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1. Introduction

This paper deals with a class of variational problems involving weights that are
powers of the distance from the origin. More precisely, we look for nonnegative
weak solutions to

�divðjxjaj‘ujp�2‘uÞ ¼ ljxja�p
up�1 þ jxj�bquq�1 on RNZ

RN

jxjaj‘ujp dx < l;

8<
:ð1:1Þ

where

1 < p < q; a > p�N; bq ¼ N � q
N � pþ a

p
;

l <
�N � pþ a

p

�p

; qa p� :¼ Np

N � p
if p < N:

ð1:2Þ

Much interest has been payed to problems of the form (1.1). Assume for in-
stance that a ¼ 0. Then �divðj‘ujp�2‘uÞ ¼ �Dpu is the standard p-Laplace oper-
ator. Let p < N, and notice that bp� ¼ N � p�ðN � pÞ=p ¼ 0. Positive solutions to

�DpU ¼ Up��1 on RNZ
RN

j‘U jp dx < l

8<
:ð1:3Þ



are explicitly known since the celebrated papers [1] by Aubin and [27] by Talenti.
In particular, it turns out that U > 0 solves (1.3) if and only if U is an extremal
for the Sobolev constant Sp.

A large number of papers deal with (1.1) and with similar variational prob-
lems. We quote for example [2], [5], [7]–[23], [25], [26], [28], [29] and references
there-in. At our knowledge, all the available results for (1.1) require p ¼ 2, or
l ¼ 0, or a ¼ 0.

The purpose of the present paper is twofold. We survey some of the results
from [11] and [13] about the semilinear elliptic case p ¼ 2, from [5], [15], [26],
where l ¼ 0 is assumed, and from the appendix of the paper [14], that deals with
a non-compact problem for the p-Laplace operator. In addition we prove new
existence and multiplicity results by suitably adapting the arguments of [15] and
[16].

The remaining of the present paper is organized as follows.
In Section 2 we point out the main features of problem (1.1).
In Section 3 we focus our attention on the existence of a ground state (see Sec-

tion 2 for the definition) and of a radially symmetric nontrivial solution. The main
results in this section are Theorems 3.1 and 3.4.

In Section 4 we compare the ground state and the radially symmetric solution.
We report on the breaking symmetry results from [13], where p ¼ 2, and from [5],
[26], where l ¼ 0 is assumed. Then we take 2a p < q < p� and we use the argu-
ments in [16] to find out a region of parameters a, q and l where breaking sym-
metry occurs. The main result in this section is Theorem 4.4.

Notation

We denote by c any constant c a Rþ :¼ ð0;lÞ that depends only on fixed param-
eters.

Let p > 1 and let Nb 1 be an integer. We set p� :¼ Np

N�p
if p < N and p� ¼ l

if pbN. If a a R we put

lp;a :¼
�N � pþ a

p

�p

:

We denote by BR the N-dimensional ball of radius R centered at the origin. The
surface measure of SN�1 ¼ qB1 is oN ¼ jqB1j.

Let X ¼ ðX ; jj � jjÞ be a Banach space. Then X 0 is its topological dual space.
For any sequence gh in X , we write gh * g if gh converges to g a X weakly, and
gh ! g if jjgh � gjj ! 0.

Let q a ð1;þlÞ, a a R and let W be a domain in RN . We denote by
LqðW; jxja dxÞ the space of measurable functions u, such that jxja=qu a LqðWÞ.

For any exponent p a ð1;NÞ, the space D1;pðWÞ is defined as the closure
of Cl

c ðWÞ with respect to the Lp norm of j‘uj. It is well known that D1;pðRNÞ
is continuously embedded into Lp� ðRNÞ. The explicit value of the Sobolev
constant
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Sp :¼ inf
U AD1; pðRN Þ

UA0

R
RN j‘U jp dx

ð
R
RN jU jp�

dxÞp=p�

and of its minimizers were given in [1] and in [27].

2. Preliminaries

In this preliminary section we recall some well known integral inequalities and we
describe the mean features of problem (1.1).

