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ABSTRACT. — The classical relations of Pliicker between the invariants and singularities of a plane
curve can be expressed as two linear relations and two involving quadratic terms. The linear rela-
tions were generalised to curves in n-space already in the nineteenth century, but true generalisations
of the others were obtained only in 3-space. In this article, using the classical method of correspon-
dences, we obtain formulae in n-space corresponding to the original ones in the plane.
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INTRODUCTION

In 1834, Pliicker announced [7] four relations between the degree and class of
a plane curve with ‘ordinary’ singularities and the respective numbers of cusps,
double points, flexes and double tangents. Twenty years later, the concept of ge-
nus had emerged and the relations were enhanced by Riemann [9] and Clebsch
[4] to incorporate the genus. Some years later, the formulae were generalised to
arbitrary (reduced) plane curves by Noether [6]: the number of cusps was to be
interpreted as a sum over double points of the multiplicity minus the number of
branches, and the sum of the numbers of nodes and cusps as the ‘double point
number’: half the sum over all ‘infinitely near points’ Q of mg(mg — 1), where
mg denotes the multiplicity.

For curves in 3-dimensional space, Cayley [3] obtained formulae by applying
the above relations to the plane projection of the curve and the dual construct, a
plane section of the tangent surface. Here I draw a distinction between the linear
relations holding between genus, degree, class and numbers of cusps and flexes
and the quadratic relations expressing numbers of double points and double tan-
gents. Cayley’s argument gives a successful account of the linear relations, and
this was generalised by Veronese [11] to curves in n-space. However, it yields the
number of chords through a general point rather than the natural generalisation
of double points, the number of tangents meeting the curve again. A formula for
the latter number was given by Zeuthen [12], and attributed to Salmon.

An account of the Cayley-Pliicker formulae, and of Veronese’s work was
given in Baker’s text [1, §8, Part I]; in [2, §1, Part I] he describes the application
of the method of correspondences, and includes a proof of Zeuthen’s formula.
A well written account in modern language is given by Griffiths & Harris [5].
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For C a curve in P”, in [5, (2.4)] they define degrees di(C) and indices f;(C)
(0 <k <n—1), and establish » relations which they call the Pliicker formulae,
which are the linear relations just mentioned. In the following section [5, (2.5)]
they describe the method of correspondences and apply it to these questions for
n equal to 2 or 3. Our debt to the account of [5] will be apparent to the reader.
We now introduce the notation to be used below. Let I' be a curve of
genus g and f: " — P" an embedding with image C. The associated curve
fi:T - Glk+1,n+1)c P(A"'C"™) (0<k<n—1) is defined by taking
the exterior product of a (locally defined) vector function F : I' — C"*! defining
f and its first k derivatives with respect to a local parameter on I'. In particular,
the curve f,_;(I") is the dual curve, which we denote C¥. We can also regard
Jfx(P) as a k dimensional subspace of P", and as such it is the osculating k-space
of C at fo(P), and will be denoted O%(C). Observe that O%(CV) = O+ 1(C)".
We define the degree r(C) to be the degree of the image of f;, or equivalently
the number of osculating k-planes to C meeting a generic (n — k — 1)-plane.
Also, for P € I', we define s,f (C) to be the ramification index of f; at P, or equiv-
alently if, in some local affine co-ordinates at P, F is given by x; = ¢;t% + - -
with 0 = op < o < - -+ < o, we have sF(C) = o1 — oy — 1. We will omit the
(C) from the notations O%(C), ri(C), sf(C) except to avoid possible confusion.
We call a point for which at least one s # 0 a W point of C (here W stands
for Weierstral3). For our main results we will need to assume (as did Pliicker) that
the only W points that occur are those such that, for some i, s” =1 and s* =0
for j # i: we will call such a point a W; point, for short, and call these simple W
points.
Write s, (C) for the sum of local indices sf(C). It is immediate that r,(C) =
Fn—1-k(C) and sx(CY) = s,_1-1(C) for each k. Then the linear Pliicker formulae
are

Pt =2+ =29 —2—s,, (0<k<n-—1),

where we set r_; = r, = 0. We outline a proof, using induction and the method of
projection, in the next section.

When n = 2 these do not include all the original formulae. To generalise the
others, we define Dy_; ,_x—1 to be the set of pairs (P,Q) e I' x I with P # Q
such that the intersection O%~! 0%~ is non-empty, and write dy 1., 41 for
its cardinality. Denote also by D*"~* the set of pairs (P, Q) with P # Q where
the intersection O% N Og’k has dimension > 1 and by d*”~* its cardinality. In
each case, k runs over 1 < k <n — 1. Each invariant d is symmetric in the suf-
fices, and d%"k(C) = di—1,n—k—1(C"). Our main result Theorem 4.2 states that
under certain genericity hypotheses we have, for 0 < k < %(n —2),

dk,n—k—z = Iply_j—2 — (k + 2) (l’l — k)rk — (k + 1)(1’1 —k+ l)V,,_k_z

n—1
+23 n —é(m Dk +2)3(n—k)? = (k+3))(2g — 2).
n—k—1
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To obtain these relations we use the method of correspondences. For (P, Q) €
I' x I' define (P, Q) € Ty p—i—1 if Ofé e 05"“1 # (. In §2 we determine the nu-
merical properties of the T ,—x— and give a careful analysis of the local structure
of these correspondences at the W; points. I am indebted to Don Zagier for argu-
ments giving very clean form for this computation. In §3 we introduce the D
points, and study the local structure of the correspondences at these points. We
obtain our theorem in §4 by applying the standard formulae for numbers of coin-
cidence points and check it by counting intersection points.

