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Abstract. — We present pointwise gradient bounds for solutions to p-Laplacian type non-

homogeneous equations employing non-linear Wol¤ type potentials, and then prove similar bounds,
via suitable caloric potentials, for solutions to parabolic equations. A method of proof entails a

family of non-local Caccioppoli inequalities, together with a DeGiorgi’s type fractional iteration.
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1. The classical setting and a zero order estimate

In this note we describe some of the results and techniques developed in the pa-
pers [12, 22], which give a complete non-linear analog of the classical pointwise
gradient estimates valid for the Poisson equation

�4u ¼ m in Rn;ð1:1Þ

where m is in the most general case a Radon measure with finite total mass. More-
over, the estimates we present hold for non-linear parabolic equations. At the
same time our results give a somehow unexpected but natural maximal order—
and parabolic—version of a by now classical result due to Kilpeläinen & Malý
[17] and later extended, by mean of a di¤erent approach, by Trudinger & Wang
[24]. To better frame our setting, let us recall a few basic linear results concerning
the basic example (1.1)—here for simplicity considered in the whole Rn—for
which, due to the use of classical representation formulas, it is possible to get
pointwise bounds for solutions via the use of Riezs potentials

IbðmÞðxÞ :¼
Z
Rn

dmðyÞ
jx� yjn�b

; b a ð0; n�ð1:2Þ

such as

juðxÞja cI2ðjmjÞðxÞ; and jDuðxÞja cI1ðjmjÞðxÞ:ð1:3Þ



We recall that the equivalent, localized version of the Riesz potential IbðmÞðxÞ is
given by the linear potential

I
m
b ðx0;RÞ :¼

Z R

0

mðBðx0; %ÞÞ
%n�b

d%

%
; b a ð0; n�ð1:4Þ

with Bðx0; %Þ being the open ball centered at x0, with radius %. In fact, it is not
di‰cult to see that

I
m
b ðx0;RÞk

Z
BRðx0Þ

dmðyÞ
jx0 � yjn�b

¼ IbðmCBðx0;RÞÞðx0Þa IbðmÞðx0Þð1:5Þ

holds provided m is a non-negative measure. A question is now, is it possible to
give an analogue of estimates (1.3) in the case of general quasilinear equations
such as for instance, the degenerate p-Laplacian equation

�divðjDujp�2
DuÞ ¼ m?ð1:6Þ

A first answer has been given in the papers [17, 24], where—for suitably de-
fined solutions to (1.6)—the authors prove the following pointwise zero order
estimate—i.e. for u—when pa n, via non-linear Wol¤ potentials:

juðx0Þja c
�
�
Z
Bðx0;RÞ

jujp�1
dx

�1=ðp�1Þ
þ cW

m
1;pðx0; 2RÞ;ð1:7Þ

where the constant c depends on the quantities n, p, and

W
m
b;pðx0;RÞ :¼

Z R

0

� jmjðBðx0; %ÞÞ
%n�bp

�1=ðp�1Þ d%

%
b a ð0; n=p�;ð1:8Þ

is the non-linear Wol¤ potential of m. Of course we are here using the standard
notation concerning integral averages

�
Z
Bðx0;RÞ

jujq dx :¼ 1

jBðx0;RÞj

Z
Bðx0;RÞ

jujq dx:

Estimate (1.7), which extends to a whole family of general quasi-linear equations,
and which is commonly considered as a basic result in the theory of quasi-linear
equations, is the natural non-linear analogue of the first linear estimate appearing
in (1.3). Here we present the non-linear analogue of the second estimate in (1.3),
thereby giving a pointwise gradient estimate via non-linear potentials which up-
grades (1.8) up to the gradient/maximal level.

2. Degenerate elliptic estimates

In this section the growth exponent p will be a number such that pb 2, we shall
therefore treat possibly degenerate elliptic equations when pA 2. Specifically, we
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shall consider general non-linear, possibly degenerate equations with p-growth of
the type

�div aðx;DuÞ ¼ m:ð2:1Þ

whenever m is a Radon measure with finite total mass defined on W; eventually
letting mðRnnWÞ ¼ 0, without loss of generality we may assume that m is defined
on the whole Rn. The continuous vector field a : W� Rn ! Rn is assumed to be
C1-regular in the gradient variable z, with azð�Þ being Carathéodory regular and
satisfying the following growth, ellipticity and continuity assumptions:8>><

