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Abstract. — In this paper we survey some recent advances on various kind of systems of non-

linear Schrödinger equations. The arguments rely on critical point theory, the concentration com-
pactness and perturbation methods.
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1. Introduction

Nonlinear Schrödinger equations (NLS in short) have been broadly investigated,
after the pioneering paper by A. Floer and A.Weinstein [14]. We refer, for exam-
ple, to [4, 13, 21, 22] and to [8] which contains several further references.

More recently, there has been an increasing interest to consider systems of
coupled NLS equations, which arise for example in Nonlinear Optics.

Let Eðx; zÞ denote the complex envelope of an electric field. Planar stationary
light beams propagating in the z-direction in a nonlinear medium are described,
up to rescaling, by a NLS equation like

iEz þ Exx þ kjEj2E ¼ 0;

where k is a constant which is assumed to be positive, say k ¼ 1, corresponding
to the fact that the medium is self-focusing.

If E ¼ fþ c is the sum of a right-hand polarized wave f and of a left-hand
polarized wave c, then the preceding equation gives rise to the following system
of NLS equations

ifz þ fxx þ ðjfj2 þ jcj2Þf ¼ 0;

icz þ cxx þ ðjfj2 þ jcj2Þc ¼ 0:

(
ð1Þ
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We look for f and c in the form of standing waves, namely

fðz; xÞ ¼ uðxÞeio1z; cðz; xÞ ¼ vðxÞeio2z;

where uðxÞ, vðxÞ are real valued functions and oi > 0, i ¼ 1; 2.
With this notation we get the system

�u 00 þ o1u ¼ u3 þ luv2;

�v 00 þ o2v ¼ v3 þ lu2v;

�
ð2Þ

where the coupling constant l > 0 depends on the anisotropy of the fibers.
Coupled NLS systems also arise from the Hartree–Fock theory for the double

Bose–Einstein condensates in two hyperfine states. In such a case one finds a sys-
tem like

�e2Duþ o1u ¼ m1u
3 þ luv2;

�e2Dvþ o2v ¼ m2v
3 þ lu2v;

�
ð3Þ

on a bounded domain WHR3, with Dirichlet boundary conditions. Here u and v
represent the condensate amplitudes, and e2 P �h2, �h being the Planck constant.

Furthermore, the propagation of optical pulses in nonlinear dual-core fiber
can be described by two linearly coupled NLS equations like

�u 00 þ u ¼ u3 þ lv;

�v 00 þ v ¼ v3 þ lu:

�
ð4Þ

2. The variational setting

Systems (2) and (4) are in the form

�Duþ u ¼ u3 þ lFuðu; vÞ;
�Dvþ v ¼ v3 þ lFvðu; vÞ:

�
ðSÞ

If F ðu; vÞ ¼ uv, (S) becomes the linearly coupled system (4), while if Fðu; vÞ ¼
1
2 u

2v2 we find the nonlinearly coupled system (2).
System (S) has a variational structure. Precisely, setting H :¼ W 1;2ðRnÞ�

W 1;2ðRnÞ, n ¼ 1; 2; 3, solutions of (S) are the critical points ðu; vÞ a H of the
functional

Ilðu; vÞ ¼ IðuÞ þ IðvÞ � l

Z
Fðu; vÞ dx;

where

IðuÞ ¼ 1

2

Z
½j‘uj2 þ u2� dx� 1

4

Z
u4 dx:
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A solution ðu; vÞ a H of (S) is called a Bound State. The set of non-trivial, i.e.
ðu; vÞA ð0; 0Þ, bound states will be denoted by Bl.

A solution ð~uu; ~vvÞ a Bl is called a Ground State if

Ilð~uu; ~vvÞ ¼ min Ilðu; vÞ : ðu; vÞ a Blf g:

The Ground States are important because they are the natural candidates to pos-
sess some stability property for the z-dependent system (1). These Ground States
can be found as minima of Il on a suitable manifold (usually named Nehari man-
ifold):

Ml ¼ fðu; vÞ a Hnf0; 0g : 3‘Ilðu; vÞ j ðu; vÞ4 ¼ 0g;

where 3� j �4 denotes the standard scalar product on H. Actually, it is possible to
show that non-trivial stationary points of Il are the critical points of Il con-
strained on Ml.

