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ABSTRACT. — We introduce a potential of multipartite entanglement for a system of n qubits, as
the average over all balanced bipartitions of a bipartite entanglement measure, the purity. We study
in detail its expression and look for its minimizers, the maximally multipartite entangled states. They
have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible
bipartitions. We investigate their structure and consider several examples for small 7.
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1. INTRODUCTION

Entanglement is one of the most striking features of quantum phenomena [41]. It
plays very important roles in quantum information processing such as quantum
computation [37], quantum teleportation [6] (for discussions on experimental
realizations see [11, 12, 25, 38]), dense coding [7] and quantum cryptographic
schemes [17, 18, 24]. Nevertheless, the quantification of multipartite entangle-
ment is no simple matter.

Entanglement is intimately related to the very mathematical structure of quan-
tum mechanics and complex Hilbert spaces. In particular it is a straightforward
consequence of linearity (superposition principle) in tensor product Hilbert spaces
(composite quantum systems).

Consider a quantum system composed of two parts (e.g. two particles): part
A, whose Hilbert space is ., and part B, whose Hilbert space is #%. According
to quantum mechanics, the composite system lives in the tensor product Hilbert
space # = #4 ® #p. The most familiar example is that of two spinless particles,
whose Hilbert space is L*(R*) ® L?(R*) = L*(R®). The linearity of 2 implies
that the states |/) of the composite system # are linear combinations of product
states, namely,

Wy =" ziled ® 1>,
ij

with |p,> € #4 and [y;> € #5. This entails interference among probability ampli-
tudes of two-particle states, that is the analogous of the simpler case of one-
particle interference. For example, the probability amplitude of having both
particle 4 in state |p,> and particle B in state |y, ) interferes with the probability
amplitude of having both particle 4 in state |p,» and particle B in state |y,>. As a
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consequence there exist correlations of quantum nature —entanglement— between
quantum subsystems. These correlations are stronger than the classical ones, in
the sense that they violate a class of inequalities, named after Bell, that must be
satisfied by all classical correlations [41].

The most striking violation of Bell’s inequalities is given by a particular
class of states: maximally entangled states. The simplest example is that of two
spin-1/2 systems (or qubits), whose Hilbert space is C> ® C?, in the singlet state

@) = (10> ® [1) — 1) ® [0))/V2,

where {|0),|1>} is the natural basis of C?, representing spin up or down in a
given direction. The expectation value of any local observable O of the first spin
is given by

1 1
(@0 @ 1]®) =5 <0[0[0) + 3 <1[0]1) = Tr(p,0),

and thus is an incoherent average corresponding to a completely mixed reduced
density matrix of the first spin p, = 1/2. Analogously for the second spin. There-
fore, spin measurements in a given, arbitrary, direction over an ensemble of
pairs prepared in a singlet state will result in a completely random sequence
of 0 and 1. On the other hand, the results of joined local measurements exhibit
strong correlations, due to the fact that the total spin is 0: the two spins are
always found pointing in opposite directions. The two random sequences are
exactly complementary.

Maximally entangled states are characterized by the property, just shown for
the two-qubit singlet state, that to a perfect knowledge of the state of the compos-
ite system corresponds a complete ignorance of the states of its two parts. More
precisely, although the composite system is in a well determined pure state, its
two parts are in completely mixed states. See Corollary 3. Therefore, all informa-
tion is totally shared by the two parts. Note that this situation is strongly at vari-
ance with the classical case, in which a complete knowledge of the total system is
equivalent to a complete knowledge of both its parts. In quantum mechanics this
is only a necessary condition.

In general, the degree of bipartite entanglement of a quantum system can
range from a maximum, when its two parts are in completely mixed states, to a
minimum, when its two parts are in pure states, and thus a complete knowledge
of both subsystems implies a complete knowledge of the entire system, as in the
classical case. This is the case of separable, or unentangled, states [/ = |¢> ® |1,
that have no correlations between the two parts and, thus, no shared information.

The degree of bipartite entanglement [49] of a composed quantum system can
be consistently quantified, as in Definition 8, in terms of the purity of the reduced
density matrix of one of the two subsystems (purity can be proven to be the same
for both, see Lemma 2). A lower value of purity will correspond to a larger value
of entanglement.

On the other hand, there is no unique way of quantifying multipartite entan-
glement [4], that is entanglement among n given parties of a given quantum sys-
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tem. Different definitions often do not agree with each other, because they adopt
different strategies, focus on different aspects and capture different features of this
quantum phenomenon [14, 15, 33, 36, 48]. There is a profound reason behind this
manifest disadvantage: the number of real numbers, i.e. the invariants under local
unitary transformations [1, 2, 3], needed to quantify multipartite entanglement
grows exponentially with the size of the system, so that the definition of appropri-
ate entanglement measures, able to summarize the most salient global features of
entanglement, can be very difficult.

A natural generalization of the bipartite case is to quantify the entanglement
among n parties by considering the average purity over subsystems [21, 22]. In
this paper we will follow this strategy and, in particular, we will consider systems
of n qubits.

After introducing notation and discussing some results about bipartite entan-
glement in Section 2, we move to multipartite entanglement and study the proper-
ties of the potential of multipartite entanglement (i.e. the average purity over bal-
anced bipartitions), Definition 10, and of its minimizers, i.e. quantum states with
the maximal degree of multipartite entanglement. In the ideal situation, the bi-
partite entanglement of such states is not only maximal, but also does not depend
on the way one decides to bipartite the total system into two subsystems. See
Definition 9. Our approach is based on the action of the permutation group on
the Fourier coeflicients of the quantum state and thus is of combinatoric nature.

The potential of multipartite entanglement, Eq. (32) of Theorem 9, is a quartic
Hamiltonian

ave(z) = > Ak KL n)2)) zize 2 2,
fe k', 11"

where z = (zx), with k = (ky,- -+, k,) € {0,1}" is the vector of the Fourier coeffi-
cients of the state of a system of n qubit in the computational basis

Wy =" zilk) ® ko) @« [k
k

One of the aims of this paper is to investigate the complex structure of the long-
range coupling function A, that appears in the above expression. This is accom-
plished in Theorems 10, 11 and 13, and in Corollary 5. In particular, a measure
of the complexity of the potential of multipartite entanglement is given by the
number of its nontrivial interfering terms, that scales like 233" (see Theorem 12
and the following remark).

Sections 4 and 5 will then be devoted to investigate maximally multipartite
entangled states (MMES) [21], i.e. the minimizers of the potential of multipartite
entanglement. In particular, the structure of perfect MMES, i.e. minimizers that
are maximally entangled with respect to any bipartition, is analyzed in Section 4:
by making use of a probabilistic approach, Theorem 15 gives a complete charac-
terization of their population probability vectors (|z¢|?), while Theorem 16 ex-
hibits the equations that must be satisfied by their phases ({;) = (zx/|z«|). The
number of equations quickly overcomes the number of variables, since their ratio
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scales as 2! /\/n with the number n of qubits. See Theorem 17 and following
remark. Therefore, for large systems it becomes more and more difficult to have
a perfect MMES solution, unless symmetries subtly conspire to reduce the
number of independent equations. In fact, the existence of perfect MMES for
n <6, n#4, will be proven by explicit construction in Section 5, while it is
known [46, 42-44] that for n > 8 they do not exist. The case n» = 7 remains
open, although there is numerical evidence that no perfect MMES exist [21]. In
conclusion, apart from some special small values of n, not all bipartitions can
have minimal purity (maximal entanglement) and the requirement that a given
bipartition be in a maximally entangled state collides with the same requirement
for a different bipartition. Thus, the bipartitions of a general MMES are in a frus-
trated configuration, and this makes the whole subject richer and very interesting.

Since, according to the structure theorem 15, a perfect MMES can have a
uniform population probability vector (|zx|*) = (1/N,---,1/N) with N = 2", in
Section 5 we focus on this class of uniform states, and restrict our quest to it.
We will explicitly construct perfect MMES with uniform population, and will
easily characterize the fully factorized states, i.e. the maximizers of the potential
of multipartite entanglement that have uniform probability vectors. By pushing
even further our simplifying assumptions, we will explicitly show that, at least
for n < 6, the potential admits minimizers and maximizers in the very restricted
class of uniform states with real phases, (z;) = ({/V/N), with { € {+1,—1}.
This states can be naturally mapped onto the set of binary sequences of length
N = 2" and the potential of multipartite entanglement becomes a quartic Ham-
iltonian on binary sequences (or classical spins). It is then quite natural to inves-
tigate whether there is any relation between the minimizing sequences of 7yg and
the low correlation sequences that minimize similar long-range Hamiltonians
studied in [34, 35, 9, 10], which quantify all possible correlations in a binary
string. However, we will leave this problem for a future publication.

A final remark is in order. The study of the minimizers of myg(z) can be em-
bedded in a statistical mechanical framework [20]. Let us consider the partition
function of a system with Hamiltonian 7y (z) at a fictitious temperature ',

Zy = / exp(—f mve(2)) du(z),

where u is the uniform measure (of typical states) on the hypersphere
{ze CY| 3, 2> = 1} induced by the Haar measure on U(N). The value of
the free energy Fy(f) = —B'InZy, will become that of the minimum of the
Hamiltonian 7myg(z) when the temperature tends to zero, that is f — oo, and
only those configurations that minimize the Hamiltonian survive, namely the
maximally multipartite entangled states. In general f5, as a Lagrange multiplier,
fixes the average value of entanglement, larger values of f corresponding to a
higher multipartite entanglement. In particular, for f — 0 one is looking at the
typical states. Remarkably, there is a physically appealing interpretation even
for negative temperatures: for f — —oo, those configurations are selected that
maximize the Hamiltonian, that is fully factorized states.
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This approach has proven to be very useful in the (much simpler) case of
bipartite entanglement, when the potential of multipartite entanglement reduces
to the purity 4 of one of the two component subsystems, and in the thermody-
namical limit N — oo, the existence of two phase transitions, characterized by
different spectra of the reduced density matrices, has been shown [23].