1. THE LINEAR FORMULAE
We begin with a proof of

ProrosiTION 1.1. For C a reduced curve in P", we have
Tkl =2+ 11 =29 -2 -5, 0<k<n-1,
where we set r_1 = r, = 0.

ProOOF. The result for n = 2 is a consequence of the Pliicker formulae for plane
curves. We deduce it for higher values of n by induction, following essentially the
classical method of [11].

Let Cp denote a projection of C onto an (n — 1)-plane from a point P. As-
sume that P does not lie on any osculating space of dimension n — 2 of C or of
dimension n — 1 at any W point. Then the osculating spaces of Cp are the projec-
tions of those of C, so 53 (Cp) = sx(C) for 0 < k < n — 3, and Cp still has genus g.

A general point P ¢ C will lie on the osculating (n — 1)-spaces at r,_; points,
distinct from each other and from the W points. Their projections give further
W,_> points of Cp, so we have s,_»(Cp) = 5,-2(C) + r,—1(C).

Now r,(C) is the number of osculating k-planes to C meeting a generic
(n—k — 1)-plane. If P is generic, a generic (n — k — 1)-plane through P is a
generic (n — k — 1)-plane. Projecting, we deduce that r(Cp) is also the number
of osculating k-planes to Cp meeting a generic (n — k — 2)-plane, hence is equal

to I’k(C )
The relations (1.1) for k <n—1 for C now follow from those for Cp. The
final relation follows by applying this result for the dual curve CV. O

The same argument shows that if we project from a general point P € C we have
sk(Cp) = sk (C) for 0 <k <n— 3, and as ro(Cp) = ro(C) — 1, it follows from the
relations (1.1) for Cp that ri(Cp) = 1 (C) — (k+ 1) for 0 < k < n — 2 and again
S,,_Q(CP> = Sn_z(C) + Vn_l(C).

The relations (1.1) can be rewritten in numerous ways, some of which we need
below. We see by induction that

k—1

Iy = (k—|— l)ro+<k;1)(2g—2) —Z(k—i)s,';

0

by symmetry, r,_x_1 = (k+ L)r,_1 + (k;rl)(2g -2)— (])‘_1 (k —1)sp—1-;-
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Summing the relations (1.1) gives —(rg +r,_1) = n(2g — 2) — >0 " 5. Hence
n—1

e+ -1 = —(k+1)(n — k)(29 — 2) + Z CilicSis
0

where the coefficient ¢/, is most succinctly written as
¢ =min(i+ 1,k +1,n—k,n—1i).

We will need several similar formulae below: we collect them now (the verifica-
tions are trivial).

Lemma 1.2 (i) P s = —(rt k) (7% Fai) + (= 2K) (29 — 2)

(ii) Zo l*("0+rn—l)+n(2g_2)

(iii) Zo ks, = +rx1)+k+1)(n—k)(29 —2)

(IV) S el = D = —(ro+ 1) — 2500 (i ramict) + (2= 1) +
Fp—ik—1 +{nk2 k(k+ )(4k—1)}(2g_2)

(V) 0 ! (el T l)s; = =2 Zé‘fl(r,- +rpeic1) + 2k(re + k1) + {nk(k
1) — Mk+)mk+m}@g 2)

() S0 el s = —2 5 i) + kot Dkt ri) + {nlk +
1)~k (k+ 1)(4k+5)}(2g—2)

(vii) >0~ il 131 = 22072(“ +rp—ic1) + (k= 1)(re—1 + ru—i) + k(ri +
Fu—k—1) + {nk(k +1) = 1k(k + 1)(4k — 1)} (29 — 2).

2. THE CORRESPONDENCES; LOCAL STRUCTURE AT W POINTS

A correspondence on an algebraic curve I is an algebraic curve 7 < I' x I'. The
degree d; and codegree d, are the degrees of the projections of 7" on the first
and second factor I' respectively. 7" has valence v if, denoting by 7T'(P) the di-
visor of the projection of 7'~ ({P} x I') on the second factor, the divisor class of
T(P) + vP is independent of P.