>>:
jaðx; zÞj þ jazðx; zÞjðjzj2 þ s2Þ1=2 aLðjzj2 þ s2Þðp�1Þ=2

n�1ðjzj2 þ s2Þðp�2Þ=2jlj2 a 3azðx; zÞl; l4
jaðx; zÞ � aðx0; zÞjaL1oðjx� x0jÞðjzj2 þ s2Þðp�1Þ=2;

ð2:2Þ

whenever x; x0 a W and z; l a Rn, where 0 < na 1aL and sb 0, L1 b 1 are
fixed parameters. Here o : ½0;lÞ ! ½0;lÞ is a modulus of continuity i.e. a non-
decreasing function such that oð0Þ ¼ 0 and oð�Þa 1. On such a function we im-
pose a natural decay property, which is essentially optimal for the result we are
going to have, and prescribes a Dini continuous dependence of the partial map
x 7! aðx; zÞ=ðjzj þ sÞp�1: Z R

0

½oð%Þ�2=p d%
%

:¼ dðRÞ < l;ð2:3Þ

for some R > 0. The prototype of (2.1) is—choosing s ¼ 0 and omitting the
x-dependence—clearly given by the p-Laplacian equation (1.6). In the following,
when a measure m actually turns out to be an L1-function, we shall use the stan-
dard notation

jmjðAÞ :¼
Z
A

jmðxÞj dx;

whenever A is a measurable set on which m is defined.
In this paper we shall present our results in the form of a priori estimates—i.e.

when solutions and data are taken to be more regular than needed, for instance
u a C1ðWÞ and m a L1ðWÞ—but they actually hold, via a standard approximation
argument, for general weak and very weak solutions—i.e. distributional solutions
which are not in the natural space W 1;pðWÞ—to measure data problems such as,
for instance

�div aðx;DuÞ ¼ m in W

u ¼ 0 on qW;

�
ð2:4Þ

where m is a general Radon measure with finite total mass, defined on W. The rea-
son for such a choice is that the approximation argument in question leads to dif-
ferent notions of solutions, according to the regularity/integrability properties of
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the right hand side m. We do not want to enter in such details too much, for which
we refer to [12, 22], and therefore we confine ourselves to the neat a priori esti-
mate form of the results.

For instance, in the case (2.4) with m being a genuinely Radon measure, in
[12, 22] we consider the so called Solutions Obtained by Limit of Approxima-
tions (SOLA), which is a standard class considered when dealing with measure
data problems. Such solutions are in particular unique in the case p ¼ 2, as
proved in [6, 25]. Finally, if the right hand side of (2.1) is integrable enough to
deduce that m a W�1;p 0 ðWÞ, then our results apply to general weak energy solu-
tions u a W 1;pðWÞ to (2.1).

The first result we present is now

Theorem 2.1 (Non-linear potential gradient bound). Let u a C1ðWÞ, be a weak
solution to (2.1) with m a L1ðWÞ, under the assumptions (2.2). Then there exists a
constant cC cðn; p; n;L;L1Þ > 1, and a positive radius R0CR0ðn; p; n;L;L1;oð�ÞÞ
such that the pointwise estimate

jDuðx0Þja c
�
�
Z
Bðx0;RÞ

ðjDuj þ sÞp=2 dx
�2=p

þ cW
m
1=p;pðx0; 2RÞð2:5Þ

holds whenever Bðx0; 2RÞJW, and RaR0. Moreover, when the vector field að�Þ is
independent of x—and in particular for the p-Laplacian operator (1.6)—estimate
(2.5) holds with no restriction on R.

The potential Wm
1=p;p appearing in (2.5) is the natural one since its shape re-

spects the scaling properties of the equation with respect to the estimate in ques-
tion; compare with the linear estimates (1.3). When extended to general weak so-
lutions estimate (2.5) tells us the remarkable fact that the boundedness of Du at a
point x0 is independent of the solution u, and of the vector field að�Þ considered, but
only depends on the behavior of jmj in a neighborhood of x0.

A particularly interesting situation occurs in the case p ¼ 2, when we have a
pointwise potential estimate which is completely similar to the second one in
(1.3), and that we think deserves a statement of its own, that is

Theorem 2.2 (Linear potential gradient bound). Let u a C1ðWÞ, be a weak
solution to (2.1) with m a L1ðWÞ, under the assumptions (2.2) considered with
p ¼ 2. Then there exists a constant cC cðn; p; n;L;L1Þ > 0, and a positive radius
R0CR0ðn; p; n;L;L1;oð�ÞÞ such that the pointwise estimate

jDuðx0Þja c�
Z
Bðx0;RÞ

ðjDuj þ sÞ dxþ cI
jmj
1 ðx0; 2RÞð2:6Þ

holds whenever Bðx0; 2RÞJW, and RaR0. Moreover, when the vector field að�Þ is
independent of the variable x, estimate (2.6) holds with no restriction on R.