In order to investigate the statistical mechanics of the richer and more com-
plex case of multipartite entanglement, and possibly to unveil its phase transi-
tions, it is necessary to study in detail the structure of the potential of multipartite
entanglement 7wy and of the highly entangled states that give rise to its low
energy landscape, the MMES. This paper is completely devoted to such a study.

2. BIPARTITE ENTANGLEMENT

In this section we will set up the notation and we will prove some results about
bipartite entanglement that will be used in the following. We will show how the
entanglement of a bipartite system in a pure state is related to the non-vanishing
eigenvalues of the reduced density matrix of one of its parts. In particular, in Cor-
ollary 3 we will show that in an unentangled, separable, state of a composed sys-
tem the reduced density matrices of its two parts are pure, i.e. are 1-dimensional
projections and thus have only one non-vanishing eigenvalue, that equals 1. On
the other hand, a bipartite system is in a maximally entangled state if and only
if the reduced density matrix of its smaller part is completely mixed, i.e. is pro-
portional to the identity operator and all its eigenvalues are equal and different
from 0.

Therefore, as a measure of bipartite entanglement one can use the purity, i.e.
the sum of the squared eigenvalues, of the reduced density matrix of the smaller
party. We will do this in Definition 8. One can show that purity ranges in a com-
pact interval, its minimum corresponding to maximally bipartite entangled states
and its maximum to the bipartite separable ones. This simple result, which is the
content of Lemma 3, together with the explicit expression of the purity as a func-
tion of the Fourier coefficients of the state, as given in Theorem 6 and its corol-
lary, will play a crucial role in the following.

Let us start with some basic definitions.

DEFINITION 1 (Qubit). A qubit (or spin) is a quantum system with a two-
dimensional Hilbert space ) =~ C>. The computational basis {|0), 1>} is a privi-
leged orthonormal basis.

DEFINITION 2 (System of qubits). A system S ={1,2,...,n} of n qubits is
a quantum system with a 2" dimensional Hilbert space #s = (X) ies i with
b, = C2. Its pure states are the normalized vectors V> e #Hs with (Ylyy =1, and
can be expressed in the computational bases as

(1) |lp>: sz|k>7 Zkeq:7 Z |Zk‘2:17

keX” keXx"
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where k = (ki);,.s = (k1,ka, ... ky), with k; € X = {0,1}, and

(2) k) = ks = ;e slkidis |ki>; € b;.

DEFINITION 3 (Bipartition). A bipartition of the system S is a pair (A, A), with
1 <ny<ng where A cS, A=S\A4 (ie. S= A+ A) and ny = |A|, the cardinal-
ity of A. The bipartition is said to be balanced if A is maximal, that is ny = [n/2]
(and ny = [(n+1)/2]), with [x] = integer part of x.

REMARK 1. There is a one to one correspondence among bipartitions and non-
empty subsets of S of dimension not exceeding 1/2. Given a bipartition (4, A),
the total Hilbert space is accordingly partitioned into #s = #; ® #;, where
Sy = ®i < 4 bi, with Ny = dim #; = 2", is the Hilbert space of the ensemble 4
of n4 qubits.

DEFINITION 4 (Entanglement). A state [y) € #s is said to be separable with

respect to the bipartition (A, A) if it can be expressed as a tensor product
> = |¢>4 ® |x> ;1 for some |¢)4 € Hy and |y); € #H7. A state that is not sepa-
rable is called entangled.

The following lemma is a powerful tool in the study of entanglement.

LEMMA 1 (Schmidt decomposition). Given a bipartition (A, A), every state
|V € Hs can be written in the form

3) W = Vikluda ® v 7,

keY
with 2 >0, Y Ax =1, Y < X", and where {{uy,} = Hy, {|vi);} = #; are
orthonormal sets. The set of Schmidt coefficients {1} is unique.

PRrROOF. In the computational basis ) = >, yu, >,.c x"i tim|D4 ® |m) 7. The
matrix ¢ = (#,) considered as an operator from CVi to €V admits a singular
value decomposition 7 = 3", .y VA4uMv®* for some ¥ = X", with {u¥} =
C™ and {0V} = CVi orthonormal sets, and A; > 0 [30]. One gets 1 = (Y|y) =
Tr (t*t) = ) Ax. The desired result immediately follows, with |ux>, =, u}k)|l> 4
and (v, = 32, 0 Im) 1. H

It follows immediately that

THEOREM 1. A bipartite state |\y) is separable with respect to the bipartition
(A, A) iff the set of Schmidt coefficients reduces to {1}. O

REMARK 2. In general, one wants also a measure that quantifies the entangle-
ment of a bipartite state, i.e. how much the given state differs from a separable
one. To this purpose, note that one can associate to the Schmidt coefficients of a
given bipartition {/;,/ € Y < X"} a probability distribution p over the finite
space X4, in the following way:
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Al forleY
4 /) =
“) p) {0 otherwise.

Therefore, it is natural to consider as a measure of bipartite entanglement the
distance of the probability vector p from the set SEP of the separable vectors,
concentrated at a point,

(5) SEP = {p() = 0¢(")} e xu

where d¢(-) = dy4 (). Here ¢ is the characteristic function of set C,
1 if xeC

(6) dc(x) = {0 if x ¢ C.

We consider the distance derived from the L' norm,

(7) d(p1, p2) Z (1) ().

IEX”A

It is easy to see that 0 < d(py, p2) <1 and that d(pl,pz) Youlpi(l) = pa(D)] L,
where [-], denotes the positive part. Therefore, if p is the probability vector asso-
ciated to the Schmidt coefficients {4;} of the state [/ in the bipartition (4, 4),
one gets

(8) qrenslg d(p,q) = 1 — max/,.

This motivates the following

DEFINITION 5 (Entanglement measure). A measure of the entanglement of state
|W> with respect to the bipartition (A, A) is given by

o) E4(10) = o (1= max ),

where the maximum is taken over the set of the Schmidt coefficients {4} of the
state in the given bipartition and Ny = 2.

By noting that, due to normalization, N A’l < max; Ax < 1, it follows that

THEOREM 2. One gets 0 < &4(|y)) < 1. Moreover &4(|y>) = 0 iff |) is sepa-
rable with respect to the bipartition (4, A) . O

On the other hand, states that maximize the entanglement measure &4 are the
main interest of this paper

DEerINITION 6 (Maximally bipartite entangled states). A state |y that satisfies
é4(|¥>) =1 is called a maximally bipartite entangled state with respect to the
bipartition (A, A).



32 PAOLO FACCHI

THEOREM 3 (Local unitary invariance). A state |y is maximally entangled
with respect to the bipartition (A, A) iff

(10) Wy =N v, © U4,

le X'
where UA and U are (local) unitary operators in # and A ¢, respectively.

PROOF. A state [f) is maximally entangled iff & (|y)) = 1, i.e., maxg A, = 1/Ny.
Thus its probability vector is completely mixed, 1y = 1/Ny Yk € X", From
Lemma 1 one gets the thesis where U4 (U4) is the local unitary operator in 4
(9?7) that transforms the computational basis into the Schmidt one, namely
U = luryg (U1 7 = [oi 7). O

REMARK 3. Note that Eq. (10) implicitly assumes an arbitrary embedding
of X" in X4 and thus, when n 1 > N4, relies on an arbitrariness in the choice of
the subset {|/) 7}, y, of the computational basis of party 7.

REMARK 4. Note that, while separable states (5) are associated to extremal
probability vectors, concentrated at a point, maximally entangled bipartite states
are associated to completely mixed probability vectors, uniform on X"4. By
Theorem 3, the above property can be used as an equivalent definition of maxi-
mally entangled bipartite states. It has the advantage of being independent of the
particular measure &y.

An immediate consequence of Theorem 3 is the following

COROLLARY 1. A maximally bipartite entangled state has the following Fourier
coefficients in the computational basis

(11) =N UL UL ke X
le X4

where Ny = 2" and U,_A,, = 4| Uy with U4 the local unitary operator in #;
that transforms the computational basis into a Schmidt one. O

In fact, there is a link between the set of Schmidt coefficients and the reduced
density matrices of subsystems 4 and 4. Recall that

DEerINITION 7 (Reduced density matrix). If p is a density matrix on #; @ H7,
then the reduced density matrix p, is a density matrix on #, defined by

(12) P4 = Tr,Z P
where Tt 5 is the partial trace over subsystem A

REMARK 5. The reduced density matrix represents the state of a subsystem A,
since it determines the statistics of every (local) observables of A.
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LeMMA 2 (Reduced density matrix eigenvalues). /5] Given a pure state in A,
the reduced density matrices py and p ; of subsystems A and A have the same eigen-
values and multiplicities, except possibly for the eigenvalue 0.