We recall that if 7" has valence v then T has the divisor class of

(dy +v)(x x T) + (dr + v)(T x *) — vA(T),

where A denotes the diagonal. Since the diagonal has self-intersection number
2 — 2g, we can calculate all intersection numbers. If we have two correspondences
T, T', their mutual intersection number is

(1) didy + dod{ — 2gvv’.

We can regard the diagonal as a correspondence with degrees 1 and valence —1.
The number of self-corresponding points (traditionally called united points) is the
intersection number of 7" with the diagonal, which is thus

(2) dy + db + 2gv.
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The genus formula, in the form u(M) — y(M) = [M].([M] + Kg), where p de-
notes the total Milnor number and y the (topological) Euler characteristic, gives

(3) —(T) = 2dvds + (29 — 2)(dy + da) — 2gv* — u(T).

For (P, Q) e I' x I define (P, Q) € Ty » 1 if O 0 O =" # (: more precisely,
we take the closure of the set of pairs where this condition holds but P # Q. Since
for subspaces of dimensions k& and n — k — 1 to have a non-empty intersection is a
single condition, this defines a correspondence on I'. The transpose, interchang-
ing the roles of P and Q, gives the correspondence 7,1 k.

LeMMA 2.1. The correspondence Ty ,—i—1 has degree r,_j_1 — (k + 1)(n — k), co-
degree ry, — (k + 1)(n — k), and valence (k + 1)(n — k).

PrROOF. We have to find out how many points Q correspond to a given general
point P. Project from O%~!. This is a composite of k projections, each of a curve
from a point of itself. If P is a general point, each of these points of projection is
also general. Hence, by the remark following Proposition 1.1, the invariants of
the image curve D in P"~* are given by s;(D) = 5;(C) for 0 <i <n—2 —k and
(D) =71;(C) —k(i+1) for 0 <i<n—1—k. Write Yp for the image of O% in
P" k. We want to know how many Q have Yp e 06*/‘*1. These points are
counted by the class of D, which is r,_x_1(D) = r—k—1(C) — k(n — k). But this
count includes the point Q = Yp itself. The intersection number of O’;;k*I(D)
with D at Yp is (n— k). So the correct count is obtained by subtracting this,
giving r,_j_1 — (k+ 1)(n — k).

For the valence we argue following [5, p 295]. Write 7 : I' — P"~*~! for the
projection from OX. Then the canonical class is Kr = 7*(—(n — k)Hpn 1) +
Tk7,1,k,1(P), and n*Hpuw1 = Hpn — (k + I)P, SO Tk7n,k,1(P) + (k+ 1)(1/1 — k)P
=n"Hpiw1 + (n—k)Hpn. O

We will apply the above formulae (2)—(3) to the T ,_x—1. The Weierstral3
points will play a key role, so we first explore what happens at them. It is here
that we need to restrict to simple W points.

PROPOSITION 2.2. Suppose P a W; point. Then at (P, P), the curve Tj ,_i—
consists of ¢}, mutually transverse smooth branches. Branches of Ti_1 ,—x and
Ty.n—k—1 are all mutually transverse at (P, P).

We begin the proof by taking local co-ordinates at P in which C has para-
metrisation x, = ¢ for r < i and x, = "*! for r > i, modulo higher order terms
in 7. Consider x(¢) as a vector. Then the condition that the point (#,u) € Ty ,—x—1
is that the matrix M, with rows x(¢) — x(u), d"x(t)/dt" (1 <r <k), d"x(u)/du"
(1 <r<n-—1-k) s singular.

The determinant of M/", has order

e R e G R
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We can take out powers of ¢, u and ¢ — u appearing as factors: the quotient gives
the local equation of T ,—«—1, and the terms of least degree give the tangent cone
of this curve. These terms are obtained by the same procedure, but setting the
‘higher terms’ equal to zero. It will thus suffice to analyse these.

I am indebted to Don Zagier for the following elegant treatment of these
polynomials, and in particular for the next result.

Write u(t) for the vector (1,¢,7%,...,¢""), and let ul(¢) denote Ld"u(¢)/dt"
(and similarly in other cases). For any integers 1 < a < n define M, ,(¢) to be
the @ x n matrix with coefficients in Z[7] having rows u(z), ul)(), ..., ul*=1(s).

ProPOSITION 2.3 (Zagier). Let n and a,...,a; be positive integers with
ay+ -+ ar =n, and xy, ..., xx be variables. Let M be the matrix with the rows
of the My, n(x;). Then the determinant of M is £]], o;.;,(xi — ;)4

PRrROOE. Write V,(xi,...,x,) for the Vandermonde matrix with rows u(x),...,
u(xy,), hence with determinant £ ], _,_;, (o — x;).
Write V for the direct sum (with block diagonal terms)

V.= Val((',‘l_’l,...,el’al) (—B (—B Vak(ek’l,...,skﬁak),

where the ¢; , (1 < i<k, 1 <r < a;) are variables satisfying 83",. = 0. Then direct
calculation gives VM = V,(x1 + €11, .., X0 + €k a)-
Equating determinants gives

k
IT II (er—eis) det(m)
i=1 1<r<s<a;
k a; 4
== (&i.r — &is) H HH(xi+3i,r_xj_3j.s)-
i=1 1<r<s<a; 1<i<j<kr=1 s=1

