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1. INTRODUCTION

This paper deals with a class of variational problems involving weights that are
powers of the distance from the origin. More precisely, we look for nonnegative
weak solutions to

—div(|x]“|Vu|"2Vu) = Ax|“Pur' + |x| Pus~t on RN

1.1
(1.1) /|x|a|Vu|pdx<oo,
RY
where
N —
Il<p<gq, a>p-—N, bq:N—q—p—Hl,
(1.2) N —p+a\r N, 3
z<(7p), g<p =—2  ifp<nN.
p N-—-p

Much interest has been payed to problems of the form (1.1). Assume for in-
stance that a = 0. Then —div(|Vu|? >Vu) = —A,u is the standard p-Laplace oper-
ator. Let p < N, and notice that b, = N — p*(N — p)/p = 0. Positive solutions to

~A,U =Ur-! on RY

(1.3) / IVU? dx < oo
RY
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are explicitly known since the celebrated papers [1] by Aubin and [27] by Talenti.
In particular, it turns out that U > 0 solves (1.3) if and only if U is an extremal
for the Sobolev constant S),.

A large number of papers deal with (1.1) and with similar variational prob-
lems. We quote for example [2], [5], [7]-[23], [25], [26], [28], [29] and references
there-in. At our knowledge, all the available results for (1.1) require p =2, or
A=0,0ora=0.

The purpose of the present paper is twofold. We survey some of the results
from [11] and [13] about the semilinear elliptic case p = 2, from [5], [15], [26],
where 1 = 0 is assumed, and from the appendix of the paper [14], that deals with
a non-compact problem for the p-Laplace operator. In addition we prove new
existence and multiplicity results by suitably adapting the arguments of [15] and
[16].

The remaining of the present paper is organized as follows.

In Section 2 we point out the main features of problem (1.1).

In Section 3 we focus our attention on the existence of a ground state (see Sec-
tion 2 for the definition) and of a radially symmetric nontrivial solution. The main
results in this section are Theorems 3.1 and 3.4.

In Section 4 we compare the ground state and the radially symmetric solution.
We report on the breaking symmetry results from [13], where p = 2, and from [5],
[26], where 4 = 0 is assumed. Then we take 2 < p < ¢ < p* and we use the argu-
ments in [16] to find out a region of parameters ¢, ¢ and A where breaking sym-
metry occurs. The main result in this section is Theorem 4.4.

NOTATION

We denote by ¢ any constant ¢ € R, := (0, o) that depends only on fixed param-
eters.

Let p > 1 and let N > 1 be an integer. We set p* := NN—i,ifp < Nandp*= w0
if p>N.Ifa e R we put

Jpa = (W)P.

We denote by By the N-dimensional ball of radius R centered at the origin. The
surface measure of SV~' = 9B, is wy = |0By].

Let X = (X,|-|) be a Banach space. Then X" is its topological dual space.
For any sequence g, in X, we write g, — ¢ if g, converges to g € X weakly, and
gn — g if [gn — g] — 0.

Let ge (1,+©), «€R and let Q be a domain in RY. We denote by
L9(Q; |x|* dx) the space of measurable functions u, such that |x|*‘u e L4(Q).

For any exponent p e (1,N), the space Z2'7(Q) is defined as the closure
of C*(Q) with respect to the L” norm of |Vu|. It is well known that 2"7(R")
is continuously embedded into L7 (RY). The explicit value of the Sobolev
constant
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fRN |VU“nd.X
n * v
ves! @) (o | U7 dx)?'

S, =

and of its minimizers were given in [1] and in [27].

2. PRELIMINARIES

In this preliminary section we recall some well known integral inequalities and we
describe the mean features of problem (1.1).

2.1. Hardy and Caffarelli-Kohn-Nirenberg Inequalities

Let p > 1 and ¢ > p — N. The Hardy inequality states that

(2.1) /lpya/ || “ |u|” dx</ |x]|“|Vul|? dx
RN RN

for any u € C*(R"). Thanks to (2.1), we can define the reflexive Banach space
V(RN x| dx) as the completion of C*(R") with respect to the L”-norm of
|x|“/?|Vu|. Notice that 2"7(RY; dx) = 2"?(RN) if p < N and a = 0.