2.1. Hardy and Ca¤arelli-Kohn-Nirenberg Inequalities

Let p > 1 and a > p�N. The Hardy inequality states that

lp;a

Z
RN

jxja�pjujp dx <

Z
RN

jxjaj‘ujp dxð2:1Þ

for any u a Cl
c ðRNÞ. Thanks to (2.1), we can define the reflexive Banach space

D1;pðRN ; jxja dxÞ as the completion of Cl
c ðRNÞ with respect to the Lp-norm of

jxja=pj‘uj. Notice that D1;pðRN ; dxÞ ¼ D1;pðRNÞ if p < N and a ¼ 0.
We will deal also with the Ca¤arelli-Kohn-Nirenberg inequalities. Let

1 < p < q and assume qa p� if p < N. Set bq :¼ N � qðN � pþ aÞ=p. In [6] it
is proved that there exists a constant c ¼ cðN; p; a; qÞ > 0 such that

c
�Z

RN

jxj�bq jujq dx
�p=q

a

Z
RN

jxjaj‘ujp dxð2:2Þ

for any u a D1;pðRN ; jxja dxÞ. If l < lp;a, then inequalities (2.1) and (2.2) plainly
imply that the infimum

Spða; l; qÞ :¼ inf
u AD1; pðRN ; jxja dxÞ

uA0

R
RN jxjaj‘ujp dx� l

R
RN jxja�pjujp dx

ð
R
RN jxj�bq jujq dxÞp=q

ð2:3Þ

is positive. Notice that Spða; 0; pÞ ¼ lp;a and Spð0; 0; p�Þ ¼ Sp if p < N.
Assume that Spða; l; qÞ is attained by a function u a D1;pðRN ; jxja dxÞ. Then u

is nonnegative weak solution to (1.1), up to a multiplicative constant. The argu-
ment is nowadays standard and it will be omitted. Any solution to (1.1) which
achieves Spða; l; qÞ is called ground state.

2.2. Lack of Compactness

In this section we describe some lack of compactness phenomena that may be ob-
served in studying the minimization problem (2.3). In order to simplify notations
we put
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nðuÞ :¼
Z
RN

jxjaj‘ujp dx� l

Z
RN

jxja�pjujp dx:ð2:4Þ

Notice that nðuÞ1=p is bounded from below and from above by the norm of u in
D1;pðRN ; jxja dxÞ, by Hardy inequality. In particular, if p ¼ 2 or if l ¼ 0 then

nð�Þ1=p is an (equivalent) norm in D1;pðRN ; jxja dxÞ.
The invariances of the functional nð�Þ and of the norm in LqðRN ; jxj�bq dxÞ

generate noncompact minimizing sequences. Assume for instance that Spða; l; qÞ
is attained by a function u a D1;pðRN ; jxja dxÞ. Take any sequence th > 0 and set

uhðxÞ :¼ t
ðN�pþaÞ=p
h uðthxÞ:

Since

nðuhÞ ¼ nðuÞ;
Z
RN

jxj�bq juhjq dx ¼
Z
RN

jxj�bq jujq dx;

then uh achieves Spða; l; qÞ for any h. Now we can easily exhibit noncompact
minimizing sequences. Take for instance th ! l. Then the functions uh concen-
trate at 0, that is, jxjaj‘uhjp ! 0 in L1ðfjxj > RgÞ for any R > 0. Also vanishing
may be produced: if th ! 0 then jxjaj‘uhjp ! 0 in L1

locðRNÞ.
In the limiting case p < N and q ¼ p�, the group of translations is responsible

of additional and worst lack of compactness phenomena. For any e > 0 choose a
map Ue a Cl

c ðRNÞ such that

Sp a

R
RN j‘Uejp dx

ð
R
RN jUejp

�
dxÞp=p� < Sp þ e:

Fix a point x0A 0 and put

Ue;hðxÞ :¼ hðN�pÞ=pUeðhðx� x0ÞÞ:

Notice that

lim
e!0

lim
h!l

nðUe;hÞ
ð
R
RN jxjNa=ðN�pÞjUe;hjp

�
dxÞp=p� ¼ Sp:

Test Spða; l; p�Þ with Ue;h and pass to the limit to get

Spða; l; p�ÞaSp:ð2:5Þ

This is a crucial inequality. Assume that Spða; l; p�Þ ¼ Sp. If eh ! 0 is a suitably
chosen sequence, then Ueh;h approaches Spða; l; p�Þ. Notice that Ueh;h concen-
trates at x0A 0 as h ! l. In addition, it can be proved that it blows-up an
extremal for the Sobolev constant Sp. Actually, the infimum Spða; l; p�Þ might
be not achieved if equality holds in (2.5). This happens, for instance, when
a ¼ 0, l < 0 and when p ¼ 2, a > 0 (see Propositions 3.5 and 3.6). On the other
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hand, in the next section we will show that the strict inequality Spða; l; p�Þ < Sp

guarantees enough compactness and the existence of a minimizer.

