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Abstract. — In this paper we study the limit as p ! l in a PDE problem involving the p-

Laplacian with a right hand side, �divðjDujp�2
DuÞ ¼ f , with mixed boundary conditions, u ¼ 0

on G and jDujp�2 qu
qn
¼ 0 on qWnG. We find that this limit is related to an optimal mass transport

problem, where the total mass given by f is transported outside the domain through a given window
on the boundary G.

Key words: Quasilinear elliptic equations, Dirichlet-Neumann boundary conditions.

Mathematics Subject Classification 2000: 35J65, 35J50, 35J55.

In memoriam of a Master of the XX Century Mathematics, Renato Caccioppoli.

1. Introduction

The main goal of this article is to study the limit as p ! l in a PDE problem
involving the p-Laplacian, �divðjDujp�2

DuÞ ¼ f , with mixed boundary condi-
tions, u ¼ 0 on G and jDujp�2 qu

qn
¼ 0 on qWnG, and to connect it with the following

mass transport problem: given an amount of material inside a domain, look for
the optimal way to transport it outside through a given window on the boundary
of the domain.

To formalize this transport problem let f b 0 be a probability density and
let W be a convex smooth domain with suppð f ÞHW. Let G a smooth submani-
fold of qW (the window) such that if GB qWnGA j then is a smooth N � 2-
dimensional manifold. More precisely, it su‰ces with C1 regularity for most of
the results in this paper, except for taking limits in viscosity sense, where we
need continuity of the normal vector field in qWnG.

We want to determine the most e‰cient way of transport f ðxÞ dx to the
window G with linear cost; that is, we want to find a function T : suppð f Þ ! G
in such a way that T minimizes

LðTÞ ¼
Z
W

jx� TðxÞj f ðxÞ dx:



It turns out that this problem has a very simple solution. Just take as TðxÞ a point
in G that realizes the distance; that is, define

TðxÞ ¼ y; for some y such that y a G; distðx;GÞ ¼ distðx; yÞ:

Next, we consider a natural way to approximate this problem by taking the
limit as p ! l of some PDEs involving the p-Laplacian. We will not need to
assume any sign condition on f , but simply that f is bounded.

We will study the limit as p ! l of solutions to the problems

�Dpu ¼ f in W;

jDujp�2 qu

qn
¼ 0 on qWnG;

u ¼ 0 on G:

8>>><
>>>:

ð1:1Þ

Here q=qn is the outer normal derivative. It is worthy to point out that the solu-
tion up a C1;aðWÞBCbðWÞ for some 0 < a < 1 and 0 < b < 1

2 . This regularity on
the interface between both boundary conditions is optimal. See [17].

Solutions to this problem can be easily obtained from a variational argument.
In fact, let us consider

max

Z
W

wf dx : w a W 1;pðWÞ; wjG ¼ 0; jjDwjjLpðWÞ a 1

� �
:ð1:2Þ

From a compactness argument it is easy to check that the maximum is attained
and gives a solution to (1.1), up to a Lagrange multiplier. Our first result says that
there is a natural variational limit problem as p ! l.

Theorem 1. The maximizers of (1.2) up converge as p ! l along subsequences
uniformly in W to ul, which is a maximizer of

max

Z
W

wf dx : w a W 1;lðWÞ; wjG ¼ 0; jjDwjjLlðWÞ a 1

� �
:ð1:3Þ

This function ul is a solution to the dual mass transport Kantorovich prob-
lem of fþ to f�, or to the window G, according to the relative mass position be-
tween themselves and the boundary. The transport set being given by the union
of transport rays that goes from suppð fþÞ or G to suppð f�Þ or G and are given by
segments on which the gradient of ul has modulus exactly one (see [9] for a more
precise description of the transport set and rays).

