðs; 0; nAÞ

and, from (44),

ĝgðs; 0; nAÞ ¼
1

2

�
n

s

��1h� nA
s

�
þ
�
n
A

s

�i
:

Thus,

2
X
l aX n

�

ĝgðjlj; 0; nAÞ ¼
X

1asan

h�
nA
s

�
þ
�
n
A

s

�i
¼ 2nA þ 2nA � 2;

and, by setting nA ¼ ½n=2�, the result follows. r

We will now use Theorem 20 and look for the uniform minimizers of the poten-
tial of multipartite entanglement.

5.1. Two qubits

For two qubits n ¼ 2, we have N ¼ 4, NA ¼ N
A
¼ 2 and (109) becomes

pMEðzÞ ¼
3

4
þ 1

16

X
k aX 2

X
l;m aX 2

�

gðl;m; 1Þ Reðzk zka lam zka l zkamÞð110Þ

¼ 3

4
þ 1

8

X
k aX 2

ĝgð1; 1; 1Þ Reðzk zka11 zka01 zka10Þ:

From (43) we get ĝgð1; 1; 1Þ, hence

pMEðzÞ ¼
3

4
þ 1

4
Reðz00z11z01z10Þ:ð111Þ

Uniform perfect MMES are solutions of the equation

pMEðzÞ ¼
1

2
; z a T4;ð112Þ

that is

z00z11z01z10 ¼ �1;ð113Þ

which yields

jc24 ¼ 1

2
ðz00j004þ z01j014þ z10j104� z00z01z10j114Þ:ð114Þ
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In this degenerate case, multipartite entanglement coincides with bipartite entan-
glement, and this state is obviously equivalent, up to local unitaries, to a Bell
state. A particular subclass is formed by uniform perfect MMES (114) with real
phases z a f�1;þ1g4. Their number is 23 and has been already found by using a
probabilistic approach. See (88).

5.2. Three qubits

For n ¼ 3 qubits, N ¼ 8, NA ¼ 2, N
A
¼ 4, and one must look for the solutions of

pMEðzÞ ¼
1

2
; z a T8;ð115Þ

where, from (109),

pMEðzÞ ¼
5

8
þ 1

64

X
k aX 3

X
l;m aX 3

�

gðl;m; 1Þ Reðzk zka lam zka l zkamÞð116Þ

Due to the constraint d0ðlbmÞ in the coupling function g, see Theorem 10, one
can easily see that the pairs that yield nonvanishing contributions to the sum are

ðl;mÞ ¼ ðpð001Þ; pð010ÞÞ; ðl;mÞ ¼ ðpð001Þ; pð110ÞÞ; p a C3;ð117Þ

and the pairs obtained by exchanging l and m, where C3 HP3 is the subgroup of
the 3 cyclic permutations defined in (57). Therefore,

pMEðzÞ ¼
5

8
þ 1

32

X
k aX 3

X
p aC3

½ĝgð1; 1; 1Þ Reðzk zkapð011Þ zkapð001Þ zkapð010Þð118Þ

þ ĝgð1; 2; 1Þ Reðzk zkapð111Þ zkapð001Þ zkapð110Þ�

¼ 5

8
þ 1

192

X
p aC3

X
k aX 3

½2ReðzpðkÞ zpðka011Þ zpðka001Þ zpðka010Þ

þReðzpðkÞ zpðka111Þ zpðka001Þ zpðka110Þ�;

since from (43) we get ĝgð1; 1; 1Þ ¼ 1=3 and ĝgð1; 2; 1Þ ¼ 1=6. By performing the
sum over X 3 we finally obtain

pMEðzÞ ¼
5

8
þ 1

48

X
p aC3

½2Reðzpð000Þzpð011Þzpð001Þzpð010ÞÞð119Þ

þ 2Reðzpð111Þzpð100Þzpð110Þzpð101ÞÞ
þReðzpð000Þzpð111Þzpð001Þzpð110ÞÞ
þReðzpð010Þzpð101Þzpð011Þzpð100ÞÞ�:
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There are 3 families of solutions, living on the following 5-dimensional
submanifolds

Mp ¼ fðzkÞ a T8 j zpð000Þzpð111Þzpð001Þzpð110Þ ¼ þ1;ð120Þ
zpð010Þzpð101Þzpð100Þzpð011Þ ¼ þ1;

zpð000Þzpð011Þzpð001Þzpð010Þ ¼ �1g; p a C3:

Indeed, if z a Mp it is an easy task to see that

zqð000Þzqð111Þzqð001Þzqð110Þ ¼ ap�1qð1Þ

zqð010Þzqð101Þzqð100Þzqð011Þ ¼ bp�1qð1Þ

zqð000Þzqð011Þzqð001Þzqð010Þ ¼ cp�1qð1Þ

zqð111Þzqð100Þzqð110Þzqð101Þ ¼ dp�1qð1Þ

8>>>><
>>>>:

q a C3;ð121Þ

where

a ¼ ðþ1;�a;�aÞ
b ¼ ðþ1;�a;�aÞ
c ¼ ð�1;þa;�1Þ
d ¼ ð�1;þa;�1Þ

8>><
>>: ;ð122Þ

with a a S1 arbitrary. Therefore, the sum in pMEðzÞ readsX
p aC3

Reðaþ bþ 2cþ 2dÞp�1qð1Þ ¼
X
i aS

Reðaþ bþ 2cþ 2dÞið123Þ

¼ 2� 8þ 4Re a� 4Re a ¼ �6;

yielding pMEðzÞ ¼ 1=2.
Note that, in agreement with Theorem 12, pMEðzÞ contains Nð4Þ ¼ 12 distinct

terms that depend on phases, 6 of which are double weighted. The above solu-
tions force 2 terms to the value þ1, and 4� 2 terms to the value ¼ �1. The
remaining ones are symmetric around 0 and cancel.

The corresponding uniform perfect MMES are

jcp4 ¼ 1ffiffiffi
8

p ðzpð000Þjpð000Þ4þ zpð001Þjpð001Þ4þ zpð010Þjpð010Þ4ð124Þ

� zpð000Þzpð001Þzpð010Þjpð011Þ4þ zpð100Þjpð100Þ4
� zpð000Þzpð001Þzpð100Þjpð101Þ4þ zpð110Þjpð110Þ4
þ zpð000Þzpð001Þzpð110Þjpð111Þ4Þ; p a C3:

At present we do not know whether there exist other classes of uniform perfect
MMES than (124). Numerical evidence seems to corroborate the conjecture that
(124) describe all uniform perfect MMES, but we could not prove it.
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5.2.1. Real uniform MMES. Let us now look for uniform perfect MMES whose
phases are all real, i.e. z a fþ1; 1g8. A necessary condition is that a is real,
a a f�1;þ1g. In particular, it is an easy task to prove that a ¼ �1 i¤ a; b; c; d
in (122) are permutation invariant, i¤

a ¼ b ¼ ð1; 1; 1Þ; c ¼ d ¼ ð�1;�1;�1Þ:ð125Þ

Thus a ¼ �1 characterizes the 4-dimensional intersection

M? ¼ Ms0 BMs1 ¼ Ms1 BMs2 ¼ Ms2 BMs0 ¼
\
p aC3

Mp:ð126Þ

On the other hand, a ¼ þ1 determines the following three nonintersecting 4-
dimensional submanifolds

Np ¼ MpB fðzkÞ a T8ja ¼ zpð000Þzpð110Þzpð010Þzpð100Þ ¼ þ1g; p a C3:ð127Þ

Therefore, all uniform perfect MMES with real z belongs to one of the above
nonintersecting manifolds, namely

freal uniform MMESgH
[
p aC3

Np AM?:ð128Þ

Thus the total number of real uniform perfect MMES is 4� 24 ¼ 26. They are
given by

jc4 ¼ 1ffiffiffi
8

p
X
k aX 3

zkjk4; z a f�1; 1g8ð129Þ

with

z000z001z010z011 ¼ xj

z000z001z100z101 ¼ yj

z000z010z100z110 ¼ zj

z001z010z100z111 ¼ wj ;

8>><
>>: 1a ja 4;ð130Þ

where

x ¼ ð�1;�1;�1;þ1Þ; y ¼ ð�1;�1;þ1;�1Þ;
z ¼ ð�1;þ1;�1;�1Þ; w ¼ ð�1;þ1;þ1;þ1Þ:

ð131Þ

5.3. n > 3 qubits

For n ¼ 4 qubits, N ¼ 16, NA ¼ N
A
¼ 4, and a brute force enumeration shows

that the minimum value of the potential of multipartite entanglement in the class
of real uniform states, is
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minfpð4ÞMEðzÞ j z a f�1; 1g16g ¼ 1

3
>

1

4
:ð132Þ

In fact, there are 1056 minimizers, among which, there is, e.g.

z ¼ ð�1;�1;�1;�1;�1;�1;þ1;þ1;�1;þ1;�1;þ1;þ1;�1;�1;þ1Þ:ð133Þ

There is numerical evidence that 1=3 is the minimum of the multipartite entangle-
ment, and thus it is not an artifact of the restriction to real uniform states. In fact,
it has been proved that for n ¼ 4 the minimum of pME is strictly larger than 1=4
[13, 28], but still its value is unknown [8]. This is a first example of frustration
among the bipartitions, that prevents the existence of a perfect MMES: the re-
quirement that purity be minimal for all balanced bipartitions generate conflicts
already for n ¼ 4 qubits.

