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Abstract. — We consider a class of hypoelliptic ultraparabolic operators in the form

L ¼
Xm
j¼1

X 2
j þ X0 � qt;

under the assumption that the vector fields X1; . . . ;Xm and X0 � qt are invariant with respect to a
suitable homogeneous Lie group G. We show that if u; v are two solutions of Lu ¼ 0 on

RN � �0;T ½ and uð�; 0Þ ¼ j, then each of the following conditions: juðx; tÞ � vðx; tÞj can be bounded
by M exp ðcjxj2GÞ, or both u and v are non negative, implies uC v. We use a technique which relies

on a pointwise estimate of the fundamental solution of L.
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1. Introduction and main results

We consider a class of linear second order operators in RNþ1 of the form

L ¼
Xm
j¼1

X 2
j þ X0 � qt;ð1:1Þ

where 1amaN. In (1.1) the Xj’s are smooth vector fields on RN , i.e. denoting
z ¼ ðx; tÞ the point in RNþ1,

XjðxÞ ¼
XN
k¼1

a
j
kðxÞqxk ; j ¼ 0; . . . ;m;

and any a
j
k is a Cl function. In the sequel we also consider the Xj ’s as vec-

tor fields in RNþ1 and denote

Y ¼ X0 � qt:



Our main assumption on the operator L is the invariance with respect to a
homogeneous Lie group structure, and a controllability condition:

[H.1] there exists a homogeneous Lie group G ¼ ðRNþ1; �; dlÞ such that

i) X1; . . . ;Xm;Y are left translation invariant on G;
ii) X1; . . . ;Xm are dl-homogeneous of degree one and Y is dl-homogeneous

of degree two;

[H.2] for every ðx; tÞ; ðy; sÞ a RNþ1 with t > s, there exists an absolutely contin-
uous path g : ½0; t� s� ! RNþ1 such that

g0ðtÞ ¼
Pm

k¼1 okðtÞXkðgðtÞÞ þ Y ðgðtÞÞ; a:e: in ½0; t� s�;
gð0Þ ¼ ðx; tÞ; gðt� sÞ ¼ ðy; sÞ;

�
ð1:2Þ

with o1; . . . ;om a Llð½0; t� s�Þ. We say that this curve is an L-admissible
path connecting ðx; tÞ with ðy; sÞ, and in the sequel we will denote it by
gððx; tÞ; ðy; sÞ;oÞ.

It is know that [H.1] implies that the coe‰cients a
j
k of the Xj’s are polynomial

functions, hence [H.2] yields

rank LiefX1; . . . ;Xm;YgðzÞ ¼ N þ 1; for every z a RNþ1;ð1:3Þ

(see, for instance, [8] or [16, Chap. II, Sec. 8]). This is the well know Hörmander
condition for the hypoellipticity of L (see [11]).

Operators of the form (1.1), verifying assumptions [H.1] and [H.2], have been
studied by Kogoj and Lanconelli in [12], [13] and [14]. Note that in [12] and [14] the
L-admissibile path g in [H.2] is supposed to satisfy g0ðtÞ ¼

Pm
k¼1 okðtÞXkðgðtÞÞ þ

mðtÞYðgðtÞÞ for piecewise constant real functions o1; . . . ;om, m, with mb 0.
However, even if this definition is slightly di¤erent from our one, the main results
stated in these papers hold true also with our assumption. In [12] it is proved that
L has a fundamental solution Gð�; zÞ which shares several properties of the fun-
damental solution of the heat equation (see Section 2 for the details).

In this paper we prove some uniqueness results for the Cauchy problem re-
lated to L:

Lu ¼ 0 in RN � �0;T ½;
uð�; 0Þ ¼ j in RN ;

�
ð1:4Þ

where j a CðRNÞ. Our main achievements are the following ones:

Theorem 1.1. Assume that L satisfies conditions [H.1]–[H.2], and let u; v a
CðRN � ½0;T �Þ be two solutions of the Cauchy problem (1.4). If there exists a
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positive constant c such thatZ T

0

Z
RN

e�cjxj2G juðx; tÞ � vðx; tÞj dx dt < lð1:5Þ

then uC v.