PrOOF. From Lemma 1, one gets p, = Tr; [Y><y| = Axlugy<ux|, and p; =
Tryg Y <v| = 22 Axlviy vl m

REMARK 6. From the proof of Lemma 2 one sees that the Schmidt coefficients
of a bipartite state are the nonzero eigenvalues of the partial density matrices of
the two parties (and the vectors of the Schmidt decomposition are the corre-
sponding eigenvectors). Therefore, from Remark 2 and Definition 5 we obtain

COROLLARY 2. Given a state |\yy € #s and a bipartition (A, A) one gets

(13 6l)) = pmin{loy — DI 16> < A G = 1)

—1
Ny
= 1 —
A=),
where || - ||, = Tr| - | is the trace norm and || - || is the operator norm. O

Moreover,

COROLLARY 3. Given a bipartition (A,A), a state |y) € Hs is separable iff
Py = |9><P| for some normalized |py € #y and is maximally entangled iff

As an alternative measure of the bipartite entanglement between the two
subsets, which is more suitable to analytical treatment, we consider the linear
entropy of subsystem A.

DEerINITION 8 (Linear entropy and purity). A4 measure of the entanglement of

state |y with respect to the bipartition (A, A) is given by

M=),

(14 L) =5

where Ny = 2", and

(15) na([W) = Traps,  pa=Trg[Y><Y]

is the purity of subsystem A.

By noting that 74 (|y)) = >, /112, where {4;} is the set of the Schmidt coefficients
of the state in the given bipartition it follows that

LeMMA 3 (Purity bounds). Given a state ) € Hs and a bipartition (A, A), one
has ma(|>) = m7(|>) and
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(16) /Ny <mq(jy)) < 1.

Moreover, n (|Y)) =1 and n (|)) = 1/ Ny iff W) is, respectively, separable and
maximally entangled with respect to the given bipartition.

PrOOF. The quadratic form 74(|y)) = 3,/ reaches its extremal values in the
simplex AM = {(2));.yn,|0 < 4 < 1,5, 4 = 1}. The maximum is reached on
the frontier, 4; = J,(/) for some 1 < ¢ < ny, while the minimum is attained at
the interior point where dz4(|yy>) =0, i.e. ; = 1/N4. By Theorems 1 and 3 one
gets the thesis. O

It follows that Z4(|y>) has a behavior similar to &4(|})). In particular,

THEOREM 4 (Linear entropy bounds). One gets 0 < Z4(|y>) < 1. Moreover
Ly(l>) =0 iff |y is separable with respect to the bipartition (A,A), while
L) = Viff W) is maximally entangled with respect to the bipartition (A, A).

O

REMARK 7. Let us consider a system composed of an even number 7 of qubits
and a balanced bipartition (4, A). The information contained in a maximally bi-
partite entangled state /) is not locally accessible by party 4 or 4, because, by
Corollary 3, their partial density matrices are maximally mixed, p; = p; = 1/Ny.
Rather, all information is totally shared by them. Note that if n is odd, ac-
cording to Lemma 2, p ; cannot be maximally mixed. Rather, p; = P/N,, where
P =1—|v)<v| is a codimension-1 projection, |[v) being the normalized eigen-
vector belonging to the eigenvalue 0. Note that it is the constraint that the total
system is in a pure state that prevents p ; from being of maximal rank.

If the bipartition is not balanced, one gets

THEOREM 5 (Smaller subsystems). A state |y) maximally entangled with respect
to the bipartition (A, A), is maximally entangled with respect to every bipartitions
(B, B) with B c A.

PrOOF. The Theorem is a consequence of Corollary 3 and the property that
if subsystem 4 has a maximally mixed density matrix, p, = 1/Ny, the density
matrix of every smaller part B = A4 is again maximally mixed, pp = Trz  ,py =
1 / Np. O

The explicit expressions of the reduced density matrix and its purity in terms of
the Fourier coefficient of the state are given by the following

THEOREM 6 (Fourier expression of purity. Form 1). Given a bipartition (A, A)
and a state |y € Hs, one gets

(17) pa= D a0 lkay{lal

k,le X"
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and
(18) ma(Z) = > ZkZEiErOky, 140k, 1,0k .1 Ok s
ke k! € X7
where kg = (ki);c 4. 114 = ®i€A|l,->i € Hy, Or1 =01k = 5{k}(1), and
(19) 2= (ke €SN, SV ={ze V) | =1},

with N = 2", are the Fourier coefficients of [y in the computational basis, intro-
duced in Definition 2.

PROOF. State | can be written accordingly to the bipartition (4, A) as
Wy =" zilkads ® k7,

keXx"
By plugging this expression into that of p, and 74 given in Definition § the results
follow. 0

REMARK 8. Consider a reference bipartition into two blocks of contiguous
qubits (C, C), namely C = {1,2,...,ny}, then

(20) neE) = Y D ZmZem) EmEdm),
LI'e X" o' e X4
where (/,m) = (11,...,1,1A,m1,...,mn;) e X"
Note that 4 = p(C) for a suitable permutation p of S. In fact, there is a
bijection,
(21) ®:pe 2 (p(C),p(0)),
between the subset

(22) I ={peAlp(i) <pli+1),1 <i<n—1i#n4}

of the permutation group #, and the set of all bipartitions (4, A) of dimension
ny. We can write

(23) W= zklkoerdpe) ® ey

keXx"

= Z Z (D e ® [m) g,

n n-
leX" mex"i

whence, for 4 = p(C),

(24) T4 (Z) = Z Z Zp—l(lvm)ZP—l(]/7m/)2p—l(]/Ym)ZP—l(Lm/).

’ n n-
l,/ EXAm,VH/EXA

For generic bipartitions we have the following
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COROLLARY 4 (Purity. Form 2).

(25) ma(z) = Z Zk Zk@h Zk @y Tk ®h
k,he Xn

= Z Z Z ZkZk@l@mZk@I Zk@m

keXSleX4 ,, cxd

were X4 and X4 are viewed as subspaces of X*° with the natural injection, and
a®b=(a;®b;);.g = (a;+b;mod2),_ g is the XOR operation.

PRrROOF. By substituting in (18) k' = 1 @ k, one gets
ma(2) = Y ZkZk@hZIZ00k, 140k, @ hi 1Ok 1 Ok @1
ke h LT e X7

= E ZkZk @ hZIZ1Ok @ 4,10k @ h I
kbl exn

= E ZkZk@hZk @ haZk @h ;s
k,he X"

which is the first desired equality. The second equality follows by the identifica-
tions / = hy € X* and m = h; e X4, O

REMARK 9. The space X" is an n-dimensional vector space over the finite field
X = 7, with the standard addition and multiplication mod 2. In this respect the
XOR operation is nothing but the usual sum of vectors of X and X and X are
vector subspaces.

REMARK 10. Note that (25) can be split into three parts

26)  ma(2) =Dzl + D0 D lallazred + Y0 D I lekeml

keXn keXSlex/ keXS pexi

+ Z Z Z Re[Zka@l@mZkG—)lfk@m]v

keXSleX! e xi

where X4 = X4\ {0}.

Ilt is an easy exercise to check that the number of monomials |z|* is
N 502 = 2", the number of monomials |z;|*|z|* with k # / is

(27) Nl =2'(2M 42" = 2),
and the number of monomials Re|z;z,Z,,Z,] with distinct indices is

(28) N = omm — 1) (20— 1).
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One gets A" E[Q + . Ef,f + AN E;‘Z =2%"_ in agreement with the first equality in
(252. Moreover, the number of distinct monomials of the various types are
A0 = @ = 2o and 4@ = 84,

3. MULTIPARTITE ENTANGLEMENT

The aim of this section is to generalize the ideas of the previous section to the case
of multipartite entanglement. We require that the information in a maximally
multipartite entangled state be distributed as well as possible. In the ideal case
this would mean that

DEFINITION 9 (Perfect MMES). A state \y) maximally entangled with respect
to every bipartition (A, A) is called a perfect maximally multipartite entangled
state (perfect MMES).

THEOREM 7 (Perfect MMES characterization). The following statements are
equivalent:

|V> € Hs is a perfect MMES;

py = 1/ Ny for every subsystem A = S withny < n/2;

py = 1/ Ny for every maximal subsystem A = S;

E4(W>) = La(lW)) = 1 for every balanced bipartition (A, A);
n4(|W>) = 1/Ny for every balanced bipartition (A, A).

bl S

ProoF. Equivalence between 1 and 2 follows from Definition 9 and Corollary 3.
Statements 2 and 3 are equivalent by Theorem 5. Equivalence between 3 and 4
follows from Definition 6 and Theorem 4. Finally, 4 and 5 are equivalent by
virtue of Lemma 3. O

REMARK 11. Note that the requirement that a given balanced bipartition (4, A)
be in a maximally entangled state could collide with the same requirement for a
different balanced bipartition (B, B), with B # A. Indeed, the local unitaries U
and U in Theorem 3 are in general nonlocal for the bipartition (B, B). Thus, at
variance with the bipartite case, a perfect MMES cannot exist. This motivates the
following definition.

DErFINITION 10 (MMES). Let us define the potential of multipartite entangle-
ment as

(29) mie0) = () 3 malld):

[4]=[n/2]

A maximally multipartite entangled state (MMES) |p)> is a minimizer of nye,

(30) mve(lp)) = min{zame([¥)) | W) € #s, (phy) = 1}



38 PAOLO FACCHI

The potential 7y is linearly related to the generalized global-entanglement mea-
sure introduced by [45, 50], which extend ideas put forward in [36]. It measures

the average bipartite entanglement over all possible ( balanced bipartition

[n72] )

and thus inherits the bounds on the purity given in Lemma 3, namely,
LeMMA 4 (Bounds on nyg). The potential of multipartite entanglement satisfies

(31) 1/Ns < mme(l¥)) <1,
with Ny = 202, for all normalized |y € H. O
The upper and lower bounds are characterized by the following

THEOREM 8 (Optimizing states). The upper bound nyg(z) =1 is attained by
the fully factorized states, whose Fourzer coeﬁiczenls in the computational basis
2= (2k)gexn are zx = [1;c5 %, with |od|* + |ot |* = 1. On the other hand, the lower
bound mipg(z) = 1/ Ny, if attained, would correspond to a perfect MMES.

