Rend. Lincei Mat. Appl. 20 (2009), 145-158

Partial Differential Equations — Uniqueness in the Cauchy problem for a class
of hypoelliptic ultraparabolic operators, by CHIARA CINTI, communicated on
13 February 2009.

ABSTRACT. — We consider a class of hypoelliptic ultraparabolic operators in the form

L= X+ Xo— 0,
J=1
under the assumption that the vector fields X7,..., X, and Xy — J, are invariant with respect to a
suitable homogeneous Lie group G. We show that if u,v are two solutions of Lu=0 on
RY x 10, T[ and u(-,0) = ¢, then each of the following conditions: |u(x, ) — v(x, )| can be bounded
by M exp (c|x|é), or both u and v are non negative, implies u = v. We use a technique which relies
on a pointwise estimate of the fundamental solution of .&.

Key worps: Hormander operators; Ultraparabolic operators; Cauchy problem; Uniqueness
theorems; Homogeneous Lie groups.
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1. INTRODUCTION AND MAIN RESULTS

We consider a class of linear second order operators in RV*! of the form

(1.1) L =YX+ X -0,

J=1

where 1 <m < N. In (1.1) the X;’s are smooth vector fields on R, i.e. denoting
z = (x, 1) the point in RV,

X;(x) :Za',i(x)axk, j=0,...,m,

N
k=1

and any a,{ is a C” function. In the sequel we also consider the X;’s as vec-
tor fields in RV*! and denote

Y:XO_a[.
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Our main assumption on the operator % is the invariance with respect to a
homogeneous Lie group structure, and a controllability condition:

[H.1] there exists a homogeneous Lie group G = (R¥*!,0,4;) such that

i) Xi,..., Xy, Y are left translation invariant on G;
ii) Xi,..., X, ared;-homogeneous of degree one and Y is d,-homogeneous
of degree two;

[H.2] for every (x,1), (y,s) € R¥*! with 7 > s, there exists an absolutely contin-
uous path y: [0,7 — 5] — R¥*! such that

(1.2) {ﬂf) = S0 o) X(p(0) + Y(2(1)),  ae in[0,1—,
V(O) = (xa Z)v y([ - S) = (y; 5)7

with wy,...,w, € L*([0, 7 — s]). We say that this curve is an Z-admissible
path connecting (x,7) with (y,s), and in the sequel we will denote it by

(%, 1), (,5), ).

It is know that [H.1] implies that the coefficients a,{ of the X;’s are polynomial
functions, hence [H.2] yields

(1.3) rank Lie{X;,..., X,,, Y}(z) = N +1, forevery z e RVl

(see, for instance, [8] or [16, Chap. II, Sec. 8]). This is the well know Hoérmander
condition for the hypoellipticity of . (see [11]).

Operators of the form (1.1), verifying assumptions [H.1] and [H.2], have been
studied by Kogoj and Lanconelli in [12], [13] and [14]. Note that in [12] and [14] the
#-admissibile path y in [H.2] is supposed to satisfy y'(7) = >/, o (7) Xk (y(7)) +
w(t)Y(y(r)) for piecewise constant real functions wi,...,w,, u, with x> 0.
However, even if this definition is slightly different from our one, the main results
stated in these papers hold true also with our assumption. In [12] it is proved that
% has a fundamental solution I'(-,{) which shares several properties of the fun-
damental solution of the heat equation (see Section 2 for the details).

In this paper we prove some uniqueness results for the Cauchy problem re-
lated to Z:

(14) {yu_o in RY x 10, T,

u(-,0) =¢ in RY,
where ¢ € C(R"). Our main achievements are the following ones:

THEOREM 1.1. Assume that ¥ satisfies conditions [H.1]-[H.2], and let u,v €
C(RY x [0, T)) be two solutions of the Cauchy problem (1.4). If there exists a
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positive constant ¢ such that

T
(1.5) / / e u(x, 1) — v(x, 1)| dxdi < oo
0 JRrRY

then u = v.
(See Section 2 for the definition of the norm | - ).

THEOREM 1.2. Assume that & satisfies conditions [H.1]-[H.2], and let u,v €
C(RN x [0, T)) be two solutions of the Cauchy problem (1.4). If both u and v are
non negative, then u = v.