(See Section 2 for the definition of the norm j � jG).

Theorem 1.2. Assume that L satisfies conditions [H.1]–[H.2], and let u; v a
CðRN � ½0;T �Þ be two solutions of the Cauchy problem (1.4). If both u and v are
non negative, then uC v.

Our theorems 1.1 and 1.2 extend some classical uniqueness result for parabolic
operators. We first quote the paper by Tychono¤ [19], where it is shown that
the Cauchy problem for the heat equation has an unique solution satisfying
uðx; tÞaMecjxj

2

for every ðx; tÞ a RN � �0;T �. On the other hand, Widder in [20]
proved that the unique non-negative solution of the heat equation in R� ½0;T �
such that uð�; 0Þ ¼ 0 is the null function.

With regard to more general parabolic operators, Krzyżański showed in [15]
that the Tychono¤ condition ensures uniqueness for parabolic operators in non-
divegence form with bounded and continuous coe‰cients. Serrin in [18] extended
Widder’s result to solutions of equations in the form ut ¼ aðxÞux;x þ bðxÞux þ
cðxÞu with Hölder continuous and uniformly bounded coe‰cients. Aronson and
Besala in [1] proved that, if u is a solution of a divergence form parabolic equa-
tion with measurable coe‰cients satisfying certain growth condition at infinity,
the uniqueness of the homogeneous Cauchy problem is guaranteed by the fol-
lowing integral condition:

R T

0

R
RN e�cjxj2u2ðx; tÞ dx dt < l. Moreover, the same

authors in [2] proved that an hypothesis analogous to (1.5) yields the uniqueness
for a class of uniformly parabolic operators

P
i; j ai; jðx; tÞqxixj þ

P
j bjðx; tÞqxj � qt

with locally Hölder continuous coe‰cients which grow at most linearly at infinity.
Concerning Kolmogorov-type operators, some results like our Theorem 1.1

and 1.2 have been obtained by Polidoro [17], Di Francesco and Pascucci [9],
Di Francesco and Polidoro [10]. In [17] it is showed that there is only one solution
which is in the Tychono¤ class or non-negative to the operator L ¼ divðAðzÞDÞ þ
3x;BD4� qt; here L is homogeneous with respect to a suitable Lie group struc-
ture, and the aijðzÞ’s are uniformly Hölder continuous with respect to the geometry
of L. This results have been improved respectively in [9] and [10] for Kolmogorov
equations in non-divergence form, assuming that the coe‰cients and their deriv-
atives are bounded and Hölder continuous (in a certain sense), and removing the
homogeneity assumption. In all these papers, the authors relied on pointwise es-
timates for the fundamental solution of the operator considered.

Finally, we quote the paper of Bonfiglioli, Lanconelli and Uguzzoni [3], where
Tychono¤-type and Widder-type uniqueness theorems are extended for the heat
operator H ¼ L� qt related to the sub-Laplacian L on a stratified Carnot
group.
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We recall that Tychono¤ constructed in [19] a non trivial solution u to the
Cauchy problem for the heat equation such that uð�; 0Þ ¼ 0 and uðx; tÞaMecjxj

2þe

in RN � �0;T �. Since our results apply to heat operators, this example shows that
the growth condition allowed in Theorem 1.1 cannot be improved by increasing
the exponent of jxjG. Nevertheless, it seem possible to sharpen hypothesis (1.5) by
using the value function V (see Remark 2.4 in Section 2).

This paper is organized as follows: in Section 2 we collect some preliminaries,
and in Section 3 we give the proof of our main results, Theorem 1.1 and 1.2.

2. Notations and preliminary results

We say that a Lie group G ¼ ðRNþ1; �Þ is homogeneous if on G there exists a
family of dilations fdlgl>0 which is an automorphism of the group:

dlðz � zÞ ¼ ðdlzÞ � ðdlzÞ; for all z; z a RNþ1 and l > 0:

As we stated in the Introduction, [H.1] and [H.2] imply the Hörmander condition
(1.3). From [H.1] and [H.2] it follows also that the composition law � is euclidean
in the ‘‘time’’ variable, i.e.