Beside their intrinsic theoretical interest, the point in estimates (2.5)–(2.6) is
that they allow to unify and recast essentially all the gradient Lq-estimates for
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quasilinear equations in divergence form; moreover they allow for an immediate
derivation of estimates in intermediate spaces such as interpolation spaces. We
refer to the recent survey [21] for an account of such estimates. Indeed, by (2.5)
it is clear that the behavior of Du can be controlled by that Wm

1=p;p, which is in
turn known via the behavior of Riesz potentials. In fact, this is a consequence of
the pointwise bound of the Wol¤ potential via the Havin-Maz’ja non linear po-
tential [4, 14, 3], that is

W
m
1=p;pð�;lÞ ¼

Z l

0

� jmjðBðx0; %ÞÞ
%n�1

�1=ðp�1Þ d%

%
ð2:7Þ

a cI1=pf½I1=pðjmjÞ�1=ðp�1Þgðx0Þ:

Ultimately, thanks to (2.7) and to the well-known properties of the Riesz poten-
tials, we have

m a Lq ) W
m
1=p;p a Lnqðp�1Þ=ðn�qÞ q a ð1; nÞ;ð2:8Þ

while Marcinkiewicz spaces must be introduced for the borderline case q ¼ 1.
Inequality (2.8) immediately allows to recast the classical gradient estimates for
solutions to (2.4) such as those due to Boccardo & Gallöuet [7, 8]—when q
is ‘‘small’’—and Iwaniec [16] and DiBenedetto & Manfredi [10]—when q is
‘‘large’’—that is, for solutions to (2.4) it holds that

m a Lq ) Du a Lnqðp�1Þ=ðn�qÞ q a ð1; nÞ:

Moreover, since the operator m 7! W
m
1=p;p is obviously sub-linear, using the esti-

mates related to (2.8) and classical interpolation theorems for sub-linear opera-
tors one immediately gets estimates in refined scales of spaces such Lorentz or
Orlicz spaces, recovering some estimates of Talenti [23], but directly for the gra-
dient of solutions, rather than for solutions themselves.

Another point of Theorem 2.1 is that it allows to prove an essentially optimal
Lipschitz continuity criterium with respect to the regularity of coe‰cients (2.3),
that is

W
m
1=p;pð�;RÞ a LlðWÞ; for some R > 0 ) Du a Ll

locðW;RnÞ;ð2:9Þ

and moreover the local bound

jjDujjLlðBR=2Þ a c
�
�
Z
Bðx0;RÞ

ðjDuj þ sÞp=2 dx
�2=p

þ cjjWm
1=p;pð�;RÞjjLlðBRÞð2:10Þ

holds whenever B2R JW.
We finally recall that another consequence of the classical estimate (2.7) and

of (2.5) is

jDuðx0Þja c
�
�
Z
Bðx0;RÞ

ðjDuj þ sÞp=2 dx
�2=p

þ cI1=pf½I1=pðjmjÞ�1=ðp�1Þgðx0Þ;ð2:11Þ
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which holds whenever Bðx0; 2RÞHW satisfies the conditions imposed in Theorem
2.1. Here we recall the reader that we have previously extended m to the whole
space Rn.

3. Parabolic first, and zero order estimates

Our aim here is not only to give a parabolic version of the elliptic estimate (2.5),
but also to give a zero order estimate, that is the parabolic analog of the zero
order elliptic estimate [17], the validity of which was yet considered to be an open
issue. We consider quasilinear parabolic equations of the type

ut � div aðx; t;DuÞ ¼ m;ð3:1Þ

in a cylindrical domain WT :¼ W� ð�T ; 0Þ, where as in the previous section
WHRn, nb 2 and T > 0. The vector-field a : WT � Rn ! Rn is assumed to be
Carathèodory regular together with azð�Þ, and indeed being C1-regular with
respect to the gradient variable z a Rn, and satisfying the following standard
growth, ellipticity/parabolicity and continuity conditions:

jaðx; t; zÞj þ jazðx; t; zÞjðjzj þ sÞaLðjzj þ sÞ
njlj2 a 3azðx; t; zÞl; l4
jaðx; t; zÞ � aðx0; t; zÞjaL1oðjx� x0jÞðjzj þ sÞ