PROOF. nme([y)) =1 iff 74(|y)) =1 for all balanced bipartitions (A4,A4).
By Lemma 3 this happens iff [/} is separable with respect to all balanced bi-
partitions. Now, note that [/) = |v1>4 ® [v2) 7 and [y) = |v3)5 @ |vay 5 iff [) =
[013)4 ~ B ® |Ul4>AmB® [U23) 7 p @ |024) 7 - Since for all ie S, {i} = n,4,

for a suitable set {4,} of maximal subsystems, one has [}) = @l s [vi>; with
{vilv;y = 1. Thus |1p> Y kexn k> Tlics <kilviy, and the first part of the theorem
follows by setting o) = {k;|v;». Concerning the second part, mye(|y)) = 1/ Ny iff
T A(|¢>) =1/Ny for ‘all balanced bipartitions (4, A). By Theorem 7 this happens
iff |y) is a perfect MMES. O

REMARK 12. In words, a perfect MMES is characterized by a multipartite
entanglement that is maximum, in the sense that it saturates the minimum of
the purity and such a minimum does not depend on the bipartition. However,
if the minimum of the potential of multipartite entanglement is strictly larger
than the lower bound in Lemma 4, i.e. minzyg > 1/Ny, it may happen that
different bipartitions yield different values of 74, some of them smaller than
min yg, some larger. In such a situation, one can seek those states among the
minimizers that have the lowest variance. This quest can be recast as an optimi-
zation problem [21]. We will not elaborate further on this issue.

Now we will examine in more details the potential of multipartite entanglement
and we will determine its form.

THEOREM 9 (Fourier expression of myg. Form 1). Given a state |y € #s, the
potential of multipartite entanglement has the following expression in terms of its
Fourier coefficients in the computational basis z = (2x ) c yn

(32) ave(z) = Y AU KL [n/2) 2k 2k 212,
kk' 11" e Xn
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with a coupling function

(33) Ak, k" 1,1 ny) = %A(k,k’; 1,I';ny) +%A(k’,k; 11';ny).
where
(34) Ak, k' 1,1 my) ( ) 3" Gt Frt O 1

|A]=n4

PROOF. The result follows by plugging the expression (18) of 7, given by
Theorem 6 into (29) of Definition 10, and by symmetrizing. O

REMARK 13. In the spirit of Remark 8, it is easy to see that the average can be
extended to the whole permutation group, yielding

(35) Alk,k';1,1%;|C|) = ,Z(Sk e Okpier Ok 1 Ok

20"
‘pe,

REMARK 14. Note that A would have served as well as A as a coupling function,
namely

(36) ave(z) = Y Ak k115 [n)2)) 2k ze 212
k,k' 1 1"e X"

However, while
Ak, k' 11 ny) = ALk ks ny),
which ensures the reality of myg, one gets
AK I L1 s ng) = Ak, K51 ng) = Ak, K51 T g).

Thus, A(k,k’;1,1';[n/2]) is a symmetric function of the pairs (k,k’) and (/,1')
only if n is even, when [n/2] = n/2 = ny = ny. Since myg does not depend on
the antisymmetric part of the coupling function, we shall use the symmetric
coupling function A. We summarize its properties, which easily derive from this

Remark in the following

LemMmA 5 (Coupling function symmetries). The coupling function A : X" x
X" x N — Q has the following symmetries

(37) Ak, k'L sng) = A(K ks L smy) = A(L T K ks ny),
for every k,k',1,1' € X" and every ng with 1 <ny <n-— 1. O

The following definition and the subsequent lemma are the main ingredients for
determining the explicit expression of the coupling function A.
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DEFINITION 11 (Admissible set). Let us define the admissible set as the set of all
quadruples of sequences that yield a nonvanishing contribution to the function A,
that is

(38)  Qu, ={(k,k',1.I') e X*|ky =14, ks =14, and k; =I5, k'; = I,
for some (4, A) with |4]| = ny}.

Obviously,

(39) o,=0= |J o

0<s<n

LEMMA 6 (Admissible set characterization). The set Q is the kernel of the
function q : X*" — X",

(40) qile, k', 11" = (k@ D) v (K@) r((k@ ') v (K @1)),

where a ® b = (a; ® b;);.g = (a; + bimod?2), s is the XOR operation, av b =
(ai v bi);cs = (ai + bi +aibjmod 2),_¢ the OR operation, and a Nb = (a; Ab;),; g =
(aibi);. g the AND operation.

PrROOE. The proof consists in a straightforward application of the above defined
binary operations:

O ={(k,k'",1,1I")|ky =14, kly =14, kg =15, k'; =17, for some 4 = S}
={ki=li, ki=1lki=1,kii=1) withie A,je A}
={k®li=0,ki®l =0, ki@l =0, k}(—Bl}, WithieA,jE/I}
={ki®l)vki®l)=0,k®l)vki®l)=0,icA,je A}
={((ki®l)vki®)r((ki®L)v(ki®l}))=0,ie S}
={(k@!)vK'@D)r((k@)v(K'®!')) =0}
= kerg. ]

REMARK 15. Note that X" can be viewed as a product ring (of n copies of
X = Z,) with the addition and multiplication mod 2 defined componentwise,
as usual. In this respect, the XOR operation is the sum « + b and the AND
operation is the product « - b of elements a and b of the product ring X”. The
OR operation is nothing but a + b+ a - b.

After having proven all preparatory lemmata, now we come to the main result
of this section that establishes an explicit form for the coupling function of the
potential of multipartite entanglement.

THEOREM 10 (Coupling function). The coupling function A has the following
expression
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(41) Ak, k'L sng) =g((k@ D) v (k' @), (kedl")v (k' ®1);ny),
where
(42) gla,b;ns) = do(anb) g(lal, |bl;n4),
with |a| =), a;, and
(43) ?I(s,t;nA)=%<n}:>_l[(nnjls__sl)+(nn_As__t[)]
ProOOF. Let
a=ke®l)vk'®l') and b=(k®l')v(k'®I).

By Lemma 6, (k,k',/,l") e Qiff anb =0, and thus S; = {i € S|a; =b; =1} = 0.
Therefore,

S =S80+ A1 + By,

where Sy = {i € Sla; =b; =0}, A4 ={ie Sla; =1}, and B; = {i € S|b; = 1}.

Moreover, it is easy to see that a; = 0 iff k; = [; and k' = [};, with i € S. Thus,

if (k,k’,1,1") € Q, then k/L =13 and k,/TI = llil’ and, analogously, kg = l’gl a{ld

k's =15 . As a consequence, (k,k’,l,1") € Q,, iff there is a bipartition (4, 4),
1 1

with |A| = ny, such that
1‘I c A_] and A4 c E],

that is 4 = 4 and B < A. In other words, (k,k’,1,1") € Q,, iff (k,k’,1,1') € Q
and 4| = |a| < ny, |Bi| = |b| < nj;. Therefore, we can write

(k,k',1,I") € Q,, iff anb=0,with a| <ny, |b| <ng,

whence

n 71
Ak K51, m4) = 0ol ) (la) S0 g (01) () (kK" LD),

where #(k,k’,1,1") is the number of terms of the sum (34) that contribute to
the function A in Theorem 9.

Now, according to the above conclusions, for a given admissible quadruple
(k,k'1,1") € Q,, the number of terms #(k,k’,/,1") is given by the number of
bipartitions (4, 4) with |4| =ny and with A =« Bj =4, + Sy and 4 < 4, =
By + Sy. Since AnA=0, Aj = A and B, c A, parties A and A contend only
for Sy = So N A + Sy N A, namely

A=A4,+SynA and /I:Bl—f—Soﬁ/I.
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Thus, their number equals the number of ways that |4\ 4| objects can be chosen
from among [Sp| objects. But |4\A4;| = |A| — |41| = ng — |a| and |Sy| = |S|—
|4,| — |B)| = n — |a| — |b|. Therefore,

#e k' Ly = (" al - |b‘).

ny — |al

By putting all together, and by stipulating that the binomial coefficient is zero
when its arguments are negative, we obtain the stated form of the functions A
and its symmetric part A. O

REMARK 16. It is not difficult to see that an alternative form of § is the
following

@ e =3( ) (OO ()]
where

( n ) B n!
s;t) S (n—s—1)!
is the multinomial coefficient.

By using the explicit form of the coupling function A one can give the poten-
tial of multipartite entanglement a different form that has the advantage of being
a sum over three indices only.

THEOREM 11 (nvp. Form 2). The potential of multipartite entanglement can be
written as

(45) ave(z) = Y g(l,m;[n/2]) Relzk ko iom Zk o Zkam)-
k,l,meX™"

PRrROOF. Since k ® 0 =k,

Q= {(k,k'"\1,I") kg =1}y, kly =14, kg =13, k'; =17, for some 4 = S}
={ka=U, ki ®14=0k; =17 k;®I;=0}
={ka =l @k ® L, kiDL =0,k;=1; @k DI, k@15 =0}
={k=kK®I®lI' ki®li=0k7®I7=0}
={k=K@lal, (Kehr(k ®l')=0}.