3. Existence

The first result in this section provides su‰cient conditions for the existence of a
ground state.

Theorem 3.1. Let 1 < p < q, a > p�N and assume that (1.2) is satisfied.

i) If pbN or if q < p�, then Spða; l; qÞ is achieved.
ii) If p < N, then Spða; l; p�Þ is achieved provided that Spða; l; p�Þ < Sp.

Theorem 3.1 was already known for some special values of the parameters in-
volved. We quote [11] for p ¼ 2, [15] for l ¼ 0 and finally [14] for a ¼ 0.

The proof in [11] is based on a helpful functional change that does not behaves
nicely when pA2. The argument adopted in [14] to handle the case a ¼ 0 is based
on a hard adaptation of the Concentration-Compactness Lemmata by P. L. Lions
(see also [2], [28] for a noncompact problem with cylindrical weights). We notice
also that in case a < 0 and l ¼ 0, a change of the x-variable reduces the problem
to the case a ¼ 0, where Schwarz symmetrization gives the existence of a ground
state that is radially symmetric (see [18]). In general, when ab 0 or lA 0 one can
not look forward to a radially symmetric ground state (compare with the results
in Section 4).

To prove Theorem 3.1 we follow the main ideas of the papers [22] and [15],
that deal with a class of variational problems with spherical and cylindrical
weights. In particular, the paper [22] is concerned with the semilinear case p ¼ 2,
while l ¼ 0 is assumed in [15]. The proofs in [22], [15] were inspired by arguments
that have been developed by Sacks and Uhlenbeck in their seminal paper [24] on
minimal spheres in a Riemannian manifold (see also [22] and [23] for a similar
variational problem and [3], [4], [9] for the H-surfaces problem).

The strategy consists in selecting a ‘‘good’’ minimizing sequence via Ekeland’s
variational principle and rescaling argument. The proof of Theorem 3.1 turns out
to be direct, self-contained and flexible.

The next Lemma is the main step in the proof.

Lemma 3.2. ‘‘e-compactness lemma’’. Let 1 < p < q, a > p�N, l a R and let W
be a domain in RN. Assume that (1.2) is satisfied. Let uh * 0 be a sequence in
D1;pðRN ; jxja dxÞ such that

lim sup
h!l

Z
W

jxj�bq juhjq dx < Spða; l; qÞq=ðq�pÞ;ð3:1Þ

�divðjxjaj‘uhjp�2‘uhÞ � ljxja�pjuhjp�2
uh ¼ jxj�bq juhjq�2

uh þ fh on W;ð3:2Þ

where fh ! 0 in D1;pðRN ; jxja dxÞ0. Then uh ! 0 in L
q
locðW; jxj�bq dxÞ.
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Proof. Let W 0 be any domain compactly contained in W. Take any nonnegative
function j a Cl

c ðWÞ such that jC 1 on W 0. Use Lemmata 1.1 and 1.2 in [15] to
check that jpuh is an admissible test function for (3.2) and thatZ

RN

jxjaj‘uhjp�2‘uh � ‘ðjpuhÞ dx ¼
Z
RN

jxjaj‘ðjuhÞjp dxþ oð1Þ:

Therefore

nðjuhÞ ¼
Z
RN

jxj�bq juhjq�pjjuhjp dxþ oð1Þ;ð3:3Þ

where nð�Þ is defined in (2.4). We notice that

nðjuhÞbSpða; l; qÞ
�Z

RN

jxj�bq jjuhjq dx
�p=q

by (2.3). Then we use Hölder inequality to estimate the right-hand side of (3.3).
In this way we get

Spða; l; qÞ
�Z

RN

jxj�bq jjuhjq dx
�p=q

a

�Z
W

jxj�bq juhjq dx
�ðq�pÞ=q�Z

RN

jxj�bq jjuhjq dx
�p=q

þ oð1Þ:

Therefore from (3.1) we infer

oð1Þ ¼
Z
RN

jxj�bq jjuhjq dxb
Z
W 0

jxj�bq juhjq dx;

as jC 1 on W 0. Since W 0 was arbitrarily chosen, this proves that uh ! 0 strongly
in L

q
locðW; jxj�bq dxÞ. r

Proof of Theorem 3.1. Fix a small e0 < Spða; l; qÞq=ðq�pÞ and let nð�Þ be the
functional defined in (2.4). The proof will be carried out in two steps.