Cancelling the common factor Hf‘:] I <res<ar (¢i.r — &i.5) and then setting all &; ,
equal to 0 now gives the result. O

Apply this result with k=3, a1 =1, aa =k+1, a3 =n—k and x; =v, x, = 1,
x3 = u. The determinant is then +(v — )" (v — )" *(r — u)**V"®  The ma-
trix has n+ 2 columns, with first row x(v) = (1,...,0"*"). Expanding by this
row gives the sum of (—v)"™ multiplied by the minor in which the first row and
column 7 + 1 are omitted. In each such minor we can subtract the row x(u) from
the first row x(z). The resulting matrix has only one non-zero entry in the first
column. Expanding by the first column now gives the n x n determinant of
the matrix with rows x(¢) — x(u), x(¢), (1 <i < k), x/(u), 1 <i<n—k—1),
and the columns labelled by 0 and i + 1 omitted, and this agrees up to constant
multiples with the matrix M/, above. Denote the quotient of this determinant by
(1 — u) D00 by P!, (t,u), up to signs, which we fix by the formula

n

(4) (1= )M u—0)"* =3 (=) P ().

—1
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To complete the proof of Proposition 2.2, it remains to establish that, other
than possible factors ¢ and u, P}, (z,u) has no repeated factor and P}, (¢,u) and
Pl 41(t,u) have no common de'[OI‘ The polynomials with 7 = 3 are exhibited
in the matrix

u? tu? 2u? 3u 4
&3 3l +ud 20u+ 2P P+ 3Pu 48
6u> 3tu+3u* 2 +4dtu+u® 322+ 3t 61
4u t+ 3u 2t + 2u 3t+u 4t
1 1 1 1 1

We collect a number of properties of these polynomials in the next lemma.

Lemma 2.4. (i) Pl is homogeneous of degree n — i in t and u.
(11) Pn (17 1) _ (n+1)

Lk
i) P 1/((17“)_1Jr u" ", Py (tu) = 1.

(ii
(iv) Py () = (Gfy)u™, P () = (1)
(V) Pznk(t M) Zr (kjl)(n i— r)[r e

(vi) P7(t,u) is divisible by ™0k~ ma"(°7”‘i‘k+1).
(

(

(

(

u)
ii) (IH»I)(Z Pl (tu) = <l+1)lkP/?z(l u).
u

\%

viil) P (t,u) = PP (u 1), Pr_ o (6u) = (kPR (u ),
i) (0 KV () — (- VP (00) = (1 2P, (1)

X (k—f—Z)Pl”k(Z u) — (i +k—n+2) Pkt (1 u) = (l+2)uPl+1 gt (8 10).

PrOOF. (i) is immediate from the definition (4); (ii) follows by substituting
t =u = 1. For (iii) we pick out the coefficients of v* and v"*! on both sides; (iv)
follows by taking k = —1 or k = n.

To obtain (v) we expand the left hand side of (4) by the binomial theorem to
obtain

By g )

and equate coefficients of #"u"~~". The range of summation is defined by 0 <
r<k+land 0<n—i—r<n-—k, thus max(0,k —i) <r <min(n — i,k + 1).
Hence P}’ (¢, u) is divisible by max(o, e Dymax(0.n=i=k+1) "nroving (vi).

The coefﬁcwnt of u""~" in (k+1)P1nk(l u) is n'/(r‘(k—|— 1—rln—i—r)-
(i+r—k)!); that of #*u" %= in ( )P" (t,u) is n'/(s'( +1=s)ln—Fk—s)!-
(k+s—10)!), and these are equal if s = i + r — k, proving (vii).

The first identity (viii) is immediate from the definition (4); the second follows
by combining it with (vi).

We prove (ix) by direct calculation: it suffices to verify that, for each
r with max(0,k —i) <r <min(n — i,k +2), the coefficient of u"~'" in
(n— k)Pl (t,u) — (i — k)PP (t,u) — (i + 2)tP}, ,(1,u) vanishes. (For the ex-
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treme values of r, one of the binomial coefficients below must be interpreted as
0: this does not affect our calculation.) We see from (v) that this coefficient is

=i (AT (MY (R

r n—i—r r n—i—r

a0

Multiplying each term by rl(k +2 —r)!(n—i—r)l(i+r—k)!/(k+ 1)!(n—k)!,
this becomes (k +2)(i+r—k)— (i —k)(k+2 —r) — (i + 2)r, which indeed re-
duces to 0.