Moreover, since k@ k =0, substituting for k=k'@® /@’ one gets a=
(kehvk'®l)=k'®l'andb=(k®!')v (k' ®!)=k'® . Therefore,

A(k,k/; l,l’;nA) = 5k7kr@1@1rg(k/ (—B l/,k/ (—B Z; nA),
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whence

ave(z) = Y gk’ @1 k' @ Ln/2) e eier 2k 21 21
ki Tex

By setting I’ =/ @ k' and [ = m @ k’, one obtains

ave(z) = Y g(l,m;[n)2]) Zk@iemZk Z om ko1
k', I, meX"
The thesis follows from the reality of myg(z). O

In analogy with the bipartite case examined in Remark 10, the sum in (45) can be
split into three terms.

COROLLARY 5 (myvg. Form 3).

(46)  mme(2) =Y |zl 2> > (01,0 [1/2) |z ke

keXn keXmnleX!

+ Z Z (I,m;[n/2]) Re[zk zk@1@m Zk @1 Zk @m)s

keX"l,me X!

where X' = X"\{0}.

PROOF. The monomials |z |* are obtained from (45) when / = m = 0. In such a
case ¢(0,0; [n/2]) = §(0,0; [n/2]) = 1. On the other hand, the monomials |z;|* |Zh|

with k # h are obtalned when either / =0 or m=0. In such a case, since
00(In0)=1forallle X", g(I,0;[n/2]) = g(0,/;[n/2]) = g(|/|,0; [n/2]). 0

A measure of the complexity of the potential of multipartite entanglement is
given by the number of its terms. In particular, as we will see in the following,
the crucial ones are the interfering monomials Re[z;z;Z,,Z,].

THEOREM 12 (Number of terms in nyg). Consider nyg(z). T he number of dis-
tinct monomials |zi|* and the number of distinct monomials |zi|*|z|* with k # h
are

2" n
47 J{/(l) — /1/(2) — 22n72 - 2}171
(47) ’ +3+(—1)”([n/2])’

respectively. The number of distinct monomials Re[zyz;Z,z,| with distinct indices is

w w3 O0) T ()

1<s, <[4 1<s <[5
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PROOF. The total number of terms of the sum in (45) is given by

Vo= S dalgllm:[1/2]))

k,,meX"

=2" Z do(l Am)d %](|l|) [%](WD

I,me X"

=2 Y alam) (i) ou(m)

0<s, 1< [r5!] Lome X"

=20 3 YA D adiml)

0<S‘[<[ ]IEX” meXn—s
n n—=s
= ¥ ()0
OSs,ts["TH]

Therefore, the total number of monomials |z;|* is
n\ /n i
Mol = 3" 3a.(9(0,0:1n/2) = 2" ) () = 2"
kexn
while the total number of monomials |z|?|z|* with k # / is

=2y o= Y (2)()

keXnleX! ISIS[%]

= 3 {()+(1)]

1<e< 4]

On the other hand, the total number of monomials Re[zxz;Z,,Z,] with distinct
indices reads

FE=3 Y saletmam =2 Y ()"

keX"lmeX! lgs.zg[%]
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The results follow, smce by symmetry, the numbers of distinct monomials are
0 = 7@ 04 Tang 4 — @ g, O

REMARK 17. For large values of n, by making use of Stirling’s approximation
one gets

n n |2
(n / 2) ~2 n’
hence, from (47)

4 2
49 N ASUPNE, Ear I [ S .
(49) t3 +(=1)"Van)’ e

The asymptotics of /" is a little more elaborated. First note that, by Stirling,

AT Z ]Znn %ﬁ(ll—ﬁ—n)eXp@H(ﬁ %))’

1
1<s,t < [%

Where the function H :A?> — R, defined on the simplex A’ = —{(x,y) €
[0,1]*| x + y = 1}, is the entropy

H(x,y) = —xlogx — ylogy — (1 — x — y) log (1 — x — y).

Then, for n — oo, by using the same arguments as in the proof of Laplace—
De Moivre theorem [29], one can show that

(50) N L33 o,

The numbers of different types of monomials appearing in yg(z), as well as their
asymptotic expansions, are given in Table 1.

We conclude the section by exhibiting another form of multipartite entangle-
ment.

Table 1. Number of monomials in 7yg(z).

n VAL Vag VA

2 4 4 1

3 8 24 12

4 16 80 84

5 32 400 680

6 64 1312 4000

7 128 6272 28672
8 256 20736 162624
n— o0 on 22n—2 211—3311
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THEOREM 13 (myg. Form 4). The potential of multipartite entanglement can be
written as

1
S ) > glmin/2) 2k zk@iom — ke Zkom|
k,l,meXn
PROOF. Let us consider (45). By substituting the identity

o 1 2
Re[zk Zk@l®m Zk@leeam} = - —|Zk Zk@l®m — Zk@le®m|

|Zkzk®/®m| +3 \Zk@lzk@ml
one gets

Z g(l,m;[n/2]) |zk zk@1@m — Zk@lzk@m|
k,l,me X"

l\)l'—‘

TTME Z)

[

+3 > gmi[n/2) (zk zkeioml” + ke zkem! ).
k,l,meX"

Now, by simple manipulations,

Y lzeizkem’ = Y |l zkeionl’

keX" keXx”
and
S glmi /) zzkeienl’ = Y lzzked® Y g @ m,m;[n/2).
k,l,meX" k,le X" meX"
Thus,
nME(Z 2k12 g(l,m; [n/2)) 12k Zk@1@m — Zke1 Zk@m|
meX"
+ Y lzred® Y g @m,m;[n/2)).
k,le X" meXx"

Let us assume for a moment that
(52) > gl@mm;n/2]) =1,  VleX"
meX"

SZNfl

Then, the result follows by normalization (19), z € , since

> lekzkell’ = ( > |zk|2)2 -

k,le X" keXxn

In fact, equality (52), is a consequence of the following lemma, for ny = [n/2]. O
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LeEMMA 7. The following equality holds
(53) Y=Y gl@®mmn,) =1, Vie X", VYny€eS.

meX"

PRrOOF. From Eq. (42) in Theorem 10 we get

Y= oo((l@m)rnm)g(ll ®ml,|m|;n,).

meX"

Let us define the set B={ie S|/; =0} = S, so that /3 =0. We get (/ ®m) A
m =0 iff mp =0 and (/5 ® mz) Amz = 0. But the second equality is identically
satisfied, because /5 is a vector of all 1. Thus do((/ @ m) Am) = 6y(mj) and we get

Y= Z do(mg) 9(|l5 @ mgl, [mplina)

meX"
=Y g(11--- 1@ ml, |ml;ny)
meX’
=Y g(r —|ml,|ml;n,)
meX"’
A r\ .
=3 > almhatr—runy= > (1)atr—tsna),
) t
meX"0<t<r 0<t<r

where r = |B| = |/|. Let us now use the form (44) of the function g given in Re-
mark 16,

=32 (G 1))

0<t<r

=) Z IO+

) > ()

By recalling Vandermonde’s identity [16],
S0 - ()
since ny +n; = n, we get
SO (=) (- o

REMARK 18. Recall that, by Theorem 8, the potential of multipartite entangle-
ment attains its upper bound 7yg(z) = 1 on fully factorized states. Thus in (51)
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the nonegative sum which is subtracted from unity represents the amount of
entanglement of |/>, and MMES are those states that maximizes the distances
|Zk Zk@1@m — Zk 12k®m|2- In fact, the average over balanced bipartition of the
linear entropy (14) yields

Ny

(54) gME(Z) = NA — 1

(1 = mme(2)),

with Ny = 2I¥/2 Thus, apart from a normalization factor, the sum in (51) is
nothing but the average linear entropy. Note that the number of terms in the
sum is ./ given in (48), since the terms with / = 0 or m = 0 identically vanish.

REMARK 19. In the spirit of the above Remark, one can prove Theorem 13 by
following a different path. First, one can easily write an expression analogous
to (8) for the purity 74(z) of a given bipartition. Incidentally, this would give
an explicit expression of .%4(z). Then, one considers the average over balanced
bipartitions and, by noting that the proofs of Theorems 10 and 11 do not de-
pend on the 2particular form of the monomials z;z;Z,,Z,, that can be replaced by
|zkz1 — Zmzn|~, one obtains the desired result. By comparing the two proofs, since
the average of 1 is 1, one can easily distillate an alternative combinatoric proof
of Vandermonde’s identity.

ExaMPLE 1. Consider n = 2 qubits. One gets

(55)  mme(z) = |zo0* + |zo1[* + [z10* + |20 [*
+2(Jzo0/*z01 |* + [200/%[210]% + [z11)* 201 + 211 *]z10]°)
+ 4 Re(z00Z01Z10211)

=1- 2|zooz11 — 201210|2-

The first equality follows from Corollary 5, while the second equality derives from
Theorem 13. Note that the number of terms A1) = 4#® =4 and /™ = 1 isin
agreement with the counting of Theorem 12 and Remark 18. See Table 1.

ExAMPLE 2. For 3 qubits we will give the potential of multipartite entanglement
in the form 4 of Theorem 13:

(56) ave(z) =1-2 Z (I2p(000)Zp(011) = Zp(001)Zp(010) |
PEGs

+ |Zp(100)Zp(111) - Zp(lOl)Zp(110)|2

1 )
+3 |Zp(100) Zp(011) = Zp(101)Zp(010) |

1
+ § |Zp(000)zp(lll) - Zp(OOl)Zp(110)|2)a
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where the sum is over the 3 cyclic permutations
(57) %3 = {s"]s(1,2,3) = (2,3,1), i =0,1,2}

of the qubits S = {1,2,3}. Here p(k) denotes the natural action of the permuta-
tion group on k,

(58) I x X"3(p,k) = pk) = (kpp)jes € X"

In agreement with Remark 18, the number of distinct terms is 4" * =3 x 4 = 12.
See Table 1.