Step 1. We claim that there exists a weakly convergent sequence uh, such that

Spða; l; qÞq=ðq�pÞ ¼
Z
RN

jxj�bq juhjq dx ¼ nðuhÞ þ oð1Þ;ð3:4Þ

lim
h!l

Z
B2

jxj�bq juhjq dx ¼ e0;ð3:5Þ

�divðjxjaj‘uhjp�2‘uhÞ � ljuhjp�2
uh ¼ jxj�bq juhjq�2

uh þ fh on RN ;ð3:6Þ

where fh ! 0 in D1;pðRN ; jxja dxÞ0. For, it su‰ces to use Ekeland’s variational
principle and to notice that the ratio
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nðuhÞ
ð
R
RN jxj�bq juhjq dxÞp=q

is homogeneous and invariant under rescaling. The sequence uh is bounded in
D1;pðRN ; jxja dxÞ by (3.4) and by Hardy’s inequality. Thus we can assume that
uh * u in D1;pðRN ; jxja dxÞ, for some u a D1;pðRN ; jxja dxÞ.
Step 2. We claim that uA 0 and that u achieves Spða; l; qÞ.

Assume by contradiction that uh * 0. Then Lemma 3.2 and (3.5) imply that
uh ! 0 in L

q
locðB2; jxj�bq dxÞ. If q < p� then uh ! 0 in LqðB2; jxj�bq dxÞ by Rellich

Theorem. This conclusion clearly contradicts (3.5). Hence we assume p < N and

q ¼ p�. Since uh ! 0 in L
p�

locðB2; jxjNa=ðN�pÞ
dxÞ, then

Z
B1

jxjNa=ðN�pÞjuhjp
�
dx ! 0.

From (3.5) we infer

lim
h!l

Z
K

jxjNa=ðN�pÞjuhjp
�
dx ¼ e0 > 0;ð3:7Þ

where K ¼ fx a RN j 1 < jxj < 2g. Choose a nonnegative smooth function
j a Cl

c ðRNÞ such that jC 0 in a neighbourhood of 0 and jC 1 on K . As in
the proof of Lemma 3.2 we can use jpuh as test function in (3.6) to get

nðjuhÞaSpða; l; p�Þ
�Z

RN

jxjNa=ðN�pÞjjuhjp
�
dx

�p=p�

þ oð1Þ:ð3:8Þ

Notice that

jxjða�pÞ=pjjuhj ! 0; jxja=pj‘ðjuhÞj � j‘ðjxja=pjuhÞj ! 0 in LpðRNÞ

by Rellich Theorem, as j has compact support in RNnf0g. Thus

nðjuhÞ ¼
Z
RN

j‘ðjxja=pjuhÞjp dxþ oð1ÞbSp

�Z
RN

jxjNa=ðN�pÞjjuhjp
�
dx
�p=p�

þ oð1Þ

by the Sobolev inequality. In particular, from (3.8) it follows that

Sp

�Z
RN

jxjNa=ðN�pÞjjuhjp
�
dx

�p=p�

aSpða; l; p�Þ
�Z

RN

jxjNa=ðN�pÞjjuhjp
�
dx

�p=p�

þ oð1Þ:

Since Spða; l; p�Þ < Sp and since jC 1 on K , we inferZ
K

jxjNa=ðN�pÞjuhjp
�
dxa

Z
RN

jxjNa=ðN�pÞjjuhjp
�
dx ¼ oð1Þ;

which contradicts (3.7). Thus, uh * uA 0 in D1;pðRN ; jxja dxÞ.
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Next, from (3.6) we get that u solves

�divðjxjaj‘ujp�2‘uÞ � ljxja�pjujp�2
u ¼ jxj�bq jujq�2

u on RN :

In particular

Spða; l; qÞ
�Z

RN

jxj�bq jujq dx
�p=q

a nðuÞ ¼
Z
RN

jxj�bq jujq dx

by (3.2). Since uA 0, using also (3.4) we get

nðuÞ ¼
Z
RN

jxj�bq jujq dxbSpða; l; qÞq=ðq�pÞ ¼
Z
RN

jxj�bq juhjq dx:

But then the lower semicontinuity of the norm in LqðRN ; jxj�bq dxÞ implies

nðuÞ ¼
Z
RN

jxj�bq jujq dx ¼ Spða; l; qÞq=ðq�pÞ:

Therefore u achieves Spða; l; qÞ. The proof is complete. r

Remark 3.3. Assume N ¼ 1 < p < q, a > p� 1, l < jð1� pþ aÞ=pjp. If u is a
minimizer for Spða; l; qÞ, then u vanishes on a half-line. For, argue as in the proof
of Lemma A.7 in [15]. As a corollary to Theorem 3.1 we get the existence of a
positive solution u a D1;pðRþ; s

a dsÞ to the ODE problem

�ðsaju 0jp�2
u 0Þ0 ¼ lsa�pup�1 þ s�bquq�1 on Rþ

uð0Þ ¼ 0:

(

The arguments in Section 4 of [15] can be used in order to prove existence for any
aA 1� p.