ðx; tÞ � ðx; tÞ ¼ ðSðx; t; x; tÞ; tþ tÞ

for a suitable Cl function S with value in RN . Moreover the dilation of the
group induces a direct sum decomposition on RN

RN ¼ V1 a � � �aVk;ð2:1Þ

as follows. If x ¼ xð1Þ þ xð2Þ þ � � � þ xðkÞ with xð jÞ a Vj, then dlðx; tÞ ¼
ðDðlÞx; l2tÞ, where

DðlÞðxð1Þ þ xð2Þ þ � � � þ xðkÞÞ ¼ ðlxð1Þ þ l2xð2Þ þ � � � þ lkxðkÞÞ:ð2:2Þ

The natural number

Q ¼ 2þ
Xk
j¼1

j dimVj

is usually called the homogeneous dimension of G with respect to dl. We set

jxjG ¼
�Xk

j¼1

XdimVj

i¼1

ðxð jÞi Þ
2k!
j

� 1
2k!

; kðx; tÞkG ¼ ðjxj2k!G þ jtjk!Þ
1
2k!;

and we observe that the above functions are dl-homogeneous of degree 1, respec-
tively on RN and RNþ1:

jðlxð1Þ þ � � � þ lkxðkÞÞjG ¼ ljxjG; kdlðx; tÞkG ¼ lkðx; tÞkG;
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for every ðx; tÞ a RNþ1 and for any l > 0. We define the quasi-distance in G as

dðz; zÞ :¼ kz�1 � zkG; for all z; z a RNþ1;ð2:3Þ

and we recall that, for a positive constant c,

i) dðz; zÞa c dðz; zÞ for all z; z a RNþ1;
ii) dðz; zÞa c ðdðz; z1Þ þ dðz1; zÞÞ for all z; z1; z a RNþ1.

Moreover,

dðdlz; dlzÞ ¼ l dðz; zÞ; for all z; z a RNþ1; l > 0:

Throughout the paper we shall write dðzÞ instead of dð0; zÞ ¼ kz�1kG. Obviously,
from i), we have

c�1kzkG a dðzÞa ckzkG:

We also use the following notation for the j � jG-ball of radius r > 0 centered at
the origin:

Br ¼ fx a RN j jxjG < rg:

We recall the following weak maximum principle on strips (see e.g. [6,
Theorem 4.1] for an elementary proof based on suitable mean-value representa-
tion formulas).

Proposition 2.1. Let u a C2ðRN � �0;T ½Þ. If Lub 0, lim sup ua 0 both in
RN � f0g and at infinity, then ua 0 in the whole strip.

We next collect some useful facts on the fundamental solution of the hypo-
elliptic operator L. If Gð�; zÞ is the fundamental solution of L with pole in
z a RNþ1, then G is smooth out of the pole and has the following properties
(see [12]):

i) for any z a RNþ1, Gð�; zÞ and Gðz; �Þ belong to L1
locðRNþ1Þ;

ii) Gðz; zÞb 0, and Gðx; t; x; tÞ > 0 if, and only if, t > t;
iii) for every j a Cl

0 ðRNÞ and x a RN we have

lim
t!tþ

Z
RN

Gðx; t; x; tÞ jðxÞ dx ¼ jðxÞ;

iv) for every j a Cl
0 ðRNþ1Þ and z a RNþ1 we have

L

Z
RNþ1

Gðz; zÞ jðzÞ dz ¼
Z
RNþ1

Gðz; zÞLjðzÞ dz ¼ �jðzÞ;

v) LGð�; zÞ ¼ �dz, where dz is the Dirac measure supported at fzg;
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vi) for every ðx; tÞ; ðx; tÞ a RNþ1 such that t > t we haveZ
RN

Gðx; t; x; tÞ dx ¼ 1;

Z
RN

Gðx; t; x; tÞ dx ¼ 1;

vii) for every ðx; tÞ; ðx; tÞ a RNþ1 and s a R such that t < s < t we have

Gðx; t; x; tÞ ¼
Z
RN

Gðx; t; y; sÞGðy; s; x; tÞ dy;

viii) the function G�ðz; zÞ :¼ Gðz; zÞ is the fundamental solution of the adjoint
L� of L.