Now we will focus on the problem of the existence of perfect MMES. In par-
ticular we will try to construct them by using characterization 2 of Theorem 7.
It is not obvious that a state with myg = 1/N,4 exists: in order to find a solution
one must solve for p, = 1/N4,V (4, A), and this set of equations might not admit
a solution.

4. PERFECT MMES. PROBABILISTIC APPROACH
We will look more closely at the equations
(59) py = 1/Ny, for every subsystem A4 = S with |A] < n/2,

that, according to Theorem 7, characterize a perfect MMES. Although we could
consider only maximal subsets 4 — S, with |4| = [n/2], it will be more conve-
nient to consider also smaller subsets A.

Let us first consider the diagonal elements in the computational basis
{104} scxna < #4. By Eq. (17) of Theorem 6, one gets

(60) llpalty = > zkZ0k 1.0k, 0010 = D ZkE0ki0ke = Y |2kl ke
k,le X" k,le X" keX"

Therefore, from (59) we obtain

(61) Lpalty = Y a0 = 1/Na,
keXn
with Ny =2 v e X1 V4 < S, with |4]| < n/2.
Now note that, due to normalization, 3 |z|* = 1, we can look at (|z|*), . y»
as a probability vector on the finite space X" of n classical bits. In view of this
interpretation, we will introduce the

DEerINITION 12 (Population probability). Given a state |y € #s and its
Fourier coefficients (zi), . y» in the computational basis, we define the population
probability vector in the computational basis,

(62) Ps(k) = |z,
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as the probability of the binary sequence k = (k;);.g € X". Moreover, let E|]
denote the expectation value with respect to Ps,

(63) E[f(K) =Y f(k)Ps(k) = > f(k)|zl,

kexn kexn
for any function f : X" — C.

According to the above definition, Eq. (61) reads

(64) Elor,=2"M veex v4cS, with|4] <n/2.

By noting that the above expectation value is nothing but the marginal probabil-
ity distribution

(65) E[or,.0) = P4(0),
we have arrived at the following

THEOREM 14. A necessary condition for a state |\yy € Hs to be a perfect MMES
is that all the marginals over ny < n/2 variables of its population probability vector
in the computational basis Ps(k) = |z|*, are completely random:

(66) Py(0)=27M weex" v4cS, with |4 <n/2. 0

REMARK 20. For A =p(C) withp € #, and C = {1,2,...,n4} one can write

(67) E|:H5kl)(;i)vﬁ:| - 2_}“7 vg € XnA) VP € %7 Wlth ny < I’l/2,
j=1

which means that
(68) Pycy(l)=2""1, VYle X" VYpe, withny<n/2

REMARK 21. According to Theorem 14, a first step in the problem of seeking
perfect MMES is the following: Search for all probability functions on X", whose
marginals on n4 < n/2 variables are uniform.

The solution to this problem is given by the following

THEOREM 15 (Perfect MMES population). The population probability vector in
the computational basis of a perfect MMES of n qubits has the form

69) |zl =rsk)=2"+ 3 > 7 J] @k 1), kes,

t<r<nje[S7] I<i<r

for some c]m e R, where [S"]={(j1,---,Jjr) € S'|j1 <jo < -+ <j,} denotes the
set of ordered vectors of S”.
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ProoF. Note that any function on X" is a multilinear function of the compo-
nents of k € X", because k? = k;. Therefore, we can write

O3S T 2k -1,
resS je[S] I<i<r

which depends on the real parameters c](-r)

1S =Y (’:) =2,

reS reS

€ R, whose number is

The normalization of Pg implies that

1= Py =220+ 3" ST I S 2k 1) =27¢©

keXn reS jelS7] I<i<rk;eX
that is
O =27

Let us now consider a subset with one element A4 = {;}, with j € S. For any
k;j € X one must have

1 1
L Pl = Pl =216+ ok~ 1)~ LV ),
keXx4
that is
1>:0, jes.

Analogously, for a subset with two elements 4 = {ji, j»},

272 PA k/lvklv Z PS 72 +C( 2 )(2k11 - 1)(2ka - 1)7

ke x4
that is
=0, jels?.
By induction we get
c](-") =0, VjielS], forl<r<n/2,
and the result follows. O

REMARK 22. The range of the free parameters cj(") is determined by the inequal-

ities 0 < Pg(k) < 1, Vk € S. Their number is given by
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(70) Ssi= 3 ()= [()+(,",)

s<r<n f<r<n f<r<n
1 n 1 n
- 5O§r<¥ (r> +§’§’<rz<n (}’)
PR (-1)"/ n
=7 4 ([n/z])'

The particular solution "' =0 for all r e S that yields a uniform probability
Ps(k) = 27" will play a role in the following.

Theorem 15 completely determines the structure of the moduli ry = |zx| =

Ps(k) of the Fourier coefficients z; of a perfect MMES in the computational
basis. However this is only half of the work. In fact, the easy one. It remains to
determine the phases, defined in the following

DEFINITION 13. A4 state |\y) € #s can be expressed in the computational basis as

(71) Wy =Y alky, oz =nd,

keXxn

where the Fourier moduli belongs to the intersection of the positive hyperoctant
with a hypersphere

(72)  re(®)"aSY = {(n)rex

e € [R{Jr,Zr,% =1}, N=2"
k

while the Fourier phases belongs to the torus TN = (S)Y

(73) (e TV = {(liexn |k € C 1G] =1}

We will now show that the phases { of a perfect MMES are solutions to the
system of the off-diagonal elements of the equation p, = 1/N,.

THEOREM 16 (Perfect MMES phases). A state |y € #s is a perfect MMES iff
its Fourier phases { in the computational basis are solutions to the equations

(74) Z ri@mﬁ’@méﬁ@m&’@m =0,
meX‘I

Vel e XA 0 £, YACS, |A|=n/2],

where 1, = «/ Ps(k), with the population probability vector Ps(k) given in Theorem
15, for some coefficients cjr eR
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PRrOOF. The off-diagonal elements of p, in Eq. (17) of Theorem 6 read

Llpalt’y = " 2Zibk, .00, 01,0 = Y Ziek Ze ek,

k. leX™ koexd
A

Ve, 0 e X4, £ # ¢'. Thus, by Equation (59), Definition 13 and Theorem 15 one
gets the desired result. 0

REMARK 23. An alternative form of (74) in terms of the permutation group is

(75) Z v Ps(k) Ps ()i H Ok H Ok H Oty = 0,
kleXn 1lj<n 1<j<t 1<j<t
Vpe 2, VOO eX™, (#£/0. 1<ny<n/2
Let us now investigate whether the system of equations (74) admits a solution or

not. In particular, it is important to count the number of equations and of vari-
ables and to look for which values of n the system is over-determined.

THEOREM 17 (Number of equations and variables). The set of equations (74)
determining a perfect MMES is a system of

(76) me = 22 (22 )(

~
~—

[n/2

real equations involving

a7 T e (1)

real variables.

PRrROOF. By noting that exchanging ¢ and ¢ one obtains the complex conjugate,
the counting of real equations coincides with the total counting of equations (74).
Since ¢ # ¢/, we get

me = | X4 (|X4] = 1) #£(4),
where #(A4) is the number of maximal subsets 4 = S. Now, |X4| = 20"/?l and
#(A4) = ([n};Z] ), and (76) follows. On the other hand, the variables are the

2" phases { and the parameters c]@, whose number is given by (70), for a total

number of m, variables.

REMARK 24. For large values of n, by Stirling’s approximation one gets

2
(78) me ~ 22 | =, my ~ 32" 1 n— .
nm
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Table 2. Number of equations vs number of variables.

n m, iy

2 4 5

3 6 12

4 72 21

5 120 48

6 1120 86

7 1960 192

8 16800 349
n— o \/2/nm 2% 321

As shown in Table 2, for n > 4 the number of equations is larger than the number
of variables and the system is overdetermined. Therefore, symmetries must play a
crucial role in order to assure the existence of a solution.

4.1. Examples

4.1.1. Two qubits. Let us consider the case of n =2 qubits. S = {1,2} and we
get from (69)

(79) I’/% = P{LZ}(k) = (1 + CO’]O’z),

Bl —

with g, = (2k; — 1), i€ S. Normalization and positivity, 0 < Py (k) <1,
Vk € X? imply that ¢ € [-1,1]. Equation (74) particularizes to

(80) { VOO”IO&OO?IO + V01V11§o1§11 =0
rooro1o0lor + 10711810811 = 0,

and, by noting that 13, = r{; = (1 +¢)/4 and 12, = r¥, = (1 — ¢) /4, one gets

{ V1= c2(Loolio + Co1lin) =0

81 2 2
(81) V1 —c2(Loolor + C10l11) =0

The above system reduces to a single equation
(82) V1 — (Lol &iolor +1) = 0.

1. A first class of solutions is |¢| = 1 and arbitrary phases. This yields, for ¢ = 1,
ror =r10=0 and roo =111 = 1/\/2 whence

n

V2

while, for ¢ = —1, rgo = r;; = 0 and ro; = 119 = 1/\/§ whence

(83) V> = —=(Co0l00)> + Cn[115),
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1
V2

The above states are known as Bell states. They are, obviously, maximally
bipartite entangled. Indeed, for n = 2 multipartite entanglement reduces to
bipartite entanglement.