We will deal also with the Caffarelli-Kohn-Nirenberg inequalities. Let
1 < p<gqandassume ¢ < p*if p<N.Set b, :=N —g(N —p+a)/p. In [6] it
is proved that there exists a constant ¢ = ¢(N, p,a, q) > 0 such that

/
22) ([l ax)™ < [ e s

for any u € 2'7(RY;|x|dx). If . < 7, 4, then inequalities (2.1) and (2.2) plainly
imply that the infimum

- . S [x“IVul? dx — 4 [ [x]“77 |u)” dx
(2.3)  Sp(a,2,9) inf
: (a, 2, q) =

ue P (@ x| ) (fiow |l ™" fu] )
u#0

is positive. Notice that S, (a 0,p) = Apq and S,(0,0, p*) =S, if p < N.

Assume that S,(a, 4, q) is attained by a functlon ue 9" P([R{N |x|“ dx). Then u
is nonnegative Weak solution to (1.1), up to a multiplicative constant. The argu-
ment is nowadays standard and it will be omitted. Any solution to (1.1) which
achieves S,(a, 4, q) is called ground state.

2.2. Lack of Compactness
In this section we describe some lack of compactness phenomena that may be ob-

served in studying the minimization problem (2.3). In order to simplify notations
we put
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(2.4) n(u) = / x| V) dx — / ] |uf? dx.
RN RN

Notice that n(u)l/p is bounded from below and from above by the norm of « in
2"P(RY; |x|“ dx), by Hardy inequality. In particular, if p =2 or if A =0 then
()7 is an (equivalent) norm in 2" (R"; |x|* dx).

The invariances of the functional n(-) and of the norm in L4(R";|x| " dx)
generate noncompact minimizing sequences. Assume for instance that S,(a, 4, q)
is attained by a function u € 2"7(R"; |x|“ dx). Take any sequence #, > 0 and set
IIEN—p—‘ra)/pu(

up(x) = 4hx).

Since

u|? dx,

) =n), [ 157

wldv= [ b
8

then w;, achieves Sy(a,4,q) for any h. Now we can easily exhibit noncompact
minimizing sequences. Take for instance 7, — co. Then the functions uy, concen-
trate at 0, that is, |x|*|Vu,|” — 0 in L'({|x| > R}) for any R > 0. Also vanishing
may be produced: if 7, — 0 then |x|*|Vuy|” — 0 in L] (RY).

In the limiting case p < N and ¢ = p*, the group of translations is responsible
of additional and worst lack of compactness phenomena. For any ¢ > 0 choose a
map U, € C*(R") such that

fR.,v|VU8\"dx
(fRN|Ug p* dx)p/p*

p < S, +e.

Fix a point xy # 0 and put
Uz (%) := NP2 U, (h(x = xo)).

Notice that

lim lim n(Us.1)

, Na/(N— v ~ = Pp
£—0 haoo(fRN|x| /( p)|UL_,hﬁ dx)”/p

Test Sy(a, 4, p*) with U, ; and pass to the limit to get
(2.5) Sy(a, 7 p") < S,

This is a crucial inequality. Assume that S,(a, 4, p*) = S,. If &, — 0 is a suitably
chosen sequence, then U,, ; approaches S,(a,4, p*). Notice that U,, , concen-
trates at xo # 0 as & — oo. In addition, it can be proved that it blows-up an
extremal for the Sobolev constant S,. Actually, the infimum S,(a, 4, p*) might
be not achieved if equality holds in (2.5). This happens, for instance, when
a=0,4<0and when p =2, a > 0 (see Propositions 3.5 and 3.6). On the other
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hand, in the next section we will show that the strict inequality S,(a, 4, p*) < S,
guarantees enough compactness and the existence of a minimizer.

3. EXISTENCE

The first result in this section provides sufficient conditions for the existence of a
ground state.

THEOREM 3.1. Let 1 < p < gq,a > p — N and assume that (1.2) is satisfied.

i) If p>= N orifq < p*, then S,(a, A, q) is achieved.
ii) If p < N, then S,(a, A, p*) is achieved provided that S,(a, A, p*) < S,.

Theorem 3.1 was already known for some special values of the parameters in-
volved. We quote [11] for p = 2, [15] for A = 0 and finally [14] for a = 0.