We can prove (x) similarly, or deduce it from (ix) by substituting k =n — s — 2
and applying the symmetry (viii). O

We now prove, by downward induction on i, that P}, (z,u) and P}, (z,u)
have no common factor other than powers of ¢ and u: by (111) this holds if i = —1 or
if i = n. But it follows from (ix) and (x) that any common factor of P}’ (¢,u) and
Pl 1(t,u) other than r and u divides also P}, ;(z,u) and P}, ; (1, u)

Now suppose u — At appears as a repeated factor of Pt u) and hence also
of det(M/",). Then the derivative of det(M/, ) with respect to ¢ also vanishes when
u = Jt. Hence so does the determinant obtalned from M, by replacing the row

kx(t)/dt* by d*x(1)/dt**!. Hence the n x (n+ 1) matrix obtained by adjoin-
1ng this row has rank <n —1 when u = Ar. Thus u — Az also divides det(M}" ),
hence is a common factor of P!, (t,u) and P, (t,u), contradicting what we
have just proved. This completes the proof of Proposmon 2.2.

Some of the above properties are simpler in terms of the following modifica-
tion pf', (t,u) of P! (t,u). First divide by smax(k=0)ymax(n=i=k+1.0) "giving a poly-
nomial of degree ¢!, not divisible by 7 or u (replacing (i) and (vi)); divide by a
constant factor (if necessary) to achieve p”,(1,1) = (";'), replacing (ii). Then
(iii) and (iv) become p!,(t,u) = 1 if ¢/, =0, and the symmetry properties (vii),
(viii) become ' '

pii(tu) = p (tu) = py g (ut) = plyy g (us0).

However, (v) and the recurrence relations (ix), (x) become more complicated.

It is not always true that the branches of distinct 7 ,—x—; are mutually trans-
verse at (P, P): for example, if n = 2m + 1 and P has type W,,, the above symme-
try property (viii) gives Py (1,u) = th=mum =k P L (1,u). Also, each Pl s

divisible by 7 + u. These may perhaps be the only exceptions.
Write A(W) for the of points (P, P) with P a W point. Then

LeMMA 2.5. If all W points are simple, the intersections of Ti n— 1 with A(T)
occur only at A(W). The intersection multiplicity at a W; point is ',

ProOF. For Ty pj—1, (2) gives ri + rp_p—1 — 2(k + 1)(n — k) + 2g(k + 1)(n — k)
for the number of united points. By Lemma 1.2(iii), this equals > " ¢i'ysi- But
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by Proposition 2.2, this is equal to the sum of the intersection multiplicities of
T n—i—1 with A(T") at the points of A(W). O

3. THE INVARIANTS; LOCAL STRUCTURE AT D POINTS

It follows by counting dimensions thatif | <k <n — 1, the set Dy_; ,_,_ of pairs
(P,Q) e I x I' where P # Q and the intersection O%~! n 06"“1 is non-empty
consists of a finite number dy_; ,_x—1 of points. Also, againif 1 <k <n—1, the
set D%"~% of pairs (P, Q) with P # Q and the intersection O% O’é‘k of di-
mension at least 1 consists of a finite number d*"~* of points. We call (P, Q) a D
point if it belongs to one of these sets. Since (P, Q) € Di—1 p—i—1 < (Q,P) €
Dy 141 and D" %(CV) = D, 41 x-1(C), each invariant d is symmetric in
the suffices, and d*"*(CV) = dy_1 .+ 1(C).

LeEMMA 3.1. The points where the projection of Ty ,—k—1 < I x I on the first fac-
tor is not a local bijection are as follows: A(T") N Tk n—k—1, points (P, Q) € T p—k—1
with S " i—1 > 0, and points of Dy, and D*"—

PROOF. A general point P € C corresponds to r,_x_; — (kK + 1)(n — k) points Q,
in general distinct: we want cases when two of these coincide. The points Q are
those whose images in f;__ (") lie on a certain hyperplane Hp in P(A"*C"*1).

If f,—r—1(Q) is a singular point of f,_x_i(I"), equivalently, anfkfl > 0, then
any intersection of Hp with f,_;_(T") at f,_x_1(Q) is multiple.

Otherwise, f,_r—1(Q) is a smooth point of f, ('), and we require the hy-
perplane to contain the tangent line at this point. By the discussion on [5, p 272],
this tangent line is the Schubert cycle of k- planes in P" containing 02)”" and con-
tained in Oy K If P # Q, either Ok N 0” 2 is non-empty and (P, Q) € Dy 2
or Ok 0y < contains a line and (P, Q) e DRk, O

Take local co-ordinates ¢,, t, for I' at P, Q respectively; write y(,,1,) = 0 for a
local equation of T ,_x—1 at (P, Q), so that (0,0) = 0. Thus Lemma 3.1 gives a
necessary and sufficient condition for the coefficient of ¢, in ¥ to be zero.