2. On the other hand, when |c| # 1, the perfect MMES are

(84) > = —=(Lo1]01) + {10]10)).

(85) 0> = 3 VI T elCl00) + 1)) + 3 VT~ elGorl0> + Cil10)),
where the phases must satisfy the condition

(86) o011 = —Lo1io-

Therefore,

61 =Y 00y + A - i lony + 5110,

2 2

with o = (C00511>1/2> p= (CooZu)l/z and y = (5014:10)1/2-

3. The particular case ¢ = 0 corresponds to a uniform amplitude distribution
re = 1/2, ke X*. To such a class belong perfect MMES with phases that
are + 1.

1
(88) =52 Gl Geef{-L+1} [] Ge=-1.

keXx? keXx?

4.1.2. Three qubits. Let us consider the case of n =3 qubits. S ={1,2,3} and
we get from (69)
1

(89) Vl%:Pl’z’g(k) :g

(1 + c10203 + 20103 + c30102 + do10203),

where g; = (2k; — 1), with i € S. On the other hand, from (74) we obtain

(90) 2000Z010 + Zoo1Zo11 + Z100Z110 + Z101Z111 = 0

{ 20002100 + Zoo1Z101 + Zo10Z110 + Zo11Z111 = 0
20002001 + Zo010Z011 + Z100Z101 + Z110Z111 = O

Note that the three equations are obtained by a cyclic permutation of the three
qubits S.

1. If ¢; =0 (i € S) and d € [—1, 1], one gets from (89)

_ (1)
(91) FI%: (1—|—d01020‘3):w, k€X3.

oo —
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Thus

2

V19— dz(Cooo?mo + 500@101 + 5010§110 + Cou?m) =0
(92) V1 — dz(éoooéom + Comgon + Cloogllo + 51014:111) =0
V1 —d?(LoooCoor + Cor0Co11 + C100l101 + C110i11) =0

(a) If |d| = 1 the phases are arbitrary and the MMES is

93) > = 5 (oo 001> + Corol010) + Lo 1003 + i 11)
=%]§dék|k>,

when d — 1, and

(94) > = 5 Col0005 + L 011> + Cioa| 101 + Cyo] 103)
=3 3 alb,

when d = —1

(b) When |d| # 1, the phases must satisfy

Cooo&100 + Coo1 {101 =
éooogow + Comgon =p
(95) Cooo§001 + fomgou =7
5010%110 + §0114_’111 = —o
ClOOéllO + §101§111 =—p
Ci00Cio1 + Criolinn = =y

with |af, |f],]y] < 2. It is a system of 6 equations in § variables. Thus the
general solutions, for fixed d, live on a 5-dimensional manifold. A partic-
ular 3-dimensional submanifold is obtained by o = =y = 0. In such a

case
Cooo@oo = —5001@01
Lo10&110 = —Condin
(96) Looolo10 = —Coorlon
Goodiio = —Cronin
Cooofoor = —Cor0Con
1008101 = —Cioin

For example, the following MMES is an element of that manifold when
d=0
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1
(97) V> = (= 1000 + [001) + 010} +[011)

+ (1005 + [101) + [110) — [111).

As in the case of 2 qubits, this is an example of perfect MMES with uni-
form amplitudes 7, = 1/1/8 and real phases {;, € {—1,1}, with k € X3,

2. Ifd =0and ¢; = ¢ (i € S) with ¢ € [-1/3, 1], one gets

(143¢) for k e {000,111}

98 —
(98) e (1 —c¢) otherwise.

1
_ )3
(1 4+ c¢(o102 + 0203 + 0301)) = {é

Thus,

V(1 +3e)(1 - ¢)(€o00C100 + on1&inn)

+ (1= ¢)(&oo1&io1 + Co10C110) =0

(99) V1 +3¢)(1 = ) (Coooloro + Cro1i11)

+ (1 = ¢)(o01Cor1 + Cr00C110) = 0

V(1 +3e¢)(1 = ¢)(Coooloor + C110inn)

+ (1 = ¢)(or0o11 + C100C101) = 0

(a) If ¢ = 1 the phases are arbitrary and the perfect MMES is

1
(100) |‘p>:ﬁ(€000|000>+C111|111>)>

As a particular case, when {09 = {;1; = 1, one obtains the GHZ state [27].
(b) For ¢ < 1, the solutions live on a 5-dimensional submanifold. Note that if
one tries a solution for which the phases are independent of ¢ one gets

Coooéiloo + 5011?111 =0
Coooloto + 016111 =0
(101) Coooloor + €081 =0
COOIélOl + Cmogllo =0
Coo1%o11 + 1008110 = 0
Co10o11 + C100101 = 0

that 1s,

C100€o11 = Co10€101 = Co01¢110 = —Co00l 111
Coo1&110 + Co10€101 = 0
Co01&110 + C100lo11 =0
Co10€i01 + 100011 = 0

(102)

which has no solutions.
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5. UNIFORM MMES

According to Theorem 15, a perfect MMES has a population probability vector
in the computational basis given by (69), whose marginals on maximal subsys-
tems are all uniform. In particular, a uniform probability vector is compatible
with a perfect MMES. In this Section we will focus just on this class of states,
that have uniform amplitudes

(103) = |zl = VPs(k) = 1/VN,  VkeX"
and depend only on N = 2" phases.

DEFINITION 14 (Uniform states). A state [y € #s of the form

(104) Wy =—= ch|k>, (=)eTV,  N=2,

keX”

is said to have uniform amplitudes in the computational basis. A state with uniform
amplitudes in the computational basis is also called a uniform state.

First of all, we have a complete characterization of uniform maximizers of the
potential of multipartite entanglement.

THEOREM 18 (Fully factorized uniform states). The fully factorized states with
uniform amplitudes, z = {/\/N, have {;, = [Lics G with ., € S' ke xn

Proor. The result is an immediate consequence of Theorem 8, by observing that

Zk = HiES |allqlgllq = HieS ‘OC;\;[‘ H‘/ES&:]I(/ = C/\/\/N o

The various expressions of purity of a bipartition (4, A) considered in Section
2 simplify for uniform states. In particular, by plugging (104) into (26) we find

THEOREM 19 (Purity for uniform states). Consider a state with uniform ampli-
tudes in the computational basis z = (/ VN, with { € TV. Then for any bipartition
(4, 4),

N, N~
:HTA + 47 Z Z Z Re(li GraiCkmiomCkam):

keXSleX! pexa

(105)  74(0)

where Ny = 2", and N = 2".

PROOF. When z = {/+/N, in the first three sums of (26) all terms are equal to
1/N?. Their number, according to Remark 10, is A" Eoz + 4 ot = N(Ng+N;—1),
and the result follows. O

REMARK 25. Note that the first term on the right-hand side corresponds to the
average entanglement for typical states [22, 26, 31, 32, 39], whose phases are
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uniformly distributed on the torus TV. Thus, the combination of phases in the
second term can increase or reduce the value of the purity with respect to the
typical one (at a fixed bipartition).

Finally observe that, by setting {; = e, with ¢, € [0,27%), k € X", one gets

NA+N——1

N2 Z Z Z cos(Px — Pkar T Phaiom — Prom)-

keXSleX! pexa

(106)  74(0) =

REMARK 26. Note that for a uniform fully factorized state, since {; = CkA C [
with &' = [, £}, Yk € X", one gets

. . T4 oA T A od
(107)  &leorbeoromleom = GGG 0l ) (G oli-om Gl om = 1
Vk € XS, VI € X4, VI € X*. Therefore, all terms of the sum in (105) are 1, and

NA"‘NE—I 1

(108) ma(l) = =+ NN = DV = 1) = 1,

as it should.

The counterpart of Theorem 19 for the potential of multipartite entanglement is
stated in the following

THEOREM 20 (Potential for uniform states). If the Fourier amplitudes in the
computational basis are uniform, z ={/ VN, with { € TV, then the potential of
multipartite entanglement reads

(109) me() = LN__I

sz Z (1,m; [n/2]) Re(Cka@/@mZk@IZk@nz),

keX"l,meX!

where Ny = 21n/2, N;= 20+ D/2) | gnd N = 2.

PrROOF. When z = {/y/N, in the first two sums of (46) all terms are equal to
1/N? and one obtains

mMe(() = NZ 9(11,0;[n/2))

le X}

sz Z (I,m;[n/2]) Re(& SewromCrai Ceam)-

keX"l,meX?!
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We get

> o 0ma) = - " ol gls 0im) = > (1)

leX! leX"0<s<n I<s<n

(5,05n4)

>

and, from (44),

o600 =3 (3) () + ("))
Thus,
2l§g(|1|,o;n/1) - 1; (") + (")) =2m w22,
and, by setting ny = [1/2], the result follows. O

We will now use Theorem 20 and look for the uniform minimizers of the poten-
tial of multipartite entanglement.

5.1. Two qubits

For two qubits n = 2, we have N =4, Ny = N; = 2 and (109) becomes

3
(110) nME(C):4 Z Z (1,m;1) Re(Ck Skwrom Ckar Skom)
keX21m6X2
3
=1 SZ (1,1;1) Re(&k &kaw11 Graor Ckao)-
keX?