Our theorems 1.1 and 1.2 extend some classical uniqueness result for parabolic
operators. We first quote the paper by Tychonoff [19], where it is shown that
the Cauchy problem for the heat equation has an unique solution satisfying
u(x, f) < Me™ for every (x,7) € RY x |0, T]. On the other hand, Widder in [20]
proved that the unique non-negative solution of the heat equation in R x [0, 7]
such that u(-,0) = 0 is the null function.

With regard to more general parabolic operators, Krzyzanski showed in [15]
that the Tychonoff condition ensures uniqueness for parabolic operators in non-
divegence form with bounded and continuous coefficients. Serrin in [18] extended
Widder’s result to solutions of equations in the form u, = a(x)u, + b(x)u, +
¢(x)u with Holder continuous and uniformly bounded coefficients. Aronson and
Besala in [1] proved that, if « is a solution of a divergence form parabolic equa-
tion with measurable coefficients satisfying certain growth condition at infinity,
the uniqueness of the homogeneous Cauchy problem is guaranteed by the fol-
lowing integral condition: [ [,x e~ u?(x, 1) dxds < co. Moreover, the same
authors in [2] proved that an hypothesis analogous to (1.5) yields the uniqueness
for a class of uniformly parabolic operators >, ; a; j(X, )0y + >3, bj(x, )0y, — 0,
with locally Holder continuous coefficients which grow at most linearly at infinity.

Concerning Kolmogorov-type operators, some results like our Theorem 1.1
and 1.2 have been obtained by Polidoro [17], Di Francesco and Pascucci [9],
Di Francesco and Polidoro [10]. In [17] it is showed that there is only one solution
which is in the Tychonoft class or non-negative to the operator L = div(A(z)D) +
{x,BD) — 0;; here L is homogeneous with respect to a suitable Lie group struc-
ture, and the a;;(z)’s are uniformly Hélder continuous with respect to the geometry
of L. This results have been improved respectively in [9] and [10] for Kolmogorov
equations in non-divergence form, assuming that the coefficients and their deriv-
atives are bounded and Holder continuous (in a certain sense), and removing the
homogeneity assumption. In all these papers, the authors relied on pointwise es-
timates for the fundamental solution of the operator considered.

Finally, we quote the paper of Bonfiglioli, Lanconelli and Uguzzoni [3], where
Tychonoff-type and Widder-type uniqueness theorems are extended for the heat
operator # = ¥ — 0, related to the sub-Laplacian ¥ on a stratified Carnot

group.
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We recall that Tychonoff constructed in [19] a non trivial solution u to the
Cauchy problem for the heat equation such that u(-,0) = 0 and u(x, 7) < Me™ S
in RV x ]0, T. Since our results apply to heat operators, this example shows that
the growth condition allowed in Theorem 1.1 cannot be improved by increasing
the exponent of |x|;. Nevertheless, it seem possible to sharpen hypothesis (1.5) by
using the value function 7 (see Remark 2.4 in Section 2).

This paper is organized as follows: in Section 2 we collect some preliminaries,
and in Section 3 we give the proof of our main results, Theorem 1.1 and 1.2.
2. NOTATIONS AND PRELIMINARY RESULTS

We say that a Lie group G = (RV*! o) is homogeneous if on G there exists a
family of dilations {J;},., which is an automorphism of the group:

0;(z08) = (0;2) 0 (0;(), forallz,¢{ e RM! and A > 0.

As we stated in the Introduction, [H.1] and [H.2] imply the Hérmander condition
(1.3). From [H.1] and [H.2] it follows also that the composition law o is euclidean
in the “time” variable, i.e.

(x,0) 0 (&,7) = (S(x,1,&,7),t+ 1)

for a suitable C* function S with value in RY. Moreover the dilation of the
group induces a direct sum decomposition on RY

(2.1) RN=V®- @ W,

as follows. If x=xU 4+ x® 4...4x® with xU) e Vi, then 6,(x,t) =
(D(2)x, 2*t), where

22) DA +x@ 4 xW) = (x4 2x 4 250,

The natural number

k
Q=2+ jdimV;
=1
is usually called the homogeneous dimension of G with respect to d,. We set
dim V; 0 2/, 2k 2k' 1
s = (Z NN 1l = (ol

and we observe that the above functions are J,-homogeneous of degree 1, respec-
tively on RY and RV*!:

|(Gx W) 4 W) g = 20xlg, 10a(x Dl = Al Dl
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for every (x,7) € RV !

and for any A > 0. We define the quasi-distance in G as
(2.3) d(z,0) = || oz|g,  forall z,{ e RVHL,
and we recall that, for a positive constant c,

i) d(z,{) <ed((2) for all z,{ e RV*!;
i) d(z,{) <c¢(d(z,z1) + d(z1,()) for all z,z;,{ € RV*1,

Moreover,
d(0;z,0;0) = 2d(z,(),  forall z,{ e RN 7 > 0.