Interchanging the factors, it follows that the projection of T} , -1 < I' x T’
on the second factor is not a local bijection at (P, Q), or equivalently, the coeffi-
cient of 7, in  is zero, if and only if (P, Q) € A(T'), sf >0, (P, Q) € Di—1,n—k-1
or (P, Q) € D¥+*1.n=k=1 We observe that T}, , i is singular at (P, Q) if and only
if both coefficients vanish, i.e. neither projection is a local isomorphism.

We will need further details; to prepare for the argument to follow, we re-
prove the above.

THEOREM 3.2. Let (P Q) S Dkn k—2 with Sk =0, (P, Q) ¢ Dk—l,n—k—l and
(P Q) ¢Dk+l n—k— 1 Then

(i) the coefficient of t, in Y is non-zero;

(i) the coeﬁ?czent of 12 in  is non-zero if and only if (P, Q) ¢ Dii1, n—k—3,
(P, Q) ¢ Dk andsnklfo
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(iii) more generally, if (P, Q) ¢ Dis+1,n—k—3 and (P, Q) ¢ D&k (0,1,) has
order anfkfl + 2.

PRrOOF. Since (P, Q) ¢ Dy_1., 1, we have O~ ' n 05 k=1 — @, so we can take
(projective) co-ordinates (xo,...,x,) such that if 0 <i <k — 1, O} is defined by
x, =0 forr > i, dndif0<j<n—k 1, 0’ is defined by x, fOforr<n—]

Thus the expansions of a point of I' near P are given in local co-ordinates
by x; = aity + higher terms (a; # 0) for i <k — 1, while for i >k, we write
x; = 1) *(a +a it,+---). Thus if A4 is the point with co-ordinates x; =0 for
i< k — 1 and x; = q; for i > k, and A’ the same with a, replaced by a, Off, is
spanned by O%~! and 4, and 0’“rl is spanned by O, 4 and 4'. Here the
sequence o; is increasing; indeed, unless s > 0 for some i < k, we have o; = i
for i < k. We may also take a; =1 for is k — 1. Observe that since sf =0,
ey = oy + 1.

Similarly at a point near Q we can write X, ; = tq + higher terms for
i<n—k—1, while for i > n—k, x,_; is divisible by lf;” k and we will denote
the coeﬂicient of lg”*" by b,_;. Thus if B is the point with co-ordinates x; = b;
for i <k and x; = 0 for i > k, Of7* is spanned by Of*~! and B. Here f3; is in-
creasing, and ff; =i for i <n —k — 1 unless sz > 0 for some j <n—k—1.

As in the proof of Proposition 2.2, the local equation of T ,_x—; is given by
the vanishing of the determinant of the matrix whose r row is d’x(t,) /dt,
il <r<k,d"'x(t,)/dty" if k+1 <r<n—1andx(t,) — x(t,) if r = n. Here
we must use affine co- ordlnates so modify the above by setting x; = xo +x,,
(which takes the value 1 at both P and @), and taking co-ordinates x| = x;/x;
for 1 < i < n: their local expansions have the same form as before, and we now
denote the determinant by y(z,, t,).

(i) Since (P, Q) € Di,n—r—2, A must lie in Og~ k=2 50 ap = ak+1 = 0. Further,
oK+ is spanned by Ok ', 4 and A’; since (P, Q) aé DFtln=k=1" e must have
A ¢ 0” ,s0 ay #0.

To obtaln the coeflicient of 7, in the determinant it suffices to replace #, by 0 in
the calculation. Let us first consider the general case when o; = i for i < k and
p;=ifori <n—k—1.Then in the last (n — k) rows of the matrix, all terms be-
low the main diagonal vanish, and those on the diagonal are non-zero constants.

It remains to consider the submatrix formed by the first k£ rows and columns.
Now the k™ row is divisible by ,. The non-zero constant terms in the other rows
all lie on the principal diagonal. Hence the only term linear in #, is a non-zero
multiple of the (k, k) entry, which is akt,,

To allow for differing o; and f; it is convenlent to modify the matrix as fol-
lows. In place of d"x(z,)/dt), we take 7, [; (l,,@/ﬁt,, a;)x(t,). Note that the
linear span of the operators H (t,,o / 0tp — o ) (1 <r < k) is the same as that of
the 7;(0/ at,)", so we have d1V1ded the result by a power of #,. However the new
row r has zero entries in the columns x; for i < r. Perform a corresponding mod-
ification for #,. The above argument now applies to the resulting matrix.

(i) Again we first consider the case when o; =i for i <k and f5; =i for
i<n—k—1. To obtain the desired coefficient we may substitute #, = 0. We
claim that to obtain a coefficient of t§ we must take the elements in columns £,
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k+ 1, k+ 2 in the rows with the same numbers: these entries yield, on dividing
by k'(n — k)l n—k-1),

0 0 Aji2
bqu bk+1 0 .
%bkl‘g bk+11q bk+2/(n —k— 1)

For in column k, the only terms not divisible by [3 are those in these 3 rows. The
entry in row (k + 2) can only be taken together with constant terms, which are
either on the diagonal or in row k. The term in row (k + 1) is divisible by ¢,.
The only term in column (k + 1) and not in row (k + 1) which is not divisible
by t2 is in row (k + 2). The claim follows.