In the next existence result we take advantage of the invariance of problem
(1.1) with respect to rotations. Notice that no upper bounds on q are needed.

Theorem 3.4. Let Nb 2, 1 < p < q and a > p�N. Then problem (1.1) has a
nonnegative radially symmetric solution uA 0 for any l < lp;a.

Proof. We introduce the space D
1;p
radðRN ; jxja dxÞ of radially symmetric maps

in D1;pðRN ; jxja dxÞ. Use (2.1) to check that Cl
c ðRNnf0gÞBD

1;p
radðRN ; jxja dxÞ is

dense in D
1;p
radðRN ; jxja dxÞ (see for example [22]). Fix any function u ¼ uðjxjÞ a

Cl
c ðRNnf0gÞ. SinceZ

RN

jxjaj‘ujp dx ¼ oN

Z l

0

raþN�1ju 0jp dr;

then the Ca¤arelli-Kohn-Nirenberg inequalities (2.2) and the Hardy inequality
(2.1) (with N ¼ 1 and a replaced by aþN � 1 > p� 1) imply that the infimum
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Sp; radða; l; qÞ :¼ inf
u AD1; p

rad
ðRN ; jxja dxÞ
uA0

R
RN jxjaj‘ujp dx� l

R
RN jxja�pjujp dx

ð
R
RN jxj�bq jujq dxÞp=q

is positive. We claim that Sp; radða; l; qÞ is achieved on D
1;p
radðRN ; jxja dxÞ. The

proof goes as for Theorem 3.1. Only minor modifications are needed. In par-
ticular, one has to take radially symmetric cut-o¤ functions j. The conclusion fol-
lows via standard arguments. r

3.1. On the Inequality Spða; l; p�Þ < Sp

Let p a ð1;NÞ, a > p�N, l < lp;a and take q ¼ p�. If in addition Spða; l; p�Þ <
Sp, then problem (1.1) has a ground state solution, by Theorem 3.1.

In this section we collect a few su‰cient conditions for Spða; l; p�Þ < Sp. We
start by recalling some known facts.

Proposition 3.5. Let a ¼ 0. Then Spð0; l; p�Þ < Sp if and only if 0 < l < lp;0.
If l < 0 then Spð0; l; p�Þ is not achieved.

The results in Proposition 3.5 were already noticed in [29] for p ¼ 2 and in
Appendix A of [14] for general exponents p a ð1;NÞ. Let us check it for com-
pleteness. By (2.5) it turns out that Spð0; l; p�ÞaSp for any l. Thus equality
holds if la 0. Notice that Spð0; l; p�Þ can not be achieved if l < 0, as Sp is
achieved. Next, assume l > 0 and test Spð0; l; p�Þ with the radially symmetric
function

UðxÞ ¼ ð1þ jxjp=ðp�1ÞÞ�ðN�pÞ=p:ð3:9Þ

By the results in [1], [27], it turns out that U achieves the Sobolev constant Sp.
The strict inequality Spð0; l; p�Þ < Sp immediately follows.

When p ¼ 2, Proposition 3.5 easily implies the next result.

Proposition 3.6 ([11]). Let p ¼ 2. Then S2ða; l; 2�Þ < S2 if and only if

l2;a � l2;0 a l < l2;a:ð3:10Þ

If l < l2;a � l2;0 then S2ða; l; 2�Þ is not achieved.

To prove Proposition 3.6 it is convenient to use the functional transform

u a D1;2ðRN ; jxja dxÞ ! jxja=2u a D1;2ðRNÞ:

It turns out that the minimization problems for S2ða; l; 2�Þ and for S2ð0; m; 2�Þ
are equivalent, provided that l and m satisfy the identity l2;a � l ¼ l2;0 � m. In
particular (3.10) holds if and only if 0 < m < l2;0. The conclusion readily follows
from Proposition 3.5.
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As far as we know, if pA 2 no similar transform is available and very few is
known. In the next result we take p a ð1;NÞ, a < 0 and we improve Theorem 0.2
in [15].