The proofin [11] is based on a helpful functional change that does not behaves
nicely when p # 2. The argument adopted in [14] to handle the case @ = 0 is based
on a hard adaptation of the Concentration-Compactness Lemmata by P. L. Lions
(see also [2], [28] for a noncompact problem with cylindrical weights). We notice
also that in case a < 0 and 4 = 0, a change of the x-variable reduces the problem
to the case a = 0, where Schwarz symmetrization gives the existence of a ground
state that is radially symmetric (see [18]). In general, when a > 0 or 4 # 0 one can
not look forward to a radially symmetric ground state (compare with the results
in Section 4).

To prove Theorem 3.1 we follow the main ideas of the papers [22] and [15],
that deal with a class of variational problems with spherical and cylindrical
weights. In particular, the paper [22] is concerned with the semilinear case p = 2,
while 2 = 0 is assumed in [15]. The proofs in [22], [15] were inspired by arguments
that have been developed by Sacks and Uhlenbeck in their seminal paper [24] on
minimal spheres in a Riemannian manifold (see also [22] and [23] for a similar
variational problem and [3], [4], [9] for the H-surfaces problem).

The strategy consists in selecting a “good’ minimizing sequence via Ekeland’s
variational principle and rescaling argument. The proof of Theorem 3.1 turns out
to be direct, self-contained and flexible.

The next Lemma is the main step in the proof.

LEMMA 3.2, “e-compactness lemma”. Let 1 < p < gq,a>p— N, i€ Randlet Q

be a domain in RY. Assume that (1.2) is satisfied. Let u, — 0 be a sequence in
V(RN |x|“ dx) such that

B fimsup [ x|l d < Spla )7
(3.2)  —div(|x|“|Vun|” 2 V) — x| un|” 2w = |xX) 70 | + iy on Q,

where fi, — 0 in 2"2(R";|x|“dx)". Then u, — 0 in L

loc

(Q; x| ™" dx).
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PrOOF. Let Q' be any domain compactly contained in Q. Take any nonnegative
function ¢ € C*(Q) such that ¢ = 1 on Q'. Use Lemmata 1.1 and 1.2 in [15] to
check that p”uy is an admissible test function for (3.2) and that

L Ve V(o) ds = [0V ) o)
Therefore
(33) ) = [ sl gl dx (1),
where n(-) is defined in (2.4). We notice that
o) = Sy(a. ) [ | Il )

by (2.3). Then we use Holder inequality to estimate the right-hand side of (3.3).
In this way we get

) —b,
sitara)( [ 1+
(g=p)/ /
< (/ \x|_b"|uh|qu) o q(/ |x|_b‘f|¢uh|qu)pq+0(l).
Q RY

Therefore from (3.1) we infer

o) = [ ™
R/\

as ¢ = 1 on Q'. Since Q' was arbitrarily chosen, this proves that u;, — 0 strongly
in LL (Q; x| dx). 0

loc

p/Yq
oup|? dx)

gouh|"dx2/ |x| 7 |uay @ dlx,
Q/

PrROOF OF THEOREM 3.1. Fix a small & < S,(a,4,q)? ") and let n(-) be the
functional defined in (2.4). The proof will be carried out in two steps.

STEP 1. We claim that there exists a weakly convergent sequence u;, such that

(3.4) Sp(a, 2, q)" " = / x| "y dx = n(uy) + o(1),
RN
(3.5) lim/ x| | dx = e,
/’IHOC 32

(3.6)  —div(|x|*|Vun|?*Vuy) — Aun|”2up = |x| 7" |up| " 2up + fi on RV,

where f, — 0 in 2"?(R":|x|“dx)’. For, it suffices to use Ekeland’s variational
principle and to notice that the ratio
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n(uy)

(fRN |x|_b"|uh|‘1dx)p/‘1

1s homogeneous and invariant under rescaling. The sequence u;, is bounded in
2"P(RY; |x|“ dx) by (3.4) and by Hardy’s inequality. Thus we can assume that
H Lp/mN. a Lp/(mN. a

up — uin 27 (RY; |x|“ dx), for some u € 27 (R™;|x|" dx).
STEP 2. We claim that u # 0 and that u achieves S,(a, 4, q).