Moreover, G is invariant with respect to the left translations and to dilations of
the Lie group:

Gðz; zÞ ¼ Gðz�1 � z; 0Þ ¼: Gðz�1 � zÞ; z; z a RNþ1; zA z;

GðdlðzÞÞ ¼ l2�QGðzÞ; z a RNþ1 n f0g; l > 0:
ð2:4Þ

We recall then the following result related to the Cauchy problem for L, ob-
tained by Kogoj and Lanconelli (see [14, Proposition 2]):

Theorem 2.2. Let j a CðRNÞ satisfying jðxÞ ¼ OðjxjnÞ as jxj ! l, for some
n a N. Then the function

uðx; tÞ ¼
Z
RN

Gðx; t; x; tÞjðxÞ dx; x a RN ; t > t

is well defined and is a solution to the Cauchy problem

Lu ¼ 0 in RN � �t;l½;
lim

ðx;tÞ!ðy;tÞ
uðx; tÞ ¼ jðyÞ; for every y a RN :

(

The main tools we shall employ in the proof of our results are the following
pointwise estimates of G and its derivatives, proved by Kogoj and Lanconelli.
There exists a positive constant C such that

Gðx; t; x; tÞa C

ðt� tÞ
Q�2
2

exp

�
� d 2ððx; tÞ�1 � ðx; tÞÞ

Cðt� tÞ

�
;ð2:5Þ

for every x; x a RN and t > t (see [12, (5.1)] and also [14, (2)]). Moreover, as a
consequence of a Harnack-type inequality for non-negative solution to Lu ¼ 0,
for any j ¼ 1; . . . ;m there exists cj > 0 with

jXjGðx; t; x; tÞja cjðt� tÞ�
1
2 G

�
ðx; tÞ�1 � ðx; tÞ �

�
0;� t� t

2

��1�
;ð2:6Þ
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for all x; x a RN , t > t (see (7) in [14]). We point out that the upper bound in (2.5)
is not the best possible. Indeed, in [7] it is given a more precise asymptotic be-
havior of the exponent in terms of the value function V of the following optimal
control problem related to the ordinary di¤erential equation in (1.2):

Definition 2.3. Let ðx; tÞ; ðy; sÞ a RNþ1, t > s, and let gððx; tÞ; ðy; sÞ;oÞ be any
L-admissible path connecting ðx; tÞ with ðy; sÞ:

g0ðtÞ ¼
Xm
k¼1

okðtÞXkðgðtÞÞ þ YðgðtÞÞ; gð0Þ ¼ ðx; tÞ; gðt� sÞ ¼ ðy; sÞ:

We consider the set of functions o1; . . . ;om as the control of the path g, and the
integral

FðoÞ ¼
Z t�s

0

ðo2
1ðtÞ þ � � � þ o2

mðtÞÞ dt

as its cost. We then define the value function

Vðx; t; y; sÞ ¼ inffFðoÞ j gððx; tÞ; ðy; sÞ;oÞ is an L-admissible pathg:

Hence, if V is locally Lipschitz continuous, for every e > 0 there exists a posi-
tive constant Ce, only depending on the vector fields X1; . . . ;Xm, Y and on e, such
that

Gðx; t; 0; 0Þa Ce

t
Q�2
2

exp
�
� 1

32
Vðð0; etÞ � ðx; tÞ � ð0; etÞ; 0; 0Þ

�
;

for all ðx; tÞ a RN� Rþ (see [7, Theorem 1.6]). On the other hand, Theorem 1.2 of
[5] provides a lower bound of G, also stated in terms of V : there exists two con-
stants C > 0 and y a �0; 1½ only depending on L, such that