Proposition 3.7. Let p�N < a < 0. Then there exists l� < lp;a
N�1
N�p

ap

Nþa
such

that Spða; l; p�Þ < S if l� < l < lp;a.

Proof. Set

l0 :¼ lp;a
N � 1

N � p

ap

N þ a
;

and let U be the Aubin-Talenti function defined in (3.9). Notice thatZ
RN

jxjaj‘U jp dx� l0

Z
RN

jxja�pjU jp dx <
�
1� N � 1

N � p

ap

N þ a

�Z
RN

jxjaj‘U jp dx

by Hardy inequality. Hence

Spða; l0; p�Þ < N

N � p

N � p� aðp� 1Þ
N þ a

R
RN jxjaj‘U jp dx

ð
R
RN jxjNa=ðN�pÞjU jp�

dxÞp=p� :

On the other hand, it has been shown in [15], proof of Theorem 0.2, thatR
RN jxjaj‘U jp dx

ð
R
RN jxjNa=ðN�pÞjU jp�

dxÞp=p� aSp

N � p

N

N þ a

N � p� aðp� 1Þ :

Therefore Spða; l0; p�Þ < Sp. To conclude, notice that Spða; l0 � e; p�Þ < Sp if
e > 0 is small enough, and that the map l ! Spða; l; p�Þ is non-increasing. r

When a is positive an additional restriction is needed.

Proposition 3.8. Let 0 < a <
N�p

p�1 . Then there exists l
� < a

� N�p

p�1

�p�1
such that

Spða; l; p�Þ < S if l� < l < lp;a.

Proof. Set

cN :¼
�N � p

p� 1

�p�1

;

and notice that acN < lp;a for any a <
N�p

p�1 . As in Proposition 3.7 it su‰ces to
prove that Spða; acN ; p�Þ < Sp. The strategy again consists in testing Spða; l; p�Þ
with the Aubin-Talenti function U defined in (3.9). In order to simplify notations
we set

FðxÞ ¼ 1þ jxjp=ðp�1Þ;

in such a way that U ¼ F�ðN�pÞ=p and Up� ¼ F�N . Notice that
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�DpU ¼ NcNU
p��1 on RN ;Z

RN

j‘U jp dx ¼ NcN

Z
RN

jU jp
�
dx ¼ NcN

Z
RN

F�N dx ¼ ðNcNÞ1�N=p
SN=p
p :

In particular Z
RN

F�N dx ¼ ðNcNÞ�N=p
SN=p
p :ð3:11Þ

For xA 0 we compute

�divðjxjaj‘U jp�2‘UÞ ¼ ð�DpU þ acNU
p��1FÞjxja

¼ NcNð1þ aN�1FÞjxjaU p��1:

Therefore U a D1;pðRN ; jxja dxÞ since a < ðN � pÞ=ðp� 1Þ, andZ
RN

jxjaj‘U jp dx ¼ NcN

Z
RN

jxjaF�Nð1þ aN�1FÞ dx:ð3:12Þ

We notice also thatZ
RN

jxja�pjU jp dx ¼
Z
RN

jxjaF�Nðjxj�1FÞp dx:ð3:13Þ

Next, use Hölder inequality to estimateZ
RN

jxjaF�N dxa
�Z

RN

jxjNa=ðN�pÞF�N dx
�p=p��Z

RN

F�N dx
�p=N

:

Thus from (3.11) we infer

�Z
RN

jxjNa=ðN�pÞjU jp
�
dx

��p=p�

aSp

�
NcN

Z
RN

jxjaF�N dx
��1

:ð3:14Þ

From (3.12), (3.13) and (3.14) we finally get

Spða; acN ; p�ÞaSp

R
RN jxjaF�Nð1� GðxÞÞ dxR

RN jxjaF�N dx
;

where

GðxÞ ¼ aN�1ðjxj�pF p�1 � 1ÞF ¼ aN�1½ð1þ jxj�p=ðp�1ÞÞp�1 � 1�F > 0:

The conclusion readily follows. r

Remark 3.9. The estimate for l� in Propositions 3.7 and 3.8 are not sharp, at
least when p ¼ 2 (compare with Proposition 3.6). Also the restriction a <

N�p

p�1 in
Proposition 3.8 is purely technical.
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4. Breaking symmetry and multiplicity

Assume p < q < p�, a > p�N and l < lp;a. By the results in Section 3, the best
constants Spða; l; qÞ and Sp; radða; l; qÞ are both (well defined and) achieved. In
general it turns out that

Spða; l; qÞaSp; radða; l; qÞ:

When Spða; l; qÞ < Sp; radða; l; qÞ a ‘‘breaking symmetry’’ phenomenon appears.
In this case problem (1.1) has a radial solution and a ground state solution which
is not radially symmetric.