Throughout the paper we shall write d(z) instead of (0, z) = ||z"!||5. Obviously,
from i), we have

e lzllg < d(z) < ellzle.

We also use the following notation for the | - |;-ball of radius r > 0 centered at
the origin:

B, ={xeR"||x|g <r}.

We recall the following weak maximum principle on strips (see e.g. [6,
Theorem 4.1] for an elementary proof based on suitable mean-value representa-
tion formulas).

PrROPOSITION 2.1. Let ue C*(RY x 10, T[). If Lu >0, limsupu <0 both in
RY x {0} and at infinity, then u < 0 in the whole strip.

We next collect some useful facts on the fundamental solution of the hypo-
elliptic operator #. If T'(-,{) is the fundamental solution of ¥ with pole in
¢ e RY*! then T is smooth out of the pole and has the following properties
(see [12]):

i) forany z € R™', I'(-,z) and ['(z, ) belong to Lj, (R**");

ii) T(z,{) >0, and I'(x,7,&,7) > 0 if, and only if, > 7;
iii) for every p € C(R"Y) and x € R" we have

lim [(x,4,¢,7) p(¢) A€ = o(x);

t—tt JpN

iv) for every p € C(R¥"!) and z € RV we have

7| T d = / I(z.0) 29(0)dl = —g(2);

RN+1

v) LT(-,{) = —0, where o, is the Dirac measure supported at {(};
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vi) for every (x, 1), (¢,7) € R¥™! such that ¢ > ¢ we have
/ [(x,t,¢1)dE =1, / I'(x,6,&1)dx =1,
RN RN
vii) for every (x,?),(&,7) e R¥! and s € R such that < s < ¢ we have

Fxt,,7) = / T(x, 1,9, 9T (,5,¢,7) dy:

N

R

viii) the function T'*(z,{) :=T'({,z) is the fundamental solution of the adjoint
&L of Z.

Moreover, I' is invariant with respect to the left translations and to dilations of
the Lie group:
l"(z,{):f'({71 0z,0)=: l"(f1 0z), 2,0 e RV 2 2 ¢

@4 (0;(2)) = 2279 (z) ze RY\ {0}, 2> 0.

We recall then the following result related to the Cauchy problem for %, ob-
tained by Kogoj and Lanconelli (see [14, Proposition 2]):

THEOREM 2.2. Let ¢ € C(RY) satisfying ¢p(x) = O(|x|") as |x| — oo, for some
n € N. Then the function

ux) = [ Tenenp@ds,  xeR"r>

is well defined and is a solution to the Cauchy problem

{gu—o in RY x ]z, o],

( %m} )u(x, 1) =o(y), foreveryyeR".
x,0)—(y,t

The main tools we shall employ in the proof of our results are the following
pointwise estimates of I and its derivatives, proved by Kogoj and Lanconelli.
There exists a positive constant C such that

T L X _ dz((éaf)_l o (x,1))
(2.5) [(x,0,¢7) < (% ¢ p( C(t—r1) )

for every x,¢é € RY and ¢ > 7 (see [12, (5.1)] and also [14, (2)]). Moreover, as a
consequence of a Harnack-type inequality for non-negative solution to Lu = 0,
for any j = 1,...,m there exists ¢; > 0 with

(2.6)  |XT(x,0,6,7)] <t — f)—%r((g,f)—l o (x,1) o <o, "T’>1)
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for all x,& € RY, ¢ > 7 (see (7) in [14]). We point out that the upper bound in (2.5)
is not the best possible. Indeed, in [7] it is given a more precise asymptotic be-
havior of the exponent in terms of the value function V' of the following optimal
control problem related to the ordinary differential equation in (1.2):

DEFINITION 2.3. Let (x,1), (y,5) € R¥!, ¢ > s and let y((x, 1), (,s),®) be any
#-admissible path connecting (x, #) with (y, s):

V(1) = iwk(f)Xk(V(T)) +Y0@), 7(0)=(x1), y(t=9) = (»9)
=1

We consider the set of functions wy, ..., ®,, as the control of the path y, and the
integral

—s
o) = [ @0+ (@)
0
as its cost. We then define the value function

V(x,t,p,s) =inf{®(w) | y((x,1), (y,s),w) is an ¥-admissible path}.