For n ¼ 5 and 6, the expressions become more complicate. Here, we will not
discuss this cases. We will only exhibit two real uniform perfect MMES, solutions
to

p
ð5Þ
MEðzÞ ¼

1

4
; z a f�1;þ1g32ð134Þ

and

p
ð6Þ
MEðzÞ ¼

1

8
; z a f�1;þ1g64;ð135Þ

respectively. Therefore, interestingly, frustration is present for n ¼ 4 qubits, while
it is absent for n ¼ 5 and 6.

For example, a 5-qubits real uniform perfect MMES is defined by Eq. (104)
with the following set of phases

z ¼ ð þ 1;þ1;þ1;þ1;þ1;�1;�1;þ1;þ1;�1;�1;þ1;þ1;þ1;þ1;þ1;ð136Þ
þ 1;þ1;�1;�1;þ1;�1;þ1;�1;�1;þ1;�1;þ1;�1;�1;þ1;þ1Þ

and can be shown to live on a 7-dimensional manifold, while a 6-qubits real uni-
form perfect MMES has the following set of phases

z ¼ ð þ 1;þ1;�1;þ1;�1;�1;�1;þ1;�1;�1;þ1;�1;�1;�1;�1;þ1;ð137Þ
� 1;þ1;�1;�1;�1;þ1;þ1;þ1;�1;þ1;�1;�1;þ1;�1;�1;�1;

þ 1;�1;�1;�1;�1;þ1;�1;�1;þ1;�1;�1;�1;þ1;�1;þ1;þ1;

þ 1;þ1;þ1;�1;þ1;þ1;�1;þ1;�1;�1;�1;þ1;þ1;þ1;�1;þ1Þ:

By using the theory of quantum weight enumerators and quantum codes [42–
44], it has been proved that [46]

minfpðnÞMEðzÞ j z a S2nþ1�1g > 2�½n=2�; for nb 8;ð138Þ
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and thus there is frustration among the bipartitions that prevents the existence of
a n-qubit perfect MMES, for nb 8. The case n ¼ 7 is still open. There is numer-
ical evidence that it is frustrated too, but no conclusive arguments.

Summarizing, perfect MMES exist for n ¼ 2; 3; 5; 6 and, possibly, for n ¼ 7.
For n ¼ 4 and nb 8 there is frustration and the minimum of the potential of mul-
tipartite entanglement is strictly larger than 2�½n=2�. Interestingly enough, in the
cases considered (na 6) we have shown that the (conjectured) minimum of the
potential is attained by uniform states with real phases. In such a case, in order
to study the structure of multipartite entanglement in a quantum state of n qubits,
and in particular the minima of its potential, one can instead consider the simpler
system of classical sequences z a f�1;þ1g2

n

of 2n bits, with Hamiltonian p
ðnÞ
MEðzÞ.

6. Conclusions

In this paper we have studied the properties of the potential of multipartite entan-
glement and of its minimizers, the MMES, for a system of n qubits. In particular
our focus has been on perfect MMES, that saturate the lower bound of the
potential, and by using a probabilistic approach, we have proven a theorem on
the structure of their population probability vectors. This allowed us to consider
a particular simple class of solutions, those with uniform population. We have
shown by explicit construction that (apart for the case n ¼ 7 which is still open,
but probably is frustrated) there always exist uniform perfect MMES with real
phases, a class of states that can be mapped to the classical binary sequences of
length 2n. In fact, we have shown that also for n ¼ 4, the lowest number at which
frustration occurs and hinders the existence of perfect MMES, the (conjectured)
minimum of the potential of multipartite entanglement is attained by uniform
states with real phases. This represents a great advantage, because in this situ-
ation one can investigate the structure of quantum multipartite entanglement
by studying the simplest problem a classical Hamiltonian defined on binary
sequences.
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