Assume by contradlctlon that u;, — 0. Then Lemma 3.2 and (3 5) imply that
up — 0in L (Bo; |x|~ b4 dx). 1f ¢ < p* then u, — 0 in L9(By; |x| " dx) by Rellich
Theorem. This conclusion clearly contradicts (3.5). Hence we assume p < N and

(Ba; |X|Na/<N7p) dx), then / |x|N"/<N*”>|uh|”* dx — 0.
B

q=p*. Since u, — 0in L,
From (3.5) we infer

(3.7) lim / N NP g P e — g > 0,
- K

where K = {x e R¥|1 < |x| <2}. Choose a nonnegative smooth function
@ € C*(RY) such that ¢ =0 in a neighbourhood of 0 and ¢ =1 on K. As in
the proof of Lemma 3.2 we can use ¢”uj, as test function in (3.6) to get

68)  atom) < Splap) ([ Ol )"+ o)
RN

Notice that
x| P gy — 0, x|V ()| — V(x| pus)| — 0 in LP(R)

by Rellich Theorem, as ¢ has compact support in RV\{0}. Thus
a 2 r/p*
ntgm) = [ IVl v+ o(1) = 5, [ "o )" o(1)
R R

by the Sobolev inequality. In particular, from (3.8) it follows that

Na/(N—p) » p/p*
o[ g )
< (a2 p) ([Pl )" o),
[RN
Since S,(a, A, p*) < S, and since ¢ = 1 on K, we infer
/ |x|Na/N =p) ‘uh‘p* dx < / |x|N"/(N_p)|(puh|p*dx =o(1),
K RY

which contradicts (3.7). Thus, u, — u # 0 in 2"2(R"; |x|* dx).
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Next, from (3.6) we get that u solves
—div(|x|“|Vul” Vi) — A|x]“ P |ul”*u = |x|"|u|**u on RV.

In particular
/
Sptastea) ([ | bl ax)™ <ntw) = [l s
R N R N

by (3.2). Since u # 0, using also (3.4) we get

)= [

But then the lower semicontinuity of the norm in L¢(R"; |x|~" dx) implies

Mlq dx > Sp(a,/l,q)q/(qu) _ /RN |x|7b" uh|qu'

nw=/wﬂWWM=%MLWM”
RN

Therefore u achieves Sy(a, 4, q). The proof is complete. O

REMARK 3.3. Assume N=1<p<g,a>p—1,i<|(1—p+a)/p/’. Iffuisa
minimizer for S,(a, 4, ¢), then u vanishes on a half-line. For, argue as in the proof
of Lemma A.7 in [15]. As a corollary to Theorem 3.1 we get the existence of a
positive solution u € 2'7(R, ;5% ds) to the ODE problem

— (s’ |"2u)) = AsPur! 4 5Pyt on Ry
u(0) =0.

The arguments in Section 4 of [15] can be used in order to prove existence for any
a#1—p.

In the next existence result we take advantage of the invariance of problem
(1.1) with respect to rotations. Notice that no upper bounds on ¢ are needed.

THEOREM 3.4. Let N>2, 1< p<qanda> p— N. Then problem (1.1) has a
nonnegative radially symmetric solution u # 0 for any i < /. q.

ProOOF. We introduce the space D@rlég (RY;|x|“ dx) of radially symmetric maps
in 7'7(RY; |x|“ dx). Use (2.1) to check that C*(RV\{0}) n Z 2 (RV; |x|“ dx) is
dense in 21 7(RV;|x|*dx) (see for example [22]). Fix any function u = u(|x|) €

C*(RY\{0}). Since
/[RN |x|“|Vul? dx = a)N/O v r NN | P d,

then the Caffarelli-Kohn-Nirenberg inequalities (2.2) and the Hardy inequality
(2.1) (with N =1 and a replaced by a + N — 1 > p — 1) imply that the infimum
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S [X|“(Vul? dx — A [on [x]“7Pul? dx
u|"dx)”/”

d( ) = inf
pra L q ) ue@r‘;ﬁ(RN%\X\”dx) (IRN ‘x|7bq
u#0

is positive. We claim that S, 1.4(a, 4, q) is achieved on jrad([RiN |x|“dx). The
proof goes as for Theorem 3.1. Only minor modifications are needed. In par-
ticular, one has to take radially symmetric cut-off functions ¢. The conclusion fol-
lows via standard arguments. O

3.1. On the Inequality S,(a, i, p*) < S,

Letpe (1,N),a>p— N, A< Jy,and take g = p*. If in addition Sy(a, 1, p*) <
S,, then problem (1.1) has a ground state solution, by Theorem 3.1.