Gðx; t; 0; 0Þb 1

C t
Q�2
2

exp ð�CVðx; y2t; 0; 0ÞÞ; o ðx; tÞ a RN� Rþ:ð2:7Þ

Remark 2.4. With these more careful Gaussian estimates at hands, maybe it
is possible to improve Theorem 1.1. Indeed, by comparing (2.7) with (2.5), we
deduce that

Vðx; y2t; 0; 0Þb c0
jxj2G
t

; x a RN ; t > 0;

for a positive constant c0. Thus, a growth condition on u� v in terms of V of this
kind: Z T

0

Z
RN

e�cVðx;t;0;0Þjuðx; tÞ � vðx; tÞj dx dt < l; t a Rþ;
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is sharper than (1.5). However, working with V yields some technical problems,
mainly due to the fact that we do not always know explicitly the expression of V .
We plan to check on this in a forthcoming paper.

3. Proof of the main results

The purpose of this section is the proof of Theorems 1.1 and 1.2, our main
results. We start with a lemma.

Lemma 3.1. Let u; v a CðRN � ½0;T �Þ be two solutions of the Cauchy problem
(1.4). If we set w ¼ u� v, then there exists a positive constant C such that

jwðx; tÞjaC

Z t

0

Z
RNnBR

jwðx; tÞj
�
Gðx; t; x; tÞ þ

Xm
j¼1

jXjGðx; t; x; tÞj
�
dx dt;ð3:1Þ

for every ðx; tÞ a RN � �0;T ½ and R > jxjG.

Proof. Since the vector fields Xj ¼
PN

k¼1 a
j
kqxk for j ¼ 0; . . . ;m are dl-homoge-

neous of a positive degree, the coe‰cient a j
kðxÞ does not depend of xk, for any

k ¼ 1; . . . ;N. As a consequence, the Xj’s are divergence free, X
�
j ¼ �Xj and

X 2
j ¼ div ðA j‘Þ

where A j is the square matrix ða j
ha

j
kÞh;kaN and ‘ ¼ ðqx1 ; . . . qxN Þ. Thus the oper-

ator L takes the following form

L ¼ div ðA‘Þ þ Y ;

for the N �N symmetric matrix A ¼ ðah;kÞh;kaN ¼
Pm

j¼1 A
j, and Y has null di-

vergence in RNþ1. Note that we can write L� ¼ div ðA‘Þ � Y . Furthermore,
it holds

3AðxÞx; x4 ¼
Xm
j¼1

3XjðxÞ; x42; for every x; x a RN :ð3:2Þ

We consider the following Green’s identity:

cLw� wL�c ¼
XN
h;k¼1

qxhðah;kðcqxkw� wqxkcÞÞð3:3Þ

þ
XN
k¼1

qxkða0k wcÞ � qtðwcÞ;

for any w;c a Cl
0 ðRNþ1Þ.

Now, let ðx; tÞ a R� �0;T ½ be fixed. For any R > jxjG we consider
hR a Cl

0 ðBRþ1Þ, 0a hR a 1, such that hRC 1 on BR and with first and second
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order derivatives bounded uniformly w.r.t. R. We integrate the Green’s
identity (3.3) with w ¼ u� v and cðx; tÞ ¼ hRðxÞGðx; t; x; tÞ over the domain
fz a RNþ1 j x a BRþ1; 0 < t < t� dg, for some d > 0. Recalling that Lw ¼ 0
and using the divergence theorem, we get

�
Z t�d

0

Z
BRþ1

wðx; tÞL�cðx; tÞ dx dt

¼ �
Z
BRþ1

wðx; t� dÞhRðxÞGðx; t; x; t� dÞ dxþ
Z
BRþ1

wðx; 0ÞhRðxÞGðx; t; x; 0Þ dx

þ
XN
h;k¼1

Z t�d

0

Z
qBRþ1

ah;kðxÞðcðx; tÞqxkwðzÞ � wðzÞqxkcðx; tÞÞnh dsðzÞ

þ
XN
k¼1

Z t�d

0

Z
qBRþ1

a0kðxÞwðzÞcðx; tÞnk dsðzÞ:

By hypothesis, the last three terms in the above equation are null. Hence, as d
tends to 0þ, by using the property vi) of G and (2.5), we obtain

wðx; tÞ ¼ lim
d!0þ

Z
BRþ1

wðx; t� dÞhRðxÞGðx; t; x; t� dÞ dx

¼
Z t

0

Z
BRþ1

wðx; tÞL�cðx; tÞ dx dt:

Being L�Gðx; t; x; tÞ ¼ 0 and suppðqxkhRÞHBRþ1n BR, we obtain

wðx; tÞ ¼
Z t

0

Z
RNnBR

wðx; tÞðGðx; t; x; tÞL�hRðxÞ

þ 23AðxÞ‘Gðx; t; x; tÞ;‘hRðxÞ4Þ dx dt:

Now (3.1) directly follows from the above equation, by using the Cauchy-
Schwartz inequality and (3.2). The assertion is proved. r

As a simple corollary of the previous lemma, we have the following

Proposition 3.2. Let u; v a CðRN � ½0;T �Þ be two solutions of the Cauchy
problem (1.4). If

Z t

0

Z
RN

juðx; tÞ � vðx; tÞj
�
Gðx; t; x; tÞ þ

Xm
j¼1

jXjGðx; t; x; tÞj
�
dx dt < lð3:4Þ

for every ðx; tÞ a RN � �0;T ½ , then uC v.
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Proof. Condition (3.4) implies

lim
R!l

Z t

0

Z
RNnBR

juðx; tÞ � vðx; tÞj
�
Gðx; t; x; tÞ þ

Xm
j¼1

jXjGðx; t; x; tÞj
�
dx dt ¼ 0;

then, by (3.1), uC v in the strip RN � �0;T ½. This ends the proof. r

As we will see, the hypothesis of Theorem 1.1 is another condition which, like
(3.4), together with Lemma 3.1 implies the uniqueness of the solution of the
Cauchy problem (1.4).

Proof of Theorem 1.1. Let u; v a CðRN � ½0;T �Þ be two solutions to the
Cauchy problem (1.4). We first prove that uC v in a thin strip RN � �0; e½, where
e a �0;minf1;Tg� will be suitably chosen later.

Let ðx; tÞ a RN � �0; e½ be fixed. Aiming to use (3.1), we estimate the funda-
mental solution G with pole in ðx; tÞ a RN � �0; t½ valued in ðx; tÞ, and every
XjGðx; t; x; tÞ’s.

By using the pseudo-triangular inequality for d, we get

dððx; tÞ�1 � ðx; tÞÞb c�1dð0; ðx; tÞ�1Þ � dððx; tÞ�1 � ðx; tÞ; ðx; tÞ�1Þ
¼ c�1kðx; tÞkG � kðx; tÞkG b c�1jxjG � kðx; tÞkG b ð2 cÞ�1jxjG;

if we take jxjG b 2c sup0<t<T kðx; tÞkG ¼: R1ðxÞ. Hence, by the Gaussian estimate
(2.5),

Gðx; t; x; tÞa C

ðt� tÞ
Q�2
2

exp

�
� jxj2G
4c2Cðt� tÞ

�
; if jxjG bR1ðxÞ:ð3:5Þ

On the other hand, (2.6) and (2.5) imply that for any j ¼ 1; . . . ;m there exists a
positive constant cj such that

jXjGðx; t; x; tÞja
cjC

ðt� tÞ
Q�1
2

exp

�
�
d 2ððx; tÞ�1 � ðx; tÞ � ð0;� t�t

2 Þ
�1Þ

Cðt� tÞ

�
;