3. Bound and ground states of (2)

The nonlinearly coupled system (2) possesses explicit solutions which have one
trivial component. We will call these solutions semi-trivial solutions.

Precisely, ðu; 0Þ is a semi-trivial solution of (2) provided u verifies

�Duþ o1u ¼ m1u
3:

Hence u :¼ U1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
o1=m1

p
Uð ffiffiffiffiffiffi

o1
p

xÞ, where U is the radial positive soliton like
solution satisfying

�DU þU ¼ U 3:

Similarly, ð0; vÞ is a semi-trivial solution of (2) provided v verifies

v :¼ U2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
o2=m2

p
Uð ffiffiffiffiffiffi

o2
p

xÞ:

Using Morse theoretical arguments, it is possible to classify these semi-trivial so-
lutions. Actually one can prove the following lemma.

Lemma 3.1. There exist L;L0 > 0 such that:

(i) For all l < L the semi-trivial solutions ðU1; 0Þ, ð0;U2Þ are strict local minima
of Il on Ml.

(ii) For all l > L0 the semi-trivial solutions ðU1; 0Þ, ð0;U2Þ are saddle points of Il
on Ml.

More precisely, it is possible to show that L, L0 are given by

L ¼ minfg21 ; g22g; L0 ¼ maxfg21 ; g22g;
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where

g21 ¼ inf
f AW 1; 2

r ðRnÞ

R
j‘fj2 þ o2f

2R
U 2

1 f
2

;

g22 ¼ inf
f AW 1; 2

r ðRnÞ

R
j‘fj2 þ o1f

2R
U 2

2 f
2

;

and W 1;2
r ðRnÞ denotes the space of radial functions in W 1;2ðRnÞ.

Furthermore, more explicit estimates in terms of oi, mi can also be given. Let-
ting k :¼ m2=m1, there holds:

g21 bo1k
1�n=4; g22 bo2

� 1

k

�1�n=4

:

Moreover,

g21 amaxfo1k;o1k
1�n=2g; g22 amax o2

1

k
;o2

� 1

k

�1�n=2
� �

:

Using Lemma 3.1 and working on Hr :¼ W 1;2
r ðRnÞ �W 1;2

r ðRnÞ, it is possible to
use critical point theory to find a minimum, respectively a mountain-pass critical
point, for Il on Ml provided l > L0, respectively l < L. Then an additional sym-
metry argument and the maximum principle allow us to prove the following re-
sult.

Theorem 3.2 [6]. (i) If l > L0, then (2) has a radial ground state ðu; vÞ a Hr, with
u > 0, v > 0.

(ii) If l < L, then (2) has a radial bound state ðu; vÞ di¤erent from ðU1; 0Þ and
ð0;U2Þ. Furthermore, if l > 0 then u > 0, v > 0.

Similar results with slightly di¤erent estimates on L, L0 have been found in
[16, 19] and [12], where the case indimension n ¼ 1 is also considered. For some
related results dealing with (3) we refer to [20].

4. Bound and ground states of (4)

In this section we deal with the linearly coupled system (4). The specific feature of
these systems is that it possesses a very rich set of solutions with various di¤erent
behavior. The section is divided into several subsections.

4.1. Explicit Solutions

First of all, there are two families of explicit solutions of (4): the Symmetric States
in which v ¼ u and the Antisymmetric States in which v ¼ �u. The former ones
solve the single equation
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�Duþ ð1� lÞu ¼ u3;

the latter ones the equation

�Duþ ð1þ lÞu ¼ u3

Therefore, letting UoðxÞ ¼
ffiffiffiffi
o

p
Uð

ffiffiffiffi
o

p
xÞ denote the solution of minimal energy of

�Duþ ou ¼ u3, o > 0, the Symmetric States exist for l a ½0; 1Þ and are given by
the pairs