From (43) we get g(1, 1;1), hence
3 1
(111) mme($) = il 4RC(C00511§01C10)

Uniform perfect MMES are solutions of the equation

1
(112) mme(§) =5 Ce T4,
that is
(113) ool11801&10 = —1,
which yields

1 _
(114) Wy = E(COO|OO> + 01|01 4 £10/10) — Coolo1 L0l 11)).
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In this degenerate case, multipartite entanglement coincides with bipartite entan-
glement, and this state is obviously equivalent, up to local unitaries, to a Bell
state. A particular subclass is formed by uniform perfect MMES (1 14) with real
phases { € {—1 —|—1} Their number is 2* and has been already found by using a
probabilistic approach See (88).

5.2. Three qubits

For n = 3 qubits, N = 8, Ny = 2, N; = 4, and one must look for the solutions of
1

(115) () =3, (eT,

where, from (109),

(116) mve(l) = ¢ Z > gllmi1) Re(&ebkwrom ko eam)

keX*lmeX*

OOKI‘I

Due to the constraint dy(/ Am) in the coupling function g, see Theorem 10, one
can easily see that the pairs that yield nonvanishing contributions to the sum are

(117) (1, m) = (p(001), p(010)),  (£,m) = (p(001), p(110)), p € 63,

and the pairs obtained by exchanging / and m, where 3 < 25 is the subgroup of
the 3 cyclic permutations defined in (57). Therefore,

(118)  mue(¢ :_"'_Z Z (1,15 1) Re(Ck Sk po11) Skap(oot) Sk p(oto)

keX3p€(53
+4(1,2;1) Re(l Cewpain) Sk ap(oot) Skep(i10)]

S5
=3 1922 Z [2Re (&) Cpeor1) otk @ 001) Eok @ 010)

pPeECikeX?

+ Re (G Sk 1) Sk woon) Spkew 110)]5

since from (43) we get g(1,1;1) =1/3 and g(1,2;1) = 1/6. By performing the
sum over X* we finally obtain

5
(119) ame(l) = s T Z 2 Re(E(000) Spo11) Epoon) Sp(o10))

PECs

+ 2Re(Cp111)8p100) (110 Cp(101))
+ Re(Lp(000)Sp111) EpoonCp110))
+ Re(Lp(010)Sp100 Cp011)Ep(100))]-



62 PAOLO FACCHI

There are 3 families of solutions, living on the following 5-dimensional
submanifolds

(120) M, = {(&) € T*| $000/ 5o Ep001 Sp110) = +1,
Cp010)p101)Ep100)Cp011) = +1,
Cp(OOO)cp(Ol1)5[7(001)5[)(010) =1}, pe%;.

Indeed, if { € M, it is an easy task to see that

Cq(OOO)(q(l11)?:](001)4}(110) = dy14(1)

(121) La010)Sg100Eq100)Eq(011) = bp-1g1) ge %
£4(000)Cq(011)Eq(001)Eg(010) = Ep-tg(1)
Ca111)8q(100)q(110)q(101) = dp1401)

where

a=(+1,—o, —a)
b= (+1,—-a,—a)

(122) C:(—17+OC,—1) )

d=(-1,+a,-1)

with o € S! arbitrary. Therefore, the sum in 7yg(¢) reads
(123) > Re(a+b+2c+2d), 1,5 =Y Re(a+b+2c+2d),

VKA ieS
=2—-8+4Rea—4Rea = -6,

yielding nvg(0) = 1/2.

Note that, in agreement with Theorem 12, 7yg(() contains A~ #) = 12 distinct
terms that depend on phases, 6 of which are double weighted. The above solu-
tions force 2 terms to the value +1, and 4 x 2 terms to the value = —1. The
remaining ones are symmetric around 0 and cancel.

The corresponding uniform perfect MMES are

1
V8
— p(000)p(001)Cp010)| P(O011)) + Ly (100) | P(100)
— Gp(000)Cp(001)Ep(100) [P (101)) + Cp110)| p(110))

)

+ (000 Sp001ySp10) [ P(111))), p € €.

(124) > = (€p(000)| P(000)> + Lpi001) | P(001) > + 010y | 2(010) )

At present we do not know whether there exist other classes of uniform perfect
MMES than (124). Numerical evidence seems to corroborate the conjecture that
(124) describe all uniform perfect MMES, but we could not prove it.
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5.2.1. Real uniform MMES. Let us now look for uniform perfect MMES whose
phases are all real, i.e. { € {+1, 1}8. A necessary condition is that o is real,
o € {—1,+1}. In particular, it is an easy task to prove that « = —1 iff a,b,¢,d
in (122) are permutation invariant, iff

(125) a=b=(1,1,1), c=d=(-1,-1,-1).

Thus oo = —1 characterizes the 4-dimensional intersection

(126) M, =My My =MgnMz=MponMg= () M,
PECs

On the other hand, « = +1 determines the following three nonintersecting 4-
dimensional submanifolds

(127) N, = M, 0 {(&) € T8 o = Co000)Cp110) Sp010) o100y = +11, p € €.

Therefore, all uniform perfect MMES with real { belongs to one of the above
nonintersecting manifolds, namely

(128) {real uniform MMES} U N,uM,.
PEGCs

Thus the total number of real uniform perfect MMES is 4 x 2* = 26, They are
given by

1
(129) v =z ST alky, e {-1,1)"

keX3
with

C000%00180108011 = X;
00000181008 101 = Vi

130 1 <j<4,
(130) Co00Co10C1008110 = Z) /
Co01010C1008111 = Wi,
where
=(-1,—-1,—-1,+1 =(-1,-1,+1,-1
(131) x ( b) ) 7+ )7 y ( ) 7+ ) )7
z=(=1,+1,-1,—-1), w=(=1,41,+1,+1).

5.3. n > 3 qubits

For n =4 qubits, N = 16, Ny = N; =4, and a brute force enumeration shows
that the minimum value of the potential of multipartite entanglement in the class
of real uniform states, is
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W] =
=

(132) min{z{{L(0) | e {~1,1}'%} =

In fact, there are 1056 minimizers, among which, there is, e.g.
(133) (=(-1,-1,-1,—-1,—-1,—1,+1,+1,—-1,+1, -1, +1,+1, =1, =1, +1).

There is numerical evidence that 1/3 is the minimum of the multipartite entangle-
ment, and thus it is not an artifact of the restriction to real uniform states. In fact,
it has been proved that for n = 4 the minimum of 7y is strictly larger than 1/4
[13, 28], but still its value is unknown [8]. This is a first example of frustration
among the bipartitions, that prevents the existence of a perfect MMES: the re-
quirement that purity be minimal for all balanced bipartitions generate conflicts
already for n = 4 qubits.

For n =5 and 6, the expressions become more complicate. Here, we will not
discuss this cases. We will only exhibit two real uniform perfect MMES, solutions
to

(134) MO =7 Ce{-141)°
and
(139 MO =g e (14D

respectively. Therefore, interestingly, frustration is present for n = 4 qubits, while
it is absent for n = 5 and 6.

For example, a 5-qubits real uniform perfect MMES is defined by Eq. (104)
with the following set of phases

(136) = (+1,+1,+1,+1,+1, -1, =1, +1,+1, -1, =1, +1,+1, +1,+1, +1,
+ 1L+, -1, =1, 41, -1, 41, =1, -1, +1, -1, +1, -1, =1, 4+1,+1)

and can be shown to live on a 7-dimensional manifold, while a 6-qubits real uni-
form perfect MMES has the following set of phases

(137) (=(+1,41,-1,+1,-1,—1,-1,4+1,—-1,—-1,+1,—1,—1,—1, -1, +1,
- 17+17_17_17_17+17+17+17_17+15 _17_17+17_17_17_17
+ 17_17_17_17_17+17_17_17+17_17_17_17+17_17+17+17
I (RS (RIS (RN RIS RIS VRN VRIS JRNS JONS YOS JIS JFIS SIS S G O

By using the theory of quantum weight enumerators and quantum codes [42—
44], it has been proved that [46]

(138) min{z{l(z) [z ¥} > 272 forn > 8,
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and thus there is frustration among the bipartitions that prevents the existence of
a n-qubit perfect MMES, for n > 8. The case n = 7 is still open. There is numer-
ical evidence that it is frustrated too, but no conclusive arguments.
Summarizing, perfect MMES exist for n = 2,3,5,6 and, possibly, for n = 7.
For n =4 and n > 8 there is frustration and the minimum of the potential of mul-
tipartite entanglement is strictly larger than 2~/ Interestingly enough, in the
cases considered (n < 6) we have shown that the (conjectured) minimum of the
potential is attained by uniform states with real phases. In such a case, in order
to study the structure of multipartite entanglement in a quantum state of n qubits,
and in particular the minima of its potential, one can instead consider the simpler
system of classical sequences { € {—1,+1}* of 2" bits, with Hamiltonian ng\Z)E(C ).

6. CONCLUSIONS

In this paper we have studied the properties of the potential of multipartite entan-
glement and of its minimizers, the MMES, for a system of n qubits. In particular
our focus has been on perfect MMES, that saturate the lower bound of the
potential, and by using a probabilistic approach, we have proven a theorem on
the structure of their population probability vectors. This allowed us to consider
a particular simple class of solutions, those with uniform population. We have
shown by explicit construction that (apart for the case n = 7 which is still open,
but probably is frustrated) there always exist uniform perfect MMES with real
phases, a class of states that can be mapped to the classical binary sequences of
length 2". In fact, we have shown that also for n = 4, the lowest number at which
frustration occurs and hinders the existence of perfect MMES, the (conjectured)
minimum of the potential of multipartite entanglement is attained by uniform
states with real phases. This represents a great advantage, because in this situ-
ation one can investigate the structure of quantum multipartite entanglement
by studying the simplest problem a classical Hamiltonian defined on binary
sequences.
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