In this section we collect a few sufficient conditions for S,(a, 4, p*) < S,. We
start by recalling some known facts.

PROPOSITION 3.5. Lel a=0. Then S,(0,4,p*) < S, if and only if 0 < 1 < A, 0.
If . < 0 then S,(0, 4, p*) is not achzeved

The results in Proposition 3.5 were already noticed in [29] for p =2 and in
Appendix A of [14] for general exponents p € (1, N). Let us check it for com-
pleteness. By (2.5) it turns out that S,(0,4, p*) < S, for any A. Thus equality
holds if 2 < 0. Notice that S,(0,4, p*) can not be achieved if 4 <0, as S, is
achieved. Next, assume A > 0 and test S,(0,4, p*) with the radially symmetric
function

(3.9) U(x) = (1 4 |x|P/P=Dy-W=r)/p
By the results in [1], [27], it turns out that U achieves the Sobolev constant S),.

The strict inequality S,(0, 4, p*) < S, immediately follows.
When p = 2, Proposition 3.5 easily implies the next result.

PrOPOSITION 3.6 ([11]). Let p = 2. Then Sy(a,1,2*) < S, if and only if
(3.10) Mg — A0 <A< g
If 2. < Ja,a — 22,0 then Sy(a, A,2") is not achieved.
To prove Proposition 3.6 it is convenient to use the functional transform
ue IVHRY; x| dx) — |x|*u e 2VHRY).
It turns out that the minimization problems for S»(a,4,2*) and for S2(0 “,2%)
are equivalent, provided that A and u satisfy the 1dent1ty Joa— A =7l20— i In

particular (3.10) holds if and only if 0 < # < 2. The conclusion readlly follows
from Proposition 3.5.
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As far as we know, if p # 2 no similar transform is available and very few is
known. In the next result we take p € (1,N), a < 0 and we improve Theorem 0.2
in [15].

y N-—1 _ap

b0 N pN+asuch

PROPOSITION 3.7. Let p— N < a < 0. Then there exists " <
that Sy(a, 2, p*) < Sif 2e < A < Jpa

PRrROOF. Set

N—-1 ap
1 A{ _r
A0 - puN pN+a

and let U be the Aubin-Talenti function defined in (3.9). Notice that

- N—-1 ap
a P gy — ) ap| 7P _ a p
/RN |x|“IVU|" dx AO/IRN |x|“P|U] dx<<1 N—pN—l—a)/RN |x|“|VU|” dx

by Hardy inequality. Hence

N N-p—a(p-1) Sy IXI“IVU|P dx
N—p N +a (f |X|Na/ —-p) |U|P dx)P/P

S]?(av j~05 p*) <

On the other hand, it has been shown in [15], proof of Theorem 0.2, that

Jor VUPds _ N-p  Nita
(fRN |X|Na/(N7p)|U|p*dX)p/p* -7 N N-p—alp-1)

Therefore S,(a, o, p*) < Sp. To conclude, notice that S,(a, g —¢,p*) < S, if
¢ > 0 is small enough, and that the map 4 — S,(a, 4, p*) is non-increasing. O

When a is positive an additional restriction is needed.

PrROPOSITION 3.8. Let0 < a < p— Then there exists 1" < a( ];:f )pil such that
Sp(a, 4, p*) < Sifhe <A< Jpa

PROOF. Set

ev=(5=1)"

and notice that acy < 4, , for any a < N—:{’ As in Proposition 3.7 it suffices to
prove that S,(a,acy, p*) < S,. The strategy again consists in testing S,(a, 4, p*)
with the Aubin-Talenti function U defined in (3.9). In order to simplify notations
we set

D(x) = 1+ x|/

in such a way that U = ® V"7)/7 and U?" = @ V. Notice that
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~A,U = NeyU?' ™' on RY,
/ [VU|? dx = NCN/ |U|P" dx = NCN/ O Ndx = (NCN)lfN/pSIﬁV/p.
RN RN RN
In particular

-N _ -N/p gN
(3.11) /RN(D dx = (Ney) MPSNIP.

For x # 0 we compute

—div(|x|“|VU["2VU) = (=AU + acy U? ~'®)|x|*
= Ney(1 +aN7'@)|x|“UP .