As in (i), we now have the product of the non-zero constant determinant
formed from the first (k — 1) rows and columns, the determinant formed from
the last (n — k — 2), which has non-zero constant term, and the above, which re-
duces to 5 bkbk+1ak+2l It remains to consider bra. ;.

Now ay,, = 0 if and only if 4 € Of k=3 if and only if (P, Q) € Dyi1.n k3

Also bk = 0if and only if B € 0%~ X and we easily see that this is equivalent to
0% N 0” containing a line (necessanly AB),i.e. to (P,Q) € DXk,

To allow arbitrary o;, f, we proceed as in (i). The one point to note is that
to obtain the té at the point where we prove by # 0 above, we now require
ﬁnk ﬁnk1+1ieSle_O

(ii) If sn «1 # 0, then since f, , = ﬂn e 1+s "1 T 1, the expansion of

Xk (t,) starts at a power of #, 1ncreased by 52 8. «_1» S0 the effect on the above matrix

is to multiply the k" column by #, W (and to alter the numerical coefficients).
Essentially the same argument as above now applies in this case. O

It follows by duality that a result corresponding to Theorem 3.2 holds also for
D*n=k As the hypothesis appears somewhat clumsy, we now present an alterna-
tive viewpoint.

The sequence of osculatlng spaces O% at a point P of ' defines a complete flag
of subspaces of C"!. Write G := GL,,H( ) and B for the Borel subgroup con-
sisting of upper triangular matrices: then P defines a coset gpB = G/B, so a pair
of points P,Q € I defines a double coset Bgp'goB. It is well known that each
double coset contains a unique permutation matrix o (representing an element
of the Weyl group of G), so the double cosets BxB, the Schubert cells, partition
G/B. The dimension of the cell is equal to the number of inversions (i.e. pairs
with i < j and «(7) > a(j)) of a. As we are interested in cells of low codimension,
introduce the reversal permutation p with p(i) = n —i for each i, and for each
permutation 7 denote by % the Schubert cell corresponding to o = zp: this has
codimension the number of inversions of 7.

Suppose the pair (P,Q) € I' x I determines the permutation «. Then there
exists a basis {e;} of C"! such that. for each k, 0,’3 is spanned by ¢y, ..., ¢; and
02‘2 by €,0); - -, €xk): thus the pair of flags belongs to #;. The condition that
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(P, Q) € Tk n—k—1 is now that {0,1,... .k} n{z(n),...,7(k + 1)} # 0, hence that
for some i < k we have k + 1 < 77!(i). The case of lowest codimension satisfying
this is 7 = (k, k + 1), with just one reversal. It is convenient also to write ¢ = 77!
Similarly we have (P, Q) € Dy ,—«—> if and only if, for some i < k, we have
o(i) = k + 2; the generic case here 0 = (k,k + 2,k + 1), with codimension 2.
Also, (P, Q) € D"k if and only if there exist i < j < k with a(i),a(j) > k.
We see in succession that this is equivalent to

#(a]0,k] N [k,n)) =2, #(al0,k] N[0,k —1]) <k—1,
#(o 0,k —1]n[0,k]) <k —1, #(@ '0,k—1]n[k+1,n)>1;

and hence to: for some i < k — 1, we have 7(i) > k + 1. Here the generic case is
= (k—1,k+1,k).

Although in fact we can only construct it locally, we can think of a map
n: T x T — G/B, and we expect that away from the diagonal this is transverse
to the stratification by Schubert varieties, hence in particular that we only en-
counter those of codimension at most 2. We note also that the cohomology ring
of G/B is generated by the classes of the Schubert varieties of codimension 1, and
Sk k+1) and Sy 42y Intersect transversely along Sk k11,k+2) and Sk k42, k+1)-

The assumptions made in Theorem 4.2 are somewhat weaker than this. Let
(P,Q) e T x T correspond to the permutations 7 and ¢ = t~'. For j < k, denote
by [/, k] the set of integers i with 0 < i <n and j <i < k. Then

LemMA 3.3. A4 point (P,Q) € Ty k-1 lies in none of Dy y—k—2, Dik—1 n—i—1,
Dln=k - pkln=k=1 it and only if (k) =k +1, t(k+1) =k, and t permutes
[0,k — 1] and [k + 2,n].

If (P,Q) € Dy k2, then it lies in none of Dy, k1, D¥1m=k=1 pkn=k
D" 210=k=2 and Doy pi—s if and only if t(k) =k +2, t(k +1) =k, t(k +2) =
k + 1, and t© permutes [0,k — 1] and [k + 3, n].

Proor. Since (P, Q) € Ty n—i—1, we have iy < k with a(ip) > k + 1.

Since (P, Q) ¢ Dy y-i—2, i <k =0(i)<k+1,s00a(ip) =k +1.