Going back to our original motivation, when f is nonnegative the transport
rays are segments along which the distance to the window G is realized. Hence
ul coincides with the distance to G in the transport set (see Remark 2.2). In this
case we also have uniqueness of the limit and therefore the limit limp!l up exists
(see Remark 2.3).
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We want to pass to the limit in a PDE verified by up. To this end we note that
weak solutions to (1.1) are also weak solutions to

�Dpu ¼ f in W;

jDujp�2 qu

qn
¼ mp on qW;

8<
:ð1:4Þ

where mp is a measure supported in G defined by

Z
W

jDujp�2
DuDj dx�

Z
W

f j dx ¼
Z
G

j dmp

for every j a C1ðWÞ. See section 3 below.
Our next aim is to pass to the limit in this weak formulation. In particular we

will see that mp converges weakly to a measure supported on G.
Although the result is independent of a sign condition on f we will assume by

simplicity f is nonnegative. Hence u is nonnegative and then we get that mp has a
sign, mp a 0.

Theorem 2. As p ! l, weak solutions to (1.1), up, converge uniformly in W
along subsequences to ul, a weak solution of

�divðaðxÞDuÞ ¼ f ; in W;

aðxÞ qu
qn

¼ 0; on qWnG;

u ¼ 0 on G:

8>>><
>>>:

ð1:5Þ

Here the function aðxÞ is determined by the fact that the weak limit of jDupjp�2
Dup,

that can be written as aðxÞDu.
Moreover, the measures mp converges weakly along subsequences to a measure m

supported on G and it holds that

Z
W

aðxÞDuðxÞDjðxÞ dx�
Z
W

f ðxÞjðxÞ dx ¼
Z
G

jðxÞ dm;ð1:6Þ

for all j a C1ðWÞ.

Note that u is also a solution to

�divðaðxÞDuÞ ¼ f ; in W;

aðxÞ qu
qn

¼ m; on qW;

8<
:ð1:7Þ

that can be obtained (as in Theorem 1) as a maximizer of
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max
w AW 1;lðWÞ

Z
W

wf dx�
Z
qW

wdm : wjG ¼ 0; jjDwjjLlðWÞ a 1

� �
:ð1:8Þ

In general, this last maximization problem is the dual problem associated to the
optimal mass transport between f þ dxþ m� to f � dxþ mþ. If f is nonnegative
then m is nonpositive and we get a solution to the transport problem between f
and m supported on GH qW.

Taking j ¼ 1 in (1.6) we get the mass balance

�
Z
W

f dx ¼
Z
qW

dm;

that is the natural condition when dealing with transport problems.

Remark 1.1. If

Z
W

f A 0 then mA 0. But the case

Z
W

f ¼ 0 is very sensitive to

the boundary conditions and the geometry associated to the problem. Indeed, in this
case we can force the transport from f þ to f � by prescribing G ¼ j, i.e.,

�Dpup ¼ f in W;

jDupjp�2 qup

qn
¼ 0 on qW;

8<
:ð1:9Þ

normalizing by

Z
W

up ¼ 0. This is a di¤erent approach to the transport problem

that the one in [9], where Dirichlet boundary conditions in a su‰ciently large ball
are considered.

However, we can prescribe mixed boundary conditions, and then it may happen
that m ¼ 0 or not depending on the geometric configuration of the data fþ, f�, W
and G. For example, in [9] it is shown that, even if G ¼ qW, it can happen that
m ¼ 0: Actually this occurs for a su‰ciently large ball for fixed compactly sup-
ported f . Notice that this means that the window is very far away and therefore
the optimal transport is realized between fþ and f�.

However, if we let fþ and f� be far away from each other but concentrated near

G we can easily see that we have mA 0 regardless that

Z
W

f A 0 or not.

Now, we turn our attention to the PDE verified by the limit in the viscosity
sense. The precise definition of solution in the viscosity sense is given in section
3 below.