see also (2) in [14]. With the same argument as above, we have

dððx; tÞ�1 � ðx; tÞ � ð0;�t�t
2 Þ

�1Þ
b c�1dð0; ðx; tÞ�1 � ðx; tÞÞ � kð0;�t�t

2 Þ
�1kG

b c�1ðc�1jxjG � kðx; tÞkGÞ � kd ffiffiffiffiffiffiffiffiffiffiffiffi
ðt�tÞ=2

p ðð0;�1Þ�1ÞkG
> c�2jxjG � c�1kðx; tÞkG � dðð0;�1ÞÞ

ffiffiffiffiffiffiffiffiffi
T=2

p
b ð

ffiffiffi
2

p
cÞ�2 jxjG;
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for jxjGbR1ðxÞ þ c2dðð0;�1ÞÞ
ffiffiffiffiffiffiffi
2T

p
¼: RðxÞ. It follows that, for every j ¼

1; . . . ;m,

jXjGðx; t; x; tÞja
cjC

ðt� tÞ
Q�1
2

exp

�
� jxj2Gffiffiffi

2
p

cCðt� tÞ

�
; if jxjG bRðxÞ:ð3:6Þ

As a consequence, from (3.1), (3.5) and (3.6),

juðx; tÞ � vðx; tÞj

aC

Z t

0

Z
RNnBR

juðx; tÞ � vðx; tÞj
�
Gðx; t; x; tÞ þ

Xm
j¼1

jXjGðx; t; x; tÞj
�
dx dt

aC1

Z t

0

Z
RNnBR

juðx; tÞ � vðx; tÞj 1

ðt� tÞ
Q�1
2

exp

�
� C2jxj2G

t� t

�
dx dt;

for every R > maxfjxjG;RðxÞg, where C1;C2 are two positive constants only
dependent on c and on the operator L. Now set e ¼ minfC2

2c ; 1;Tg, where c > 0

is the constant in (1.5). Since the function ðx; tÞ N ðt� tÞ�
Q�1
2 exp

�
� C2jxj2G

2ðt�tÞ
�
is

bounded on ðRN nBRÞ � �0;T ½, by the choice of e we get

juðx; tÞ � vðx; tÞjaC3

Z t

0

Z
RNnBR

e�cjxj2G juðx; tÞ � vðx; tÞjdxdt;

for all R > maxfjxjG;RðxÞg. On the other hand, hypothesis (1.5) implies that

lim
R!l

Z t

0

Z
RNnBR

e�cjxj2G juðx; tÞ � vðx; tÞjdx dt ¼ 0;

whence uðx; tÞ ¼ vðx; tÞ for every ðx; tÞ a RN � �0; e½. The thesis follows by repeat-
ing the previous argument finitely many times (note that e depends only on c, on
the constant c in (1.5) and on the operator L). r

In order to prove Theorem 1.2, we need a preliminary result.

Lemma 3.3. Let u a CðRN� ½0;T �Þ be a non-negative solution of Lu ¼ 0 in
RN � �0;T ½. Then

uðx; tÞb
Z
RN

Gðx; t; x; tÞuðx; tÞ dx;

for every ðx; tÞ a RN � �0;T ½ and 0 < t < t.

Proof. Fix t a �0;T ½. For every n a N and ðx; tÞ a RN � �t;T ½, set

unðx; t; tÞ :¼
Z
RN

Gðx; t; x; tÞh
�
jxjG
n

�
uðx; tÞ dx;
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where h a ClðRÞ is a fixed non-increasing cut-o¤ function such that hðsÞ ¼ 1 if
sa 1 and hðsÞ ¼ 0 if sb 2. By Theorem 2.2, we know that un is a solution to the
Cauchy problem

Lunð�; tÞ ¼ 0 in RN � �t;T ½;
lim

ðx;tÞ!ðy;tÞ
unðx; t; tÞ ¼ h

�jyjG
n

�
uðy; tÞ; for every y a RN :

(

Furthermore, by the estimate (2.5),

0a unðx; t; tÞð3:8Þ

a
C

ðt� tÞ
Q�2
2

Z
RN

exp

�
� d 2ððx; tÞ�1 � ðx; tÞÞ

Cðt� tÞ

�
h

�
jxjG
n

�
uðx; tÞ dx

a
C

ðt� tÞ
Q�2
2

Z
B2n

exp

�
� d 2ððx; tÞ�1 � ðx; tÞÞ

Cðt� tÞ

�
uðx; tÞ dx:

Recalling the properties of the quasi-distance d, we obtain

dððx; tÞ�1 � ðx; tÞÞb c�1dððx; tÞ�1 � ðx; tÞ; 0Þb c�2kðx; tÞkG � c�1kðx; tÞkG
b c�2jxjG � c�1ðð2nÞ2k! þ Tk!Þ

1
2k!;

so that, by (3.8),

0a unðx; t; tÞ

a max
B2n

uð�; tÞCmeasðB2nÞ
ðt� tÞ

Q�2
2

exp

�
� ðc�1jxjG � ðð2nÞ2k! þ Tk!Þ

1
2k!Þ2

c2Cðt� tÞ

�
�! 0

as jxjG ! l. We now apply the weak maximum principle to the L-harmonic
function vn ¼ unð�; tÞ � u in the strip RN � �t;T ½. Indeed, we have limðx;tÞ!ðy;tÞ
vnðx; tÞa 0 for every y a RN being ha 1, and lim sup vn a 0 at infinity in the
strip, recalling that ub 0. The maximum principle of Proposition 2.1 then gives

0a unðx; t; tÞa uðx; tÞ; for every ðx; tÞ a RN � �t;T ½:

Letting n go to infinity, from the above inequality we obtain (3.7), since

unðx; t; tÞ %
Z
RN

Gðx; t; x; tÞuðx; tÞ dx as n ! l

by monotone convergence. This accomplishes the proof. r

Proof of Theorem 1.2. We first show that, if u a CðRN � ½0;T �Þ is a non-
negative solution of Lu ¼ 0 on the strip RN � �0;T ½ then
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Z t

0

Z
RN

uðx; tÞ
�
Gðx; t; x; tÞ þ

Xm
j¼1

jXjGðx; t; x; tÞj
�
dx dt < lð3:9Þ

for every ðx; tÞ a RN��0; 23 T ½. Indeed, by integrating the inequality (3.7) with
respect to t a �0; t½, we obtainZ t

0

Z
RN

uðx; tÞGðx; t; x; tÞ dx dta uðx; tÞ t < l; for all ðx; tÞ a RN � �0;T ½:

On the other hand, from (2.6) it follows thatZ t

0

Z
RN

uðx; tÞ
Xm
j¼1

jXjGðx; t; x; tÞj dx dt

aC

Z t

0

1ffiffiffiffiffiffiffiffiffiffi
t� t

p
�Z

RN

uðx; tÞG
�
ðx; tÞ �

�
0;� t� t

2

��1

; x; t

�
dx

�
dt

aC

Z t

0

1ffiffiffiffiffiffiffiffiffiffi
t� t

p u

�
ðx; tÞ �

�
0;� t� t

2

��1�
dtaC Cx;t 2

ffiffi
t

p
< l;ðby ð3:7ÞÞ

for every ðx; tÞ a RN��0; 23 T ½. In the last but one inequality we have used that,
since u is a continuous function on RN � ½0;T �, there exists a constant Cx;t > 0
such that

u

�
ðx; tÞ �

�
0;� t� t

2

��1�
a sup

t a ½0;t�
u

�
Sðx; t; tÞ; 3t� t

2

�
¼: Cx;t < l:

Hence, (3.9) is proved.
We next conclude the proof of the theorem. Let u; v a CðRN � ½0;T �Þ be two

non-negative solutions to the Cauchy problem (1.4). As ju� vja uþ v, the first
part of the proof yields condition (3.4) for every ðx; tÞ a RN��0; 23 T ½, whence
uC v in RN � ½0; 23 T � by Proposition 3.2. We repeat the above argument, and
we find, at the n-th step,

uC v in RN�
	
0;

�
1� 1

3nþ1

�
T



:

This proves the theorem. r
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