Hence, if V" is locally Lipschitz continuous, for every ¢ > 0 there exists a posi-

tive constant C,, only depending on the vector fields X7, ..., X;,, ¥ and on &, such
that
C, 1
[(x,£,0,0) < % exp (=33 V(0,e1) o (x,1) o (0,20),0,0)),
1 2

for all (x,7) € R¥ x R" (see [7, Theorem 1.6]). On the other hand, Theorem 1.2 of
[5] provides a lower bound of I', also stated in terms of V: there exists two con-
stants C > 0 and 6 € ]0, 1| only depending on %, such that

1
(2.7)  T(x,£,0,0) > —55 exp (—=CV(x,0%,0,0)), V(x,1) e RV x R".
crr

REMARK 2.4. With these more careful Gaussian estimates at hands, maybe it
is possible to improve Theorem 1.1. Indeed, by comparing (2.7) with (2.5), we
deduce that
2
V(x,Hzt,0,0)ch%, xeRY, >0,

for a positive constant ¢y. Thus, a growth condition on « — v in terms of V' of this
kind:

T
/ / e~V 00 y(x, 1) — w(x, 1) dxdr < oo, e RY,
0 JRrY
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is sharper than (1.5). However, working with V" yields some technical problems,
mainly due to the fact that we do not always know explicitly the expression of V.
We plan to check on this in a forthcoming paper.

3. PROOF OF THE MAIN RESULTS

The purpose of this section is the proof of Theorems 1.1 and 1.2, our main
results. We start with a lemma.

LEMMA 3.1. Let u,v e C(RY x [0,T]) be two solutions of the Cauchy problem
(1.4). If we set w = u — v, then there exists a positive constant C such that

(1) (x| <C /0 /R G GETEURS S AEPEL RIS
R J=1

or every (x,1) € RY x 10, T[ and R > |x]c.
G

PROOF. Since the vector fields X; = 3" | a/d,, for j = 0,...,m are d;-homoge-
neous of a positive degree, the coefficient a](x) does not depend of x, for any
k=1,...,N. As a consequence, the X;’s are divergence free, X;” = —X; and

2 _ 4 '
X7 =div(4’V)

where A/ is the square matrix (a]a}), -y and V = (dy,,...x,). Thus the oper-
ator .# takes the following form ’

L =div(4aV)+ Y

for the N x N symmetric matrix 4 = (1), <y = i~ 47, and Y has null di-
vergence in RV*!. Note that we can write f = div (AV) — Y. Furthermore,
it holds

(3:2) CA(X)EE) = (X(x),&?,  forevery x,& e RY,
=1
We consider the following Green’s identity:
N
(3.3) LW —wL Y =Y 0y (ani(Yoyw — wiy¥))
hk=1

N
+ Y O la) wp) = 2 (wp),
k=1

for any w,y € C(RV').
Now, let (x,f) e Rx]0,T[ be fixed. For any R > |x|; we consider
hr € Cf(Bry1), 0 < hg <1, such that ig =1 on By and with first and second



CAUCHY PROBLEM FOR A CLASS OF HYPOELLIPTIC ULTRAPARABOLIC OPERATORS 153

order derivatives bounded uniformly w.r.t. R. We integrate the Green’s
identity (3.3) with w=u—v and Y(&, 1) = hg(&)T(x,1,&,7) over the domain
{Ce R¥! | ¢ e Bry1,0 <1< t—06}, for some 6 > 0. Recalling that £w =0
and using the divergence theorem, we get

t—0
—/ / w(&, 1)L Y(E t)dEdr
0 Bryi
= —/B w(& t—0)hr(ET(x,t,E t—0)dE —l—/B w(&,0)hr(ET(x,2,&,0)dE

N o
+ h;1/0 /Mm an i (E)(W(E,1)0w(0) — w()Oe (&, 7)) vy da (L)

N t—o
0
' ; /0 /amm a4 (EWOW(E e do(0).