Theorem 3. Given a continuous function ul which is the uniform limit of some
sequence fupg of weak solutions to (1.1), we have in the viscosity sense:

jDulja 1; and �jDuljb�1;
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and moreover,

Dlul ¼ 0; in Wnsuppð f Þ
minfjDulj � 1;�Dlulg ¼ 0 in f f > 0go

maxf1� jDulj;�Dlulg ¼ 0 in f f < 0go

�Dlulb 0; in WB qf f > 0gnqf f < 0g;
�Dlula 0; in WB qf f < 0gnqf f > 0g;

together with the boundary conditions

ul ¼ 0; on G;

qul

qn
¼ 0; on qWnG:

Let us end the introduction with a brief discussion on some of the existing bib-
liography. That limits to p-Laplacians are related to mass transport problems
was first noticed in [9] and later used in many di¤erent contexts, for example,
see [1], [5], [10], the book [18] and references therein. See the recent references
[10], [11], [12] for other papers dealing with limits as p ! l with di¤erent
boundary conditions. In [13] the limit as p ! l for the Dirichlet problem was
studied with special emphasis on conditions that guarantee uniqueness of the lim-
it. On the other hand, the infinity Laplacian has many applications and has at-
tracted a fair amount of attention in recent years; see for example the survey [2].
Recently, problems involving the infinity Laplacian show a connection between
PDEs and probability theory, see [6] and [16].

The rest of the paper is organized as follows: in Section 2 we deal with the
variational setting and prove Theorem 1. In Section 3 we deal with the weak for-
mulation (Theorem 2). Finally in Section 4 we look at the PDE satisfied by the
limit, proving Theorem 3.

2. Variational setting. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. First, we note that limits of the
solutions to the maximization problem (1.2) coincide with limits of the solutions
to the corresponding PDE (1.1) when p ! l. In fact, the unique maximizer of
(1.2), up, is a weak solution to

�Dpup ¼ lp f in W;

jDupjp�2 qup

qn
¼ 0 on qWnG;

up ¼ 0 on G;

8>>><
>>>:

ð2:1Þ

where lp is a Lagrange multiplier. If we take
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~uup ¼ ðlpÞ�1=ðp�1Þ
up

we get a solution to (1.1), that is,

�Dp~uup ¼ f in W;

jD~uupjp�2 q~uup
qn

¼ 0 on qWnG;

~uup ¼ 0 on G:

8>>><
>>>:

From the weak form of (2.1) and our previous results we get

lim
p!l

lp ¼ lim
p!l

�Z
W

fup

��1

¼
�Z

W

ful

��1

A 0:

Therefore,

lim
p!l

~uup ¼ lim
p!l

ðlpÞ�1=ðp�1Þ
up ¼ lim

p!l
up;

and we conclude that the limit points of weak solutions to (1.1) and the max-
imizers of (1.2) as p ! l coincide.

Proof of Theorem 1. We use ideas from [10], but we include some details for
the reader’s convenience. Since weak solutions and maximizers give the same
limit, we can consider a sequence fupg of solutions to (1.1). First, we derive
some estimates on the family up. We have,

Z
W

jDupjp ¼
Z
W

up f a
�Z

W

jupjp
�1=p�Z

W

j f jp
0
�1=p 0

ð2:2Þ

where p 0 is the exponent conjugate to p, that is 1=p 0 þ 1=p ¼ 1. Recall the follow-
ing Sobolev inequality, see for example [8],

Z
W

jfjp aCp
�Z

W

jDfjp
�
;

where C is a constant that does not depend on p and f vanishes on G. Going
back to (2.2), we get,

Z
W

jDupjp a
�Z

W

j f jp
0
�1=p 0

C1=pp1=p
�Z

W

jDupjp dx
�1=p

:

On the other hand, for large p we have

jupðxÞ � upðyÞjaCpjx� yj1�N=p
�Z

W

jDupjp dx
�1=p

:
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Since we are assuming that up ¼ 0 on G, we may choose a point y a G such that
upðyÞ ¼ 0, and hence

jupðxÞjaCðp;WÞ
�Z

W

jDupjp dx
�1=p

:

The arguments in [8], pages 266–267, show that the constant Cðp;WÞ can be
chosen uniformly in p. Hence, we obtain

Z
W

jDupjp a
�Z

qW

jgjp
0
�1=p 0

C1=pp1=pðCp
2 þ 1Þ1=p

�Z
W

jDupjp dx
�1=p

;

with constants independent of p.
Taking into account that p 0 ¼ p=ðp� 1Þ, for large values of p we get