ðU1�l;U1�lÞ; ð0a l < 1Þ;

while the Antisymmetric States exist for all lb 0 and are given by the pairs

ðU1þl;�U1þlÞ; ðlb 0Þ:

4.2. Secondary Bifurcations

In [1] it has been proved in dimension n ¼ 1 that for l ¼ 3=5 there is a second-
ary bifurcation from the symmetric states. Moreover, using the Implicit Function
theorem it is easy to check that a branch of solutions emanates at l ¼ 0 from
ðU ; 0Þ. We suspect that such a branch can be continued into the bifurcation point
l ¼ 3=5. In addition, there is a numerical evidence that for l ¼ 1 there is a sec-
ondary bifurcation from the Antisymmetric States, see [1]. A rigorous proof of
this result has not jet given. A bifurcation diagram of these solutions is reported
in Fig. 1 below.

Figure 1. S denotes the family of the symmetric states, AS the antisymmetric ones.
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The remarkable fact is that the solutions emanating from ðU ;�UÞ at l ¼ 1 do
not behave like a soliton but have, in dimension n ¼ 1, two bumps whose peeks
move to infinity as l ! 0.

4.3. Existence of Multi-bump Solutions for lP 0

Using perturbation arguments it is possible to give a rigorous proof of the exis-
tence of a family of multi-bump solutions of (4) for small l. Referring to [7] for
more details, one can show:

Theorem 4.1. Let n ¼ 1. For l ¼ eP 0, (4) has a solution ðue; veÞ a W 1;2ðRÞ�
W 1;2ðRÞ of the type ue PUðxþ xeÞ þUðx� xeÞ, ve P�UðxÞ as eP 0, with

� log e

1þ d
< xe < �log e:

The case n ¼ 2; 3 requires some further notation. Let P be a regular polygons
in R2 or a Platonic solid in R3, centered at x ¼ 0. Let fp1; . . . pmg be the vertices
of P, s the sides and r the rays, we will suppose that

s ¼ minfjpi � pjj : iA jg > r ¼ jp1j:ðPÞ

In R2 assumption (P) is satisfied by the regular polygons with less than 6 sides
while in R3 by all the platonic solids but the dodecahedron, in which

s < r ¼ s
ffiffiffi
3

p

4
ð1þ

ffiffiffi
5

p
Þ:

In the case of dimension n ¼ 1 we understand that P contains the symmetric in-
tervals ½�p; p�.

Figure 2. Multi-bump solutions in dimension n ¼ 1.
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Theorem 4.2. Let n ¼ 2; 3. If (P) holds, then for every l ¼ eP 0, (4) has a solu-

tion ðu1; e; u2; eÞ a W 1;2ðRnÞ �W 1;2ðRnÞ such that u2; e P�UðxÞ, while u1; e has
maxima near xepi, where xe satisfies:

xe P
logð1=eÞ
s� r

:

Remark 4.3. In a single NLS equation the existence of multi-bump solutions is
usually due to the presence of a suitable external potential depending upon x. See
e.g. [11, 15, 17] and references therein. The new feature of the previous theorems
is that system (4) is autonomous. Roughly, one can solve the second equation
with respect to v. If v ¼ Kðx; uÞ denotes such a solution and we substitute such a
v in the first equation of the system, we obtain a NLS equation with a non-local
term, depending on x, which plays the role of the external potential. r

As anticipated before, the proof of these theorems relies on perturbation meth-
ods. One looks for x a Rn and ðw1; w2Þ a H, in such a way that the pair ðu; vÞ a H
of the form

u ¼ Uðxþ xÞ þUðx� xÞ þ w1; v ¼ �UðxÞ þ w2;

solves (4). Using a Lyapunov-Schmidt reduction, in a variational setting, one
first finds w1, w2 on the orthogonal to the manifold fUðxþ xÞ þUðx� xÞ;
�UðxÞ : x a Rng. Substituting w1, w2 in the bifurcation equation, one is lead to
study a finite dimensional functional, depending on x, whose critical points give
rise to the solutions we are looking for. It is worth pointing out that these critical
points can be found because we are working close to the Antisymmetric States,
otherwise the arguments does not work. Actually, since the leading part of the
second component is �UðxÞ and not UðxÞ, the finite dimensional functional con-
tains two competing parts which balance each other and give rise to the existence
of a critical point.