By hypothesis, the last three terms in the above equation are null. Hence, as ¢
tends to 07, by using the property vi) of I' and (2.5), we obtain

w(x, 1) = lim w(&, t —0)hr(ET (x,1, &t —0)dE

0=0% JBp.

_/’/ W(E, D) LM (E, 7) dE dr.
0 JBpry1

Being ¥ *T'(x,t,&,7) = 0 and supp(0g, hr) = Bry1\ Br, we obtain

w(x, f) //MR C(x, 1,&,7) L (&)

+ 2CA(EVT (x, 1, &, 7), Vhg(£)) dE de.

Now (3.1) directly follows from the above equation, by using the Cauchy-
Schwartz inequality and (3.2). The assertion is proved. O

As a simple corollary of the previous lemma, we have the following

PROPOSITION 3.2. Let u,v e C(RY x[0,T]) be two solutions of the Cauchy
problem (1.4). If

(3.4) /0 /R u(é,7) — D(é,f)|(r(x7 LET) + ;1 1 X,T(x, z,g,f)|) dédr < oo

for every (x,1) € RN x 10, T[, then u = v.
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ProOOF. Condition (3.4) implies

lm1AXQWRM@ﬂ—wéﬂKF@J£Jy+§y%T@AQﬂDMﬂr:Q

R—0

then, by (3.1), u = v in the strip R" x ]0, T'[. This ends the proof. O

As we will see, the hypothesis of Theorem 1.1 is another condition which, like
(3.4), together with Lemma 3.1 implies the uniqueness of the solution of the
Cauchy problem (1.4).

PrOOF OF THEOREM 1.1. Let u,v e C(RY x [0,T]) be two solutions to the
Cauchy problem (1.4). We first prove that = v in a thin strip R" x ]0, ¢, where
¢ € ]0,min{1, 7'}] will be suitably chosen later.

Let (x,17) € RY x ]0,¢[ be fixed. Aiming to use (3.1), we estimate the funda-
mental solution I" with pole in (&,7) € RY x ]0,[ valued in (x,7), and every
XiI(x,t,¢,1)’s.

By using the pseudo-triangular inequality for d, we get

d((& 7)o (x,0) = e 'd(0, (&) ") = d((&,1) o (x,0), (6, 0)7)
= cle(f, 7)llg = I(x,)|lg = c71|f|6 —[[(x,0)[|g = (2c>71|f|@»

if we take || = 2esupy.,. 7 ||(x, 7)|| =: Ri(x). Hence, by the Gaussian estimate
(2.5),

35 Tenen<—C ep(-—6 N i s R
’ T ¢ 4e2C(t—1) ) 6= T

On the other hand, (2.6) and (2.5) imply that for any j = 1,...,m there exists a
positive constant ¢; such that

. 2 T710 o -
ol < 0 o (- CUED 02 0250 ),

(t—7)7

see also (2) in [14]. With the same argument as above, we have

d((& ) o (x,0)0 (0, =559 7")
> ¢ (0,67 o (x 1) = 1100, -5l
> e (e elg — NI, D)lle) — ||5\/m((0,—1)*1)|!@
> ¢ [elg — e I(xn)llg — d((0,~1)V/T/2 = (V2¢) [l
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for |&|g > Ri(x) +¢2d((0,—1))vV2T =: R(x). It follows that, for every j=
I,....,m,

C 2 .
G0 Tl s o (- s e ) il = R
— T 2 -

As a consequence, from (3.1), (3.5) and (3.6),

lu(x, ) — v(x, 1)]

<C//R\BR (& t) = o(E DI (Tt 60) + 30 1T (., &, ) ) de

=

t 2
<q / / 4(&,7) — 0(&, D)) ———or exp <—%>dfdr,
0 JRM\Bg (, _ T)T t—7

for every R > max{|x|s, R(x)}, where C;, C, are two pos1t1ve constants only
dependent on ¢ and on the operator . Now set ¢ = mln{zg ,1, T}, where ¢ > 0

et GG

is the constant in (1.5). Since the function (&,7) — (1—1)" 7 exp (—3 7 T>) is

bounded on (RY\ Bg) x ]0, T[, by the choice of ¢ we get

t 2
) o0l < [ [ e ue e - ol oldedr,
0 JRV\Bg
for all R > max{|x|g, R(x)}. On the other hand, hypothesis (1.5) implies that

t 2
lim / / e~ (& 1) — v(é, 7)|dEdT = 0
R—0 [ RN\BR

whence u(x, t) = v(x, t) for every (x, ) € RY x ]0, ¢[. The thesis follows by repeat-

ing the previous argument finitely many times (note that ¢ depends only on ¢, on

the constant ¢ in (1.5) and on the operator .%). O
In order to prove Theorem 1.2, we need a preliminary result.