Therefore U € 27 (RY; |x|* dx) since a < (N — p)/(p — 1), and
(3.12) /RN |x|“IVU? dx = NCN/RN|x|aCDN(1 + aN~'®) dx.
We notice also that

(3.13) /[R IX|“P|U P dx = /W|x|“q>N(|x|‘c1>)de.
Next, use Holder inequality to estimate

/RN x| "N dx < (/RN x| Y/ (NP gV dx)p/p*(/w o N dx)p/N.

Thus from (3.11) we infer
B —p/p* -1
G4y ( / YU dx) < Sy (Ve / x| ‘oY dx)
RN RN

From (3.12), (3.13) and (3.14) we finally get

Jan [X]“@7N(1 — G(x)) dx
S [x]“@ N dx

Sy(a,acy,p*) < S, ,
where
G(x) = aN "N (|x| 70" — 1)® = aN"'[(1 + |x[ 7/~ — 1]d > 0.

The conclusion readily follows.

d

REMARK 3.9. The estimate for 4* in Propositions 3.7 and 3.8 are not sharp, at

least when p = 2 (compare with Proposition 3.6). Also the restriction a <

-1
Proposition 3.8 is purely technical. !

N-p

in
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4. BREAKING SYMMETRY AND MULTIPLICITY

Assume p < g < p*,a> p — N and 4 < 4, ,. By the results in Section 3, the best
constants Sy(a,4,q) and S, raq(a, 4, q) are both (well defined and) achieved. In
general it turns out that

Sp (Cl, ﬂ, q) < Sp7rad (Cl, l) CI)

When Sy(a,4,q) < Sy rad(a, . q) a “breaking symmetry”’ phenomenon appears.
In this case problem (1.1) has a radial solution and a ground state solution which
is not radially symmetric.

In this last part of the paper we collect some sufficient conditions to have
Sy(a,2,q) < Sy rad(a,A,q). The goal is to get the existence of multiple non-
negative solutions to (1.1).

Breaking symmetry was already observed by Catrina and Wang in [11], in case
p =2. In [13] Felli and Schneider gave a sharper description of the region in
which braking symmetry occurs.

THEOREM 4.1 ([13]). Let N >2=p,a>2—-Nand2 <q<2* 1If

N—1
45—
/ﬂ{<lz, q2_4

then S>(A,a,q) < Sz rad(a, 4,q) and problem (1.1) has at least two distinct nontriv-
ial positive solutions.

Theorem 4.1 is equivalent to Corollary 1.2 in [13]. For, use the functional
transform u — \x|”/2u(x), where a =2 - N +2\//2,s — A

Breaking symmetry was investigated also in [5] and [26] in case p > 1 and
A=0.

THEOREM 4.2 ([5], [26]). Let N >2 and 1 < p < g < p*. Then there exists
ayg(N, p, q) such that for a > ay(N, p, q) no minimizer for Sy(a,0, q) is radial.

Theorem 4.2 and Theorems 3.1, 3.4 in Section 3.1 immediately imply the next
multiplicity result.

COROLLARY 4.3. Let N >2, 1 <p<g<p*anda> p— N. Then for every a
large enough problem

—div(|x|*|Vu|"2Vu) = x| utt on RN

/ x|“IVal? dx < oo
RY

has at least two distinct nonnegative and nontrivial solutions.

The proofs of Theorem 4.2 in [5] and in [26] are based on the analysis of the
asymptotic behaviour of the best constants S, (a, 0, ¢) and S, r.4(a,0,q) asa — .
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In [26], Smets and Willem showed that some partial symmetry is preserved in the
region where S,(a,0,q) < S, rad(a,0, q).

Next we state a new breaking symmetry result. Notice that the additional re-
striction p > 2 is needed.

THEOREM 4.4. Let N >2,2<p<gqanda>p— N. Assume q < p* if p < N.
Then there exists Agp = A(N, p,a,q) such that for any A < Ly, no minimizer for
Sy(a, 4, q) is radial.

Theorems 3.1 and 3.4 imply the following corollary to Theorem 4.4.

COROLLARY 4.5. Let N >2,2<p<q<p*anda>p— N. Then there exists
A = A(N, p,a,q) such that for any A < Ay problem (1.1) has at least two distinct
nonnegative and nontrivial solutions.