4.4. Properties of the Ground States of (4)

For the results we will discuss in later on it is convenient to state a Lemma with
the properties of the Ground States of (4). The proof can be found in [5].

If ðul; vlÞ denotes a Ground State of (4) we set

ml ¼ Ilðul; vlÞ:

Lemma 4.4. (i) For any l a ½0; 1Þ there exist a ground state of (4) which, up to
translation, is Steiner-symmetric. Furthermore, ul � vl > 0.

(ii) The map ½0; 1Þ C l 7! ml is continuous and strictly decreasing and there holds

lim
l!0

ml ¼ m0 ¼ I0ðU ; 0Þ ¼ I0ð0;UÞ:ð5Þ
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Since m0 < I0ðU ;UÞ ¼ liml!0 IlðU1�l;U1�lÞ, (5) implies there exist d > 0
such that

ml < IlðU1�l;U1�lÞ; E0 < l < d:

Therefore for l a ð0; dÞ the ground states of (4) are not the Symmetric States
but they belong to the branch bifurcating from ðU ; 0Þ. On the other hand:

(iii) There exist d 0 > 0 such that for l a ð1� d 0; 1Þ the ground states of (4) are the
Symmetric States ðU1�l;U1�lÞ. In particular,

lim
l!1

ml ¼ 0:

5. Linearly coupled non-autonomous systems

In this section we report the results of [5] dealing with the following class of lin-
ealry coupled NLS systems like

�Duþ u ¼ ð1þ aðxÞÞu3 þ lv;

�Dvþ v ¼ ð1þ bðxÞÞv3 þ lu;

�
ð6Þ

whose solutions are the critical points of

Jlðu; vÞ ¼ Ilðu; vÞ �
1

4

Z
ðaðxÞu4 þ bðxÞv4Þ dx:

In the sequel we will always assume that

Figure 3. For lP 0 and lP 1 the bold line is the branch of the Ground States.
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a; b a LlðRnÞ; lim
jxj!l

aðxÞ ¼ lim
jxj!l

bðxÞ ¼ 0;ð7Þ

and

inf
Rn

f1þ aðxÞg > 0; inf
Rn

f1þ bðxÞg > 0:ð8Þ

As usual, since we cannot anymore work in the space of symmetric functions, the
main di‰culty is the lack of compactness. One can show:

Lemma 5.1. The Palais-Smale, (PS) in short, compactness condition is verified at
every level c < ml, namely at every level smaller than the ground state of the limit
functional Ilðu; vÞ.

Our first result deals with the case in which aþ bb 0. Let cl be the Mountain-
Pass level of Jl.

Lemma 5.2. If aðxÞ þ bðxÞb 0 then cl < ml.

From Lemmas 5.1 and 5.2 it follows immediately that that cl is a critical level,
whence

Theorem 5.3. Suppose that (7) and (8) hold. If aðxÞ þ bðxÞb 0, then E0 < l < 1,
(6) has a positive Ground State.

Theorem 5.3 is the counterpart of a similar result which holds for the single
NLS

�Duþ u ¼ ð1þ aðxÞÞu3:ð9Þ

Our second result is di¤erent. The new feature is that we assume only that
ab 0, while b can be arbitrary.

Theorem 5.4. Suppose that (7) and (8) hold. If aðxÞb 0, aD 0, then bl� a ð0; 1Þ
depending only on a, such that (6) has a positive Ground State for every l a ð0; l��.

To prove this theorem we let ma denote the Ground State level of (9). If ab 0,
aD 0 then ga is achieved at a Ground State za and there holds

ga ¼ IðzaÞ < IðUÞ ¼ ml¼0:

In addition, still using the fact that ab 0, aD 0. one readily shows that

cl < ma:

In conclusion we can state the following lemma.