In this last part of the paper we collect some su‰cient conditions to have
Spða; l; qÞ < Sp; radða; l; qÞ. The goal is to get the existence of multiple non-
negative solutions to (1.1).

Breaking symmetry was already observed by Catrina and Wang in [11], in case
p ¼ 2. In [13] Felli and Schneider gave a sharper description of the region in
which braking symmetry occurs.

Theorem 4.1 ([13]). Let N > 2 ¼ p, a > 2�N and 2 < q < 2�. If

l < l2;a � 4
N � 1

q2 � 4

then S2ðl; a; qÞ < S2; radða; l; qÞ and problem (1.1) has at least two distinct nontriv-
ial positive solutions.

Theorem 4.1 is equivalent to Corollary 1.2 in [13]. For, use the functional
transform u ! jxja=2uðxÞ, where a ¼ 2�N þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2;a � l

p
.

Breaking symmetry was investigated also in [5] and [26] in case p > 1 and
l ¼ 0.

Theorem 4.2 ([5], [26]). Let Nb 2 and 1 < p < q < p�. Then there exists
a0ðN; p; qÞ such that for a > a0ðN; p; qÞ no minimizer for Spða; 0; qÞ is radial.

Theorem 4.2 and Theorems 3.1, 3.4 in Section 3.1 immediately imply the next
multiplicity result.

Corollary 4.3. Let Nb 2, 1 < p < q < p� and a > p�N. Then for every a
large enough problem

�divðjxjaj‘ujp�2‘uÞ ¼ jxj�bquq�1 on RNZ
RN

jxjaj‘ujp dx < l

8<
:

has at least two distinct nonnegative and nontrivial solutions.

The proofs of Theorem 4.2 in [5] and in [26] are based on the analysis of the
asymptotic behaviour of the best constants Spða; 0; qÞ and Sp; radða; 0; qÞ as a ! l.
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In [26], Smets and Willem showed that some partial symmetry is preserved in the
region where Spða; 0; qÞ < Sp; radða; 0; qÞ.

Next we state a new breaking symmetry result. Notice that the additional re-
striction pb 2 is needed.

Theorem 4.4. Let Nb 2, 2a p < q and a > p�N. Assume qa p� if p < N.
Then there exists lsb ¼ lðN; p; a; qÞ such that for any l < lsb no minimizer for
Spða; l; qÞ is radial.

Theorems 3.1 and 3.4 imply the following corollary to Theorem 4.4.

Corollary 4.5. Let Nb 2, 2a p < q < p� and a > p�N. Then there exists
lsb ¼ lðN; p; a; qÞ such that for any l < lsb problem (1.1) has at least two distinct
nonnegative and nontrivial solutions.

To prove Theorem 4.4 we show that the Morse index of nontrivial radially
symmetric solutions increases as lf lp;a. The responsible are the eigenfunctions

of the (strongly elliptic) Laplace-Beltrami operator on the sphere SN�1. In (4.5)
we give an explicit su‰cient condition to have Spða; l; qÞ < Sp; radða; l; qÞ. For in-
stance, breaking symmetry occurs in the following cases:

• when l ¼ 0 and ab p�N þ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN�1Þðp�1Þ

q�p

q
;

• when a ¼ 0, p > 2 and l < � 2
p�2

� ðN�1Þðp�1Þðp�2Þ
ðq�pÞp

�p=2
;

• when a is large enough and

la
�N � pþ a

p

�p

�
�N � pþ a

p

�p�2 ðN � 1Þðp� 1Þ
q� p

:

The proof of Theorem 4.4 needs a preliminary Lemma. In order to simplify nota-
tions, for uA 0 we set

nðuÞ ¼
Z
RN

jxjaj‘ujp dx� l

Z
RN

jxja�pjujp dx

as in Section 2.2, and

dðuÞ ¼
�Z

RN

jxj�bq jujq dx
�p=q

; QðuÞ ¼ nðuÞ
dðuÞ :

Lemma 4.6. Let p > 1, a > p�N, l a R, q > p and assume qa p� if p < N. If
u is a radially symmetric local minimum for Q on D1;pðRN ; jxja dxÞnf0g, then