8><
>:ð3:2Þ

for every choice of x; x0 a W, z; l a Rn and t a ð�T ; 0Þ; here the function
o : Rþ ! Rþ is as in (2.2)3. Note that anyway we are assuming no continuity
on the map t 7! að�; t; �Þ, which is considered to be a priori only measurable. In
other words we are considering the analog of assumptions (2.2) for p ¼ 2; the
reason we are adopting this restriction is that when dealing with the evolutionary
p-Laplacian operator estimates assume the usual form only when using so called
‘‘intrinsic cylinders’’, according the parabolic p-Laplacian theory developed by
DiBenedetto [9]. These are—unless p ¼ 2 when they reduce to the standard par-
abolic ones—cylinders whose size locally depends on the size of the solutions it-
self, therefore a formulation of the estimates via non-linear potentials—whose
definition is built essentially using a standard family of balls and it is therefore
‘‘universal’’—is not immediate and will be the object of future investigation. We
refer to [1] for global gradient estimates.

In order to state our results we need some additional terminology. Let us re-
call that given points ðx; tÞ; ðx0; t0Þ a Rnþ1 the standard parabolic metric is de-
fined by

dparððx; tÞ; ðx0; t0ÞÞ :¼ maxfjx� x0j;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jt� t0j

p
gQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx� x0j2 þ jt� t0j

q
ð3:3Þ

and the related metric balls with radius R with respect to this metric are given by
cylinders Bðx0;RÞ � ðt0 � R2; t0 þ R2Þ. The ‘‘caloric’’ Riesz potential—compare
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with elliptic one defined in (1.2), and with [2], for instance—is now built starting
from (3.3)

IbðmÞððx; tÞÞ :¼
Z
Rnþ1

dmðð~xx; ~ttÞÞ
dparðð~xx; ~ttÞ; ðx; tÞÞN�b

; 0 < baN :¼ nþ 2;ð3:4Þ

whenever ðx; tÞ a Rnþ1. In order to be used in estimates for parabolic equations,
it is convenient to introduce its local version via the usual backward parabolic
cylinders—with ‘‘vertex’’ at ðx0; t0Þ—that is

Qðx0; t0;RÞ :¼ Bðx0;RÞ � ðt0 � R2; t0Þ;ð3:5Þ

so that we define

I
m
b ðx0; t0;RÞ :¼

Z R

0

mðQðx0; t0; %ÞÞ
%N�b

d%

%
where b a ð0;N �:ð3:6Þ

The main result in the parabolic case is

Theorem 3.1 (Parabolic potential gradient bound). Under the assumptions
(3.2) and (2.3), let u a C0ð�T ; 0;L2ðWÞÞ be a weak solution to (3.1) with
m a LlðWTÞ and such that Du a C0ðWTÞ. Then there exists a constant
cC cðn; n;LÞ and a radius R0CR0ðn; n;L;L1;oð�ÞÞ such that the following esti-
mate:

jDuðx0; t0Þja c�
Z
Qðx0; t0;RÞ

ðjDuj þ sÞ dx dtþ cI
jmj
1 ðx0; t0; 2RÞ;ð3:7Þ

holds whenever Qðx0; t0; 2RÞJW, and RaR0. When the vector field að�Þ is inde-
pendent of the space variable x, estimate (3.7) holds with no restriction on R.

Again, as in the elliptic case, estimate (3.7) also holds for solutions to general
measure data problems as

ut � div aðx; t;DuÞ ¼ m in WT

u ¼ 0 on qparWT ;

�
ð3:8Þ

where m is a general Radon measure with finite mass on WT , that we shall again
consider to be defined in the whole Rnþ1. In the spirit of the elliptic result (2.10)
we have the following implication, which provides a boundedness criteria for the
spatial gradient, under the Dini continuity assumption for the spatial coe‰cients
stated in (2.3):

I
jmj
1 ð�;RÞ a LlðWTÞ; for some R > 0 ) Du a Ll

locðWT ;R
nÞ:ð3:9Þ

We conclude with the zero order potential estimate, which applies to general
equations of the type (3.1) when considered with a measurable dependence upon
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the coe‰cients ðx; tÞ. The relevant hypotheses here are the following standard
growth and monotonicity properties:(

jaðx; t; zÞjaLðjzj þ sÞ
njz2 � z1j2 a 3aðx; t; z2Þ � aðx; t; z1Þ; z2 � z14

ð3:10Þ

which are assumed to hold whenever ðx; tÞ a WT and z; z1; z2 a Rn. In particular,
since the pointwise bound will be derived on u, rather than on Du, we do not need
any di¤erentiability assumption on að�Þ with respect to the spatial gradient vari-
able z-variable, assumptions (3.10) are clearly weaker than (3.2).