�Z
W

jDupjp
�1=p

a ap

�Z
W

j f jp
0
�1=p

where ap ! 1 as p ! l. Next, fix m, and take p > m. We have,

�Z
W

jDupjm
�1=m

a jWj1=m�1=p
�Z

W

jDupjp
�1=p

a jWj1=m�1=p
�Z

W

j f jp
0
�1=p

;

where jWj1=m�1=p ! jWj1=m as p ! l. Hence, there exists a weak limit in
W 1;mðWÞ that we will denote by vl. This weak limit has to verify

�Z
W

jDvljm
�1=m

a jWj1=m:

As the above inequality holds for every m, we get that vl a W 1;lðWÞ and more-
over, taking the limit m ! l,

jDvlja 1; a:e: x a W:

Now let us prove that the subsequence upi converges to vl uniformly in W.
From our previous estimates we know that

�Z
W

jDupjp dx
�1=p

aC;

uniformly in p. Therefore we conclude that up is bounded (independently of p)
and has a uniform modulus of continuity. Hence up converges uniformly to vl.

Now we are ready to finish the proof of Theorem 1. We have

lim
p!l

Z
W

jDupjp ¼ lim
p!l

Z
W

up f ¼
Z
W

vl f :
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If we multiply (1.1) by a test function w, we have, for large enough p,

Z
W

wf a
�Z

W

jDupjp
�ðp�1Þ=p�Z

W

jDwjp
�1=p

a

�Z
W

vl f þ d
�ðp�1Þ=p�Z

W

jDwjp
�1=p

:

As the previous inequality holds for every d > 0, passing to the limit as p ! l
we conclude,

Z
W

wf a
�Z

W

vl f
�
jjDwjjl:

Hence, the function vl verifies,

Z
W

vl f ¼ max

Z
W

wf : w a W 1;lðWÞ; wjG ¼ 0; jjDwjjl a 1

� �
;

This ends the proof. r

On the other hand, taking as a test function in the maximization problem vl
itself we obtain the following corollary.

Corollary 2.1. If f 2 0, then jjDvljjLlðWÞ ¼ 1.

When f is nonnegative, we can obtain additional information about the struc-
ture and uniqueness of the limit.

Remark 2.2. Let w a W 1;lðWÞ be any function such that wjG ¼ 0 and
jjDwjjLlðWÞ a 1. Then,

wðxÞa distðx;GÞ;

and hence, for any f b 0, we have,

Z
W

wðxÞ f ðxÞ dxa
Z
W

distðx;GÞ f ðxÞ dx

As distðx;GÞ is an admisible function in the maximization problem (1.3) we con-
clude that a maximizer ul verifies,

ulðxÞ ¼ distðx;GÞ

in the union of the segments that join x a suppð f Þ with a point y a G that realizes
distðx;GÞ.

Remark 2.3. When f b 0 we have uniqueness of the limit. To see this, we use the
fact that any solution to the mass transport problem verifies
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jDulj ¼ 1ð2:3Þ

in the transport set T (remark that we have GBTA j). Therefore, if we have two
limits ul and vl of the family of solutions to (1.1), up, we can consider

wl ¼ ul þ vl

2
:

By (2.3) we obtain that

jDwlj ¼ ul þ vl

2

��� ��� ¼ 1;

and hence we conclude that

ul ¼ vl þ C

in T. As GBTA j we conclude that C ¼ 0 (since ul ¼ vl ¼ 0 on G). This prop-
erty can be extended to the whole W using the uniqueness for the mixed problem for
the infinity Laplacian, recently proved in [6].

Therefore we conclude that the limit is unique and hence there exists the limit
limp!l up ¼ ul.

3. Weak formulations. Proof of Theorem 2

In this section we pass to the limit in the weak form of the equation (1.4) and
prove Theorem 2. Notice that it is not obvious, since we have to justify that we
get in the limit as p ! l a measure m supported on the boundary.