QðuÞa ðN � 1Þðp� 1Þ
q� p

�Z
RN

jxjaj‘ujp dx
�ðp�2Þ=p�Z

RN

jxja�pjujp dx
�2=p

:

Proof. By homogeneity we can assume that dðuÞ ¼ 1, so that QðuÞ ¼
nðuÞ. Compute the partial derivative of Q at u, along any direction
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h a D1;pðRN ; jxja dxÞ. Since u is a minimum point for Q, then Q 0ðuÞ � h ¼ 0 and
Q 00ðuÞ � h � hb 0. Hence n 0ðuÞ � h ¼ QðuÞd 0ðuÞ � h and

QðuÞd 00ðuÞ � h � ha n 00ðuÞ � h � h:ð4:1Þ

Now we choose the direction h. Let f1 a H 1ðSN�1Þ be an eigenfunction of the
Laplace operator on SN�1 relatively to the smaller positive eigenvalue, that is,Z

SN�1
f1 ds ¼ 0;

Z
SN�1

j f1j2 ds ¼ 1;

Z
SN�1

j‘s f1j2 ds ¼ N � 1:ð4:2Þ

We are allowed to take hðxÞ ¼ uðjxjÞ f1ðx=jxjÞ, as h a D1;pðRN ; jxja dxÞ. It turns
out that

d 00ðuÞ � h � h ¼ p
p� q

q

�Z
RN

jxj�bq jujq�2
uh
�2

þ ðq� 1Þ
Z
RN

jxj�bq jujq�2jhj2
� �

that is

d 00ðuÞ � h � h ¼ pðq� 1Þð4:3Þ

by (4.2). Now notice that j‘hj2 ¼ j‘uj2j f1j2 þ jxj�2juj2j‘s f1j2 and

n 00ðuÞ � h � h ¼ pðp� 1Þ
Z
RN

jxjaj‘ujp�2j‘hj2 � l

Z
RN

jxja�pjujp�2jhj2
� �

:

Since pb 2, from (4.2) we inferZ
RN

jxjaj‘ujp�2j‘hj2 ¼
Z
RN

jxjaj‘ujp þ ðN � 1Þ
Z
RN

jxja�2j‘ujp�2juj2

a

Z
RN

jxjaj‘ujp þ ðN � 1Þ

�
�Z

RN

jxjaj‘ujp
�ðp�2Þ=p�Z

RN

jxja�pjujp
�2=p

by Hölder inequality. Therefore

n 00ðuÞ � h � h

a pðp� 1Þ QðuÞ þ ðN � 1Þ
�Z

RN

jxjaj‘ujp
�ðp�2Þ=2�Z

RN

jxja�pjujp
�2=p� �

;

that compared with (4.1) and (4.3) readily leads to the conclusion. r

Proof of Theorem 4.4. Assume that u a D
1;p
radðRN ; jxja dxÞ achieves Spða; l; qÞ

for some l < lp;a. To simplify notations we normalize u to have

Z
RN

jxj�bq jujq dx
¼ 1. From Lemma 4.6 we infer
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Z
RN

jxjaj‘ujp dx� l

Z
RN

jxja�pjujp dxð4:4Þ

a g
�Z

RN

jxjaj‘ujp dx
�ðp�2Þ=p�Z

RN

jxja�pjujp dx
�2=p

;

where g :¼ ðN � 1Þðp� 1Þ=ðq� pÞ. We set

s p :¼
R
RN jxjaj‘ujp dxR
RN jxja�pjujp dx ; a :¼ N � pþ a

p
:

Notice that s > a by Hardy’s inequality. From (4.4) we readily get lb s p � gs p�2.
Elementary calculus can be used to compute the infimum of s ! s p � gs p�2 on
fs > ag. In this way we get

l > ap � gap�2 if p ¼ 2 or ab p�N þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpðp� 2Þ

p
;

lb�2
� g

p

�p=2

ðp� 2Þðp�2Þ=2 otherwise:

For smaller values of the parameters l no radially symmetric function achieves
Spða; l; qÞ. Conversely, if

la ap � gap�2 if p ¼ 2 or ab p�N þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpðp� 2Þ

p
;

l < �2
� g

p

�p=2

ðp� 2Þðp�2Þ=2 otherwise
ð4:5Þ

then Spða; l; qÞ < Sp; radða; l; qÞ. r

Remark 4.7. Some of the results in the present paper can be proved also for a
class of noncompact problems on RN involving cylindrical weights. For details
see [2], [10], [15], [16], [19]–[23] and [28].
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