Theorem 3.2. Under the assumptions (3.10), let u a L2ð�T ; 0;W 1;2ðWÞÞB
C0ðWTÞ be a weak solution to (3.1) with m a L1ðWTÞ. Then there exists a constant
c, depending only on n, n, L, L1 such that the following inequality holds whenever
Qðx0; t0; 2RÞJW:

juðx0; t0Þja c�
Z
Qðx0; t0;RÞ

ðjuj þ sÞ dx dtþ cI
jmj
2 ðx0; t0; 2RÞ þ cRs:ð3:11Þ

4. A non-local Caccioppoli’s inequality

In [12, 22] we have developed more than one approach to the proof of the point-
wise gradient estimates via non-linear potentials. Here we shall present one of
these, taken form [22], for the case p ¼ 2, and for simplicity restricting to equa-
tions with no coe‰cients i.e. of the type

div aðDuÞ ¼ m:ð4:1Þ

We believe that such method of proof is of independent technical interest since it
potentially applies to all those problems with a lack of full di¤erentiability, as it
will be clear in a few lines. Moreover, we shall see that in the case (4.1) estimate
(2.6) holds component-wise; see (4.11) below. The assumptions considered for
(4.1) are of course

njlj2 a 3azðzÞl; l4; jazðzÞjaL; jað0ÞjaL:ð4:2Þ

which hold whenever z; l a Rn, where 0 < naL. The presentation of this tech-
nique is indeed one of the objectives of [22]. Aiming at the explanation of a gen-
eral viewpoint, let us recall that for energy solutions u a W 1;2ðWÞ to homoge-
neous equations of the type

div aðDuÞ ¼ 0ð4:3Þ

the local boundedness of the gradient is achieved by first di¤erentiating the equa-
tion (4.3), proving that Du a W

1;2
loc ðWÞ, and then observing that v :¼ Dxu solves

the linear equation with measurable coe‰cients

divðAðxÞDvÞ ¼ 0 AðxÞ :¼ azðDuðxÞÞ:
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At this stage the boundedness of Dxv follows applying an iteration method, as for
instance the one devised in the pioneering work of DeGiorgi [11]. This is in turn
based on the use of Caccioppoli’s inequalities on level sets, that is, denoting

ðw� kÞþ :¼ maxfw� k; 0g; ðw� kÞ� :¼ maxfk � w; 0g

we have that inequalities of the typeZ
BR=2

jDðDxu� kÞþj
2
dxa

c

R2

Z
BR=2

jðDxu� kÞþj
2
dxð4:4Þ

and similar variants, for instance involving ðDxu� kÞ�, hold whenever k a R. In
turn, the iteration of such inequalities yields the boundedness of Dxu. In such
an iteration, one controls the level sets of Dxu via the higher order derivatives
DðDxu� kÞþ and Sobolev embedding theorem, building a geometric iteration in
which, at every step, the gain is dictated by the Sobolev embedding exponent.

Applying such a reasoning to the case (4.1) seems to be di‰cult, as even in the
simplest case (1.1) it is in general false that Du a W 1;1ðWÞ when the right hand
side m is just a measure, or an L1-function. On the other hand, a result of [19]
states that, although Calderón-Zygmund theory does not apply in the classical
W 1;1-sense, when considering the borderline case when m is a measure or lies in
L1, it nevertheless holds provided the right functional setting is considered, i.e.
using Fractional Sobolev spaces. Indeed, for SOLA to measure data problems
as (4.1) it holds that

Du a W 1�e;1
loc ðW;RnÞ for every e a ð0; 1Þ;ð4:5Þ

with related explicit a priori local estimates; see [19, Theorem 1.2] for precise
statements. We here recall that, for a bounded open set AHRn and k a N,
parameters a a ð0; 1Þ and q a ½1;lÞ, the fractional Sobolev space W a;qðA;RkÞ
consists of those measurable mappings w : W ! Rk such that the following
Gagliardo-type norm is finite:

jjwjjW a; qðAÞ :¼
�Z

A

jwðxÞjq dx
�1=q

þ
�Z

A

Z
A

jwðxÞ � wðyÞjq

jx� yjnþaq dx dy
�1=q

ð4:6Þ

¼: jjwjjLqðAÞ þ ½w�a;q;A < l:

With such a notation (4.5) means that

½Du�1�e;1;W 0 ¼
Z
W 0

Z
W 0

jDuðxÞ �DuðyÞj
jx� yjnþ1�e

dx dy < lð4:7Þ

holds for every e a ð0; 1Þ, and every subdomain W 0
TW; the previous quantity

is intuitively the L1-norm of the ‘‘ð1� eÞ-order derivative’’ of Du, roughly de-
notable by D1�eDu. The inequality in (4.7) let us think that Caccioppoli type
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inequality (4.4) should be replaced by a fractional order version, and using the
L1-norm, rather than the L2-one. Indeed we have the following theorem, that
we again for simplicity state under the form of a priori estimate—i.e. assuming
more regularity u a W 1;2ðWÞ and m a L2ðWÞ (this can be again removed via an
approximation scheme, and by considering suitable definitions of solutions).
Needless to say, what it matters here is the precise form of the a priori estimate.

Theorem 4.1 (Non-local Caccioppoli inequality). Let u a W 1;2ðWÞ be a
weak solution to (4.1) with m a L2ðWÞ, under the assumptions (4.2); whenever
x a f1; . . . ; ng, kb 0, and whenever BR JW is a ball with radius R, the inequality

½ðjDxuj � kÞþ�s;1;BR=2
a

c

Rs

Z
BR

ðjDxuj � kÞþ dxþ cRjmjðBRÞ
Rs

;ð4:8Þ

holds for every s < 1=2, where the constant c depends only on n, n, L, s.

Comparing (4.8) and (4.4), Theorem 4.1 tells us that for quasilinear equations
Caccioppoli’s inequalities are a robust tool that keeps holding at intermediate
derivatives/integrability levels. We do think that the idea of using non-local Cac-
cioppoli inequalities instead of the usual ones is interesting in itself as it leads to
certain types of iterations which work without fully di¤erentiating the equation;
in turn, this could apply to all those problems with a lack of full di¤erentiability.
We indeed explicitly note here that a fractional Caccioppoli inequality has been
indeed derived for notwithstanding the problems has integer order. The proof of
the inequality is developed in [22] and has as a starting point some techniques in-
troduced in [18, 19].

The idea is now rather natural: inequality (4.8) serves to start an iteration in
which, at each stage we control the level set of Dxu via the fractional derivative
DsðDxuÞ and the fractional version of Sobolev embedding theorem. We come up
again with a geometric iteration whose step is in turn dictated by the fractional
Sobolev embedding exponent. A point we want to emphasize, is that, as clearly
inferrable from [22], inequality (4.8) contains all the information about the point-
wise gradient estimate, no matter how small s is taken. As a matter of fact in the
following we are not using explicitly the fact that u is a solution, but rather the
fact that Dxu satisfies (4.8). For this reason, we shall report the next result in an
abstract way. Moreover, we think that the formulation below could be useful in
di¤erent contexts.

Theorem 4.2 (De Giorgi’s fractional iteration). Let w a L1ðWÞ be a function
with the property that there exist s a ð0; 1Þ and c1 b 1, and a Radon measure m,
such that whenever BR JW is a ball with radius R and kb 0, the inequality

½ðjwj � kÞþ�s;1;BR=2
a

c1

Rs

Z
BR

ðjwj � kÞþ dxþ c1RjmjðBRÞ
Rs

;ð4:9Þ
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holds. Then the following estimate:

jwðx0Þja c�
Z
Bðx0;RÞ

jwj dxþ cI
jmj
1 ðx0; 2RÞð4:10Þ

holds whenever Bðx0; 2RÞHW, where the constant c depends on c1, n, s.

The dependence of the constant c appearing in (4.10) is not surprisingly as fol-
lows:

lim
s!0

c ¼ l and lim
c1!l

c ¼ l:

Now we just have to conclude merging the last two theorems. Indeed, by Theorem
4.1 we have assumption (4.9) from Theorem 4.2 satisfied by wCDxu. In turn,
applying Theorem 4.2 with such a choice of w we conclude with the desired point-
wise gradient bound

jDxuðx0Þja c�
Z
Bðx0;RÞ

jDxuj dxþ cI
jmj
1 ðx0; 2RÞ:ð4:11Þ

The last estimate clearly implies (2.6), being actually stronger since it holds for
each single component of the gradient.
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