Proof of Theorem 2. Recall that we are considering the case f b 0. If
GB qWnG ¼ j (thus, qW is a disconnected set), solutions up are C1;aðWÞ, and
we obtain the result by using the same arguments as section 2 in [9]. However
the general case, i.e. GB qWnGA j a smooth N � 2-dimensional manifold, is
di¤erent. Notice that in the latter case we have a threshold of regularity for
the corresponding mixed problem. More concretely, if up is the solution to
problem (1.1) then up a C1;aðWÞBCbðWÞ for some b < 1=2, see [17].

Fix the solution up and define the following linear continuous operator

Lp : C
1ðWÞ ! R

j !
Z
W

jDupjp�2
DupDj dx�

Z
W

f j dx
ð3:1Þ

Lp is a distribution compactly supported in G that is (formally) represented by

LpðjÞ ¼
Z
G

jjDupjp�2 qup

qh
dsð3:2Þ
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where h is the outwards normal to G and ds is the surface measure in G. At this
point, it is necessary to justify the existence of a limit measure when p ! l.

The uniform estimate for p > N

jjupjjLlðWÞ < C;

could be obtained in a similar way as in the Dirichlet problem case. To obtain the
boundary estimates we argue by approximation, first for fixed p and then for
p ! l.

Consider Xp ¼ jDujp�2
Du and

We ¼ fx a W j distðx;GÞb eg;

which for suitable e > 0 small is a tubular neighborhood of G union with some
regular open set. Call Ge ¼ fx a W j distðx;GÞ ¼ eg. Then for all j a C1ðWÞ,

Z
We

XpDj dx�
Z
We

f j dx ¼
Z
Ge

jjDupjp�2 qup

qhe
dseC

Z
Ge

jGp; e dse:

The function aðxÞ appears in a similar way as in [9], by the uniform Ll estimate.
As Gp; e in particular belongs to L1ðGeÞ, defines a measure in W concentrated in
Ge. Notice that taking j ¼ 1 and taking into account that f b 0,

�
Z
Ge

Gp; e dse ¼
Z
W

f dx;

and Gp; e has a sign. In other words the measures

me;p ¼ wGe
Gp; e * mp; e ! 0

weakly in the sense of measures. Then, we also have that the total variation is
bounded, since

jdmpja lim inf
e!0

jdme;pj ¼
Z
W

f dx:

Hence up to a subsequence we find a measure m concentrated in G such that

mp * m; weakly in the sense of measures:

As a consequence in the limit we have the representation

Z
W

aðxÞDuDj dx�
Z
W

f j dx ¼
Z
G

j dm; Ej a C1ðWÞ:

where aðxÞ is bounded in any compact subset of W disjoint with G, and is in all
LrðWÞ, 1a r < l. r
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We will analyze the structure of the measure m in order to better understand
the associated optimal transport problem.

Given a point z a G, we consider

Lz ¼ fx a W j distðx;GÞ ¼ distðx; zÞg;

we consider the following classification of G and W,

1.

G1 ¼ z a G

����
Z
Lz

dx ¼ 0

� �
;

W1 ¼ fx a W j bz a G1; distðx;GÞ ¼ distðx; zÞg:

2.

G2 ¼ z a G

����
Z
Lz

dx > 0

� �
;

W2 ¼ fx a W j bz a G2; distðx;GÞ ¼ distðx; zÞg:

By a geometric argument it is not di‰cult to see that GB qWnG ¼ G2 if the
boundary and the interface GB qWnG are smooth.

Recall that any admissible transport function s satisfies the local conservation
of mass property

mðEÞ ¼
Z
s�1ðEÞ

f dx; EEHG:

In particular, in our case the transport function T is given by the rays joining a
point of W with the point of G which realizes the distance, and hence we get

i) If p a G1 then mðpÞ ¼ 0, thus, m is absolutely continuous with respect to the
are ameasure on G1 and then it could be represented by a element of L1ðG1Þ.

ii) If p a G2 then mðpÞ < 0 if suppð f ÞBW2A j. So it is possible to have a mass
concentration on points of the interface GB qWnG.