LeMMA 3.3. Let ue C(RYx [0,T)) be a non-negative solution of Lu=0 in
N'x 0, T[. Then

u(x,t)z/ I(x, 6, & t)u(é, 7)dé,
RN

for every (x,1) € RN x 10, T[and 0 < t < .

PrROOF. Fix 7 €10, T[. For every n € N and (x,7) € R x ]z, T, set

uy(x,1,7) ::/ I'(x, t,f,r)h(%)u(f,r)dé,
RY
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where 1 € C*(R) is a fixed non-increasing cut-off function such that A(s) = 1 if
s <1 and A(s) = 0if s > 2. By Theorem 2.2, we know that u, is a solution to the
Cauchy problem

Luy(-,7) =0 in RY x |z, T7,
( %111} )un(x, 1,7) = h(%) u(y,7), forevery y e RV,
X,t)—(y,T

Furthermore, by the estimate (2.5),
(3.8) 0 <uu(x,t,1)

S

_C <o [ — d*((&,7) " o (x,1))
- (1— ‘L')QTi2 /an =P ( C(t—r1) )u(f, 7)de.

Recalling the properties of the quasi-distance d, we obtain

d((&0) " o (v) ze (& D) 0 (30,00 = X )6 — ¢ D
> c72|x|G _ c71<(2n>2k! + Tk!)%’

so that, by (3.8),

0 < up(x,t,7)

C B, -1 —((2 2k! Tk! % 2
Sn%axu(.,f)%exp<_<c ¥l 2((21;) ) ))_}0
2n (t_‘[) 2 [ ( —T)

as |x|g — c0. We now apply the weak maximum principle to the #-harmonic
function v, = u,(-,7) — u in the strip RY x |z, T[. Indeed, we have limy, ). (.0)
vn(x,1) <0 for every y € R being & < 1, and limsupv, <0 at infinity in the
strip, recalling that # > 0. The maximum principle of Proposition 2.1 then gives

0 < up(x,t,7) <u(x,1), for every (x,1) € RY x ], T|.
Letting 7 go to infinity, from the above inequality we obtain (3.7), since

uy(x,t,7) / /RN I'(x,t, & 1)u(é,r)dé asn — oo

by monotone convergence. This accomplishes the proof. O

PrOOF OF THEOREM 1.2. We first show that, if u € C(R" x [0, T]) is a non-
negative solution of Zu = 0 on the strip R" x ]0, 7] then
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(3.9) /0 [ /R u(&,7) (r(x, 1E7) + ]_il 1X,T(x, 1, é,f)|) dédr < o

for every (x,1) € RVx]0,2 T[. Indeed, by integrating the inequality (3.7) with
respect to 7 € |0, 7, we obtain

/[/ (& DT (x,1,E,7) dEdr < ulx, 1)1 < o0, for all (x, 1) € RY x 0, T.
0 JRY

On the other hand, from (2.6) it follows that

/0 /RN u(é, ) i |X,T(x,1,& 1) dédr

j=1

< C/Ot tl_T</RNu(g,f)r<(x, o <0,—I_TT>_1,f,r>df>df

(by (3.7)) < c/ol\/ll,_? u<(x, /) o<o,—’_2f>l>dr < CCu2Vi< w,

for every (x,7) e RY x]0,2 T[. In the last but one inequality we have used that,
since u is a continuous function on RY x [0, T, there exists a constant Cy, > 0
such that

-1
r— 3t —
u((x, t)o (O,— T) ) < sup u(S(x, 1,7), T> =: Cy; < 0.
2 ef0.] 2 '

Hence, (3.9) is proved.

We next conclude the proof of the theorem. Let u,v € C(RY x [0, T']) be two
non-negative solutions to the Cauchy problem (1.4). As |u — v| < u + v, the first
part of the proof yields condition (3.4) for every (x,7) € RV x]0,2 T[, whence
u=vin RV x [0,% T] by Proposition 3.2. We repeat the above argument, and
we find, at the n-th step,

1
— : N
uU=v in R X[O,(l-w)T}

This proves the theorem. O
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