To prove Theorem 4.4 we show that the Morse index of nontrivial radially
symmetric solutions increases as A < 4, ,. The responsible are the eigenfunctions
of the (strongly elliptic) Laplace-Beltrami operator on the sphere S¥~!. In (4.5)
we give an explicit sufficient condition to have S,(a,4,q) < S) rad(a, 4,¢). For in-
stance, breaking symmetry occurs in the following cases:

(N-D)(p-1).

p
(N-1) pfl)(p72>)17/2.
(g—p)p ’

e when .=0anda>p— N+ p

° whena=0,p>2and/1<—ﬁ(
® when a is large enough and

Ag(N_;H_a)p_ (N—;a-i-a)pz(N_qlz(l;_l)

The proof of Theorem 4.4 needs a preliminary Lemma. In order to simplify nota-
tions, for u # 0 we set

n(u) = / |x|“|Vul|” dx — ;u/ |x|“7?|u|’ dx
RN RN
as in Section 2.2, and

) = ([ 1l )™, 0w - E%

LeEMMA 4.6. Letp>1,a>p—N,Ae R, g > pandassume q < p* if p < N. If
u is a radially symmetric local minimum for Q on 27 (R"; |x|* dx)\{0}, then

0w < B DLZD (g as)" ([ bt ax)

PrROOF. By homogeneity we can assume that d(u) =1, so that Q(u) =
n(u). Compute the partial derivative of Q at u, along any direction
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he 2" (RY;|x|*dx). Since u is a minimum point for Q, then Q’(u)-h = 0 and
Q"(u)-h-h>0.Hence n'(u) - h = Q(u)d'(u) - h and

(4.1) Q(w)d"(u) - h-h <n"(u)-h-h.

Now we choose the direction A. Let fj € H'(SY¥™!) be an eigenfunction of the
Laplace operator on S™~! relatively to the smaller positive eigenvalue, that is,

(4.2) fido =0, /1|f1|2d0—=1, /1|Vaf1|2da:N—1.
SN_ SN_

SN_I

We are allowed to take /(x) = u(|x|) fi(x/|x]), as h € 2V (RY; |x|* dx). It turns
out that

_ 2
@' heh=p [P ([ ) =) [ e
q RV RN

that is
(4.3) d"(w)hh = plg—1)
by (4.2). Now notice that |VA|* = |Vu|?|fi|* + |x| *|u|*|V,/fi|* and
') heh=ptp = 0| [ 2AvR = [ |
Since p > 2, from (4.2) we infer
[ a2 = [ e v [ v
RN RN RN
< [ v+ v = 1)
RN

(p=2)/p 2/p
([ wa ) (el
RN RN

by Holder inequality. Therefore

n"(u)-h-h
(p=2)/2 _ 2/p
< pp= 0o+ -0 [ )" ([ e
RN RN
that compared with (4.1) and (4.3) readily leads to the conclusion. O

PROOF OF THEOREM 4.4. Assume that u € QZrl,;g(RN; |x|“ dx) achieves Sy (a, 4, q)

for some 4 < 4, ,. To simplify notations we normalize u to have / |x| 7P | dx
= 1. From Lemma 4.6 we infer RY
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@d) [ v el
RN RN

(r—=2)/p 2/p
<p( [, ewurax) ([ e )™
RN RN

where y:= (N —1)(p —1)/(¢ — p). We set

p o ey MOVul"dx N —p+ta
. fRN x| P |u|? dx’ : » :

Notice that s > « by Hardy’s inequality. From (4.4) we readily get 4 > s” — ysP~2,
Elementary calculus can be used to compute the infimum of s — s? — ys?~2 on
{s > a}. In this way we get

/l>ocp—]/0€p72 if p=2ora>=p— N+ Vp(p_z)’
/2
> _2<%)p (p—2) (P=2)/2 " stherwise.

For smaller values of the parameters 4 no radially symmetric function achieves
S,(a, 2, q). Conversely, if

I<ol —yaP? if p=2ora=p—N+/yp(p—2),

4.5 /2
(43) A< —2(2)1) (p—2)"27% otherwise
P

then S,(a, 4,q) < Sy raa(a, 4,q). =

REMARK 4.7. Some of the results in the present paper can be proved also for a
class of noncompact problems on RY involving cylindrical weights. For details
see [2], [10], [15], [16], [19]-]23] and [28].
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