4. Viscosity setting. Proof of Theorem 3

Following [3] let us recall the definition of viscosity solution taking into account
general boundary conditions.

Assume

F : W� RN � SN�N ! R

a continuous function. The associated equation

F ðx;Du;D2uÞ ¼ 0

121the limit as p ! y for the p-Laplacian with mixed boundary conditions



is called (degenerate) elliptic if

F ðx; x;X ÞaFðx; x;YÞ if X bY :

Definition 4.1. Consider the boundary value problem

F ðx;Du;D2uÞ ¼ 0 in W;

Bðx; u;DuÞ ¼ 0 on qW:

�
ð4:1Þ

1. A lower semi-continuous function u is a viscosity supersolution if for every
f a C2ðWÞ such that u� f has a strict minimum at the point x0 a W with
uðx0Þ ¼ fðx0Þ we have: If x0 a qW, we have the inequality

maxfBðx0; fðx0Þ;Dfðx0ÞÞ;Fðx0;Dfðx0Þ;D2fðx0ÞÞgb 0

and if x0 a W then we require

Fðx0;Dfðx0Þ;D2fðx0ÞÞb 0:

2. An upper semi-continuous function u is a subsolution if for every c a C2ðWÞ
such that u� c has a strict maximum at the point x0 a W with uðx0Þ ¼ cðx0Þ
we have: If x0 a qW the inequality

minfBðx0;cðx0Þ;Dcðx0ÞÞ;F ðx0;Dcðx0Þ;D2cðx0ÞÞga 0

holds, and if x0 a W then we require

F ðx0;Dcðx0Þ;D2cðx0ÞÞa 0:

3. Finally, u is a viscosity solution if it is a super and a subsolution.

In the sequel, we will use the same notation as in the definition: f stands for
the test functions touching from below the graph of u, and c stands for the test
functions touching from above the graph of u.

First, we point out that the arguments in [4] could be used to prove the follow-
ing lemma.

Lemma 4.2. Given a continuous function ul which is the uniform limit of some
sequence fupg of weak solutions to (1.1), we have in the viscosity sense:

jDulja 1; and �jDuljb�1:

On the other hand, at level p we can pass from weak solutions to solutions in
the sense of viscosity:

Lemma 4.3. Let up be a continuous weak solution of (1.1) for p > 2. Then up is a
viscosity solution to (1.1).

Proof. It follows by the same arguments used in [10], Lemma 2.3. r
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Proof of Theorem 3. Let us call o the support of f .
Next, to look for the equation that ul satisfies in the viscosity sense, assume

that ul � f has a strict minimum at x0 a W. Depending on the location of the
point x0 we have di¤erent cases.

First, suppose that x0 a Wno. By the uniform convergence of upi to ul there
exists points xpi such that upi � f has a minimum at xpi with xpi a Wno for pi
large. Using that upi is a viscosity solution to (1.1) we obtain

�DpfðxpiÞ ¼ �divðjDfjpi�2
DfÞðxpiÞb 0:

Therefore

�ðpi � 2ÞjDfjpi�4DlfðxpiÞ � jDfjpi�2DfðxpiÞb 0:

If Dfðx0Þ ¼ 0 we get �Dlfðx0Þ ¼ 0. If this is not the case, we have that
DfðxpiÞA 0 for large i and then

�DlfðxpiÞb
1

pi � 2
jDfj2DfðxpiÞ ! 0; as pi ! l:

We conclude that

�Dlfðx0Þb 0:ð4:2Þ

That is, ul is a viscosity supersolution of �Dlul ¼ 0 in Wno.
The fact that it is a viscosity subsolution of �Dlul ¼ 0 in Wno is completely

analogous, using a test function c such that ul � c has a strict maximum at x0.
Now, assume that x0 a o lies in f f > 0go. Then the sequence xi also lies in

f f > 0go for large i and hence, we get

�ðpi � 2ÞjDfjpi�4DlfðxpiÞ � jDfjpi�2DfðxpiÞb f ðxpiÞ > 0:

Taking limits this means that

jDfðx0Þjb 1 and �Dlfðx0Þb 0:

That is,

minfjDfðx0Þj � 1;�Dlfðx0Þgb 0:

Next, suppose that ul � c has a strict maximum at the point x0. Then the same
arguments as before leads to

�ðpi � 2ÞjDcjpi�4DlcðxpiÞ � jDcjpi�2DcðxpiÞa f ðxpiÞð> 0Þ:

In this case, this means that either

jDcðx0Þja 1;
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either

jDcðx0Þj > 1 and �Dlcðx0Þa 0:

That is,

minfjDcðx0Þj � 1;�Dlcðx0Þga 0:

Therefore, we get that the equation that ul satisfies in the sense of viscosity in the
set f f > 0go is:

minfjDulj � 1;�Dlulg ¼ 0:

In an analogous way we obtain

maxf1� jDulj;�Dlulg ¼ 0 for x a f f < 0go;

in the viscosity sense.
The next case to consider, is when f ðx0Þ ¼ 0 and the point x0 can be reached

as a limit of points xpi that could be contained in the region f f > 0g or in the
region f f ¼ 0g. In other words,

x0 a WB qf f > 0gB ðqf f < 0gÞC :

In this case, if we consider a test function f touching from below the graph of
ul at x0, then we get a sequence fxpig converging to x0, such that upi � f has a
strict minimum at xpi . Passing to asubsequence if necessary, we have two possibil-
ities: either f ðxpiÞ ¼ 0, or f ðxpiÞ > 0. If we assume f ðxpiÞ ¼ 0, then

�ðpi � 2ÞjDfjpi�4DlfðxpiÞ � jDfjpi�2DfðxpiÞb 0:

Then, if jDfðxpiÞjA 0 it follows that �Dlfðx0Þb 0. On the other hand, if
jDfðxpiÞj ¼ 0 for infinitely many indexes, then �Dlfðx0Þ ¼ 0.

If we assume f ðxpiÞ > 0, then jDfðxpiÞjA 0 and therefore passing to the limit
we get �Dlfðx0Þb 0.

Concerning the test functions c touching from above the graph of ul, when
f ðxpiÞ ¼ 0, then we have

�ðpi � 2ÞjDcjpi�4DlcðxpiÞ � jDcjpi�2DcðxpiÞa 0:

This implies that �Dlcðx0Þa 0. But if f ðxpiÞ > 0, then, as in a previous case,
we get that minfjDcðx0Þj � 1;�Dlcðx0Þga 0, and this condition is always sat-
isfied because jDulja 1.

As a conclusion, if x0 a WB qf f > 0gB ðqf f < 0gÞC , we have in the sense
of viscosity that �Dlulb 0 ( jointly with the general viscosity estimates on the
gradient, valid in all W).

In an analogous way, if x0 a WB ðqf f > 0gÞC B qf f < 0g, we have in the vis-
cosity sense that �Dlula 0 ( jointly with the general viscosity estimates on the
gradient, valid in the whole domain W).
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The next region consists on the points x0 a W that can be reached as limits of
sequences contained either in f f > 0g, either in f f ¼ 0g, either in f f < 0g. That
is, x0 a WB qf f > 0gB qf f < 0g. The same arguments as before give us that in
this set the equation satisfied in the sense of viscosity is simply jDulja 1 and
�jDuljb�1.

Finally, we look at the boundary conditions satisfied by ul in the viscosity
sense.

It is clear that ul ¼ 0 on G.
For x0 a qWnG, with the same notations as before, the sequence xi can be

contained inside W (and in this case the previous arguments give the desired in-
equality), or it is contained on the boundary qWnG: In this last case, taking into
account the results in [3], the boundary condition at level p in the viscosity sense
gives just

qf

qn
ðxiÞb 0:

Therefore, passing to the limit, we get

qf

qn
ðx0Þb 0:

In an analogous way we can deal with the reverse inequalities, obtaining

qul

qn
ðxÞ ¼ 0 for x a qWnG;

in the viscosity sense. r
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