Lemma 5.5. If aðxÞb 0, aD 0, then cl < ma. Moreover, ma < ml¼0 and hence
cl < ml for lP 0.
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It is clear that from Lemma 5.5 and Lemma 5.1 we can conclude that Il has a
critical point for l a ð0; l�� which give rise to a positive Ground State of (6).

Our last Theorem deals with the case in which both a and b are smaller or
equal than zero and is the counterpart for a single NLS of the results proved in
[9]. In this case the situation is more di‰cult because cl ¼ ml and cl is not a crit-
ical level of Jl. Actually the solutions we find are Bound States and a di¤erent
min-max procedure is in order. For this, we need to assume that

(B1) ml is an isolated critical level of Il.

Lemma 5.6. (B1) holds for lP 0 as well as for lP 1.

Proof. (Sketch) As lP 0, (ii) of Lemma 4.4 implies that the Ground States be-
long to the branch bifurcating from ðU ; 0Þ, which satisfies a non-degeneracy con-
dition. This readily yields (B1). Similarly, as lP 1, (iii) of Lemma 4.4 implies that
ml is achieved at the Symmetric States ðU1�l;U1�lÞ. It is possible to show that
also this branch is non-degenerate and therefore (B1) holds. r

The fact that ml is isolated provides us with a range of values greater than ml

such that the (PS) condition holds:

Lemma 5.7. There exists d > 0 such that Il satisfies the (PS) condition at any level
d a ðml;ml þ dÞ.

Finally, if aa 0, ba 0 and maxfjajl; jbjlgf 1, we can use the the def-
inition of ‘‘barycenters’’, see [10], to define a min-max level ~ccl such that
ml < ~ccl < ml þ d.

Figure 4. The bold line is the branch of the Ground States.
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Theorem 5.8. Suppose that (7) and (8) hold. If aa 0, ba 0, aþ bD 0, there
exist 0 < l1 a l2 < 1 such that (6) has a positive Bound State for every l a
ð0; l1ÞA ðl2; 1Þ, provided maxfjajl; jbjlg is su‰ciently small.

The preceding results can be improved in dimension n ¼ 1 dealing with

�u 00 þ u ¼ ð1þ eaðxÞÞu3 þ lv;

�v 00 þ v ¼ ð1þ ebðxÞÞv3 þ lu:

�
ð10Þ

Here

Jlðu; vÞ ¼ Ilðu; vÞ � e
1

4

Z
ðau4 þ bv4Þ dx

and the lack of compactness can be bypassed by using perturbation methods, cfr.
[8]. Precisely, there holds

Theorem 5.9 [3]. Suppose that

a; b a LlðRÞ; lim
jxj!l

aðxÞ ¼ lim
jxj!l

bðxÞ ¼ 0:

Then, El a ð0; 1Þ, lA 3=5, (10) has a solution close to ðU1�l;U1�lÞ, for e su‰-
ciently small.

Proof. (Sketch) The Symmetric states ðU1�l;U1�lÞ are, for every fixed
l a ð0; 1Þ, critical points of Il. Since Il is translation invariant, also ðU1�lðxþ xÞ;
U1�lðxþ xÞÞ are solutions for all x a R. Here, taking advantage of the fact that
we are working in dimension n ¼ 1, it is possible to sharpen the non-degeneracy
arguments by proving that the Symmetric States are non-degenerate not only for
lP 0, but for every lA 3=5. Then we can use, as in the proof of Theorems 4.1
and 4.2, a Lyapunov-Schmidt reduction in order to shows that there exist solu-
tions of (10), for eP 0, and the result follows. r

Remark 5.10. Taking advantage to be in dimension n ¼ 1 it is possible to give
a precise description of the Ground State levels of Il, namely:

(i) If 0 < l < 3
5 , then ml < IlðU1�l;U1�lÞ.

(ii) If 3
5 a l < 1, then ml ¼ IlðU1�l;U1�lÞ.

Moreover:

(iii) (B1) holds for all l a ð0; 1Þ but l ¼ 3
5 .
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