Since (P, Q) ¢ Di_1 k-1, i <k —1=0(i) <k, soiy=k.

Since (P, Q) ¢ DX"* #(a([0,k]) N [k,n]) < 1; we already have a(k) = k + 1,
soi<k—1=o0(i) <k—1,ie. opermutes [0,k — 1].

Since (P, Q) ¢ D¥t1n=k=1"2(g5([0,k + 1]) n [k + 1,n]) < 1; we already have
o(k) =k +1,s0 a(k+1) <k, and it now follows that o(k + 1) = k, and hence
o permutes the remaining elements [k + 2, n].

Next, since (P, Q) € Dy ,—k—2, for some iy < k we have a(ip) > k + 2.

Since (P, Q) ¢ D1 y—i—1,1 <k —1= 0(i) < k; hence iy = k.

Since (P, Q) ¢ Dii1.n—k-3, 1 < k+ 1= 0(i) <k +2; hence a(ip) = k + 2.

Now as (P, Q) ¢ D*"=kthere can be no j < k other than k with ¢(j) > k, so
o induces a permutation of [0,k — 1].

As (P, Q) ¢ D**1."=%=1 [ is the only number j < k + 1 with a(j) > k + 1, so
alk+1)=k.



PLUCKER FORMULAE FOR CURVES IN HIGH DIMENSIONS 171

Finally as (P, Q) ¢ D¥t>"=%=2_ [ is the only number j < k + 2 with a(j) >
k+2,s00(k+2)=k+1. 0

To apply Theorem 3.2, we must restrict Dy , x> to be disjoint from
Dy \ pi_1, DFFLn=k=1 Dyy1,n—k—3 and DFkn=k, Interchanging the suffices, we
see that we also need it disjoint from D¥+27=%k=2 5o the hypothesis of Lemma
3.3 holds. We call a Dy ,—r—» point neat if this is the case. It now follows from
the lemma that the condition that all the D strata are neat is equivalent to
restricting each permutation to be a product of disjoint cycles of the form
(k—1,k), (k—1,k+1,k)and (k—1,k,k+1).

We can deal with the singular points of T} ,_x—; other than D points and
A(W) points by an argument similar to the above.

PROPOSITION 3.4. If (P,Q) € Ty p_i—1 with st =1 and s}gkfl =1 isnotaD
point, then at (P, Q) the curve Ty 1 has an ordinary double point, with neither
branch tangent to either axis. More precisely, the coefficients of t; and tj iny are
non-zero, while the coefficient of t,t, vanishes.

PrOOF. By Lemma 3.3, (P, Q) corresponds to a permutation which preserves
the subsets [0,k — 1] and [k + 2,n] and interchanges k and k + 1. We can thus
take co-ordinates such that the leading terms in the local expansion at P are
x,—t“' for i<k+1 and atOCHZ for i >k+1, and at Q are x,_ ,—tq for
i<n—k-—1, xp = bk+1tg" e Xp = bktﬁ” =t and x; = b; tg” K1 for i < k; where
by, by, are non-zero and the other a; and b; may contain powers of 7, and ¢,
respectively.

It will be convement first to suppose o; =i for i<k and ;=i for
i<n—k—1. Since sk =1 and sn w1 =1, we then have o =k +2 and
ﬂnfk =n—k+1.

As in the proof of Theorem 3.2, the equation  is given by a determinant, the
rows of which are derivatives of the rows x(z,) and x(¢,). First set ¢, = 0 to find
the coefficient of #2. Then in the last (n — k — 2) rows the non-zero entries are
those in the main diagonal; in row (k+ 1) we just have the entry in column
k. In the (k + 1)* column, all entries are divisible by ¢2; indeed all of these except
the entry in row k are divisible by l;, so for the desired coefficient we must use
this entry. There remain the first (k — 1) rows and columns: here the entries with
non-zero constant term are just those on the principal diagonal. Hence the de-
sired coefficient is non-zero.

Similarly, setting 7, = 0, the non-zero entries in the first k rows are just those
on the principal d1agona1 In column (k + 1), all entries are divisible by t2 so the
coefficient of t§ in Y comes only from elements of the principal dlagonal o)
this too is non-zero. Indeed, this result also follows from the first by interchang-
ing the roles of P and Q.

Since each element of column (k + 1) is divisible either by t2 or by [2 the
coeflicient of #,¢, in i vanishes.

As in the proof of Theorem 3.2, we can infer that the supposition that o; = i
fori <k and f; =ifori <n—k —1is not essential for the result. O
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4. THE MAIN THEOREM

From now on, we assume that all ¥ points are simple and all D points are neat.
Then by Lemma 2.5, all the intersections of T ,x—1 with A(I') occur at W
points, i.e. at A(W), and by Lemma 3.1 at any other singular point of T} ,_x_
we have (a) one of sQ " o1 >0, Dy k-2 and D¥"=k and also (b) one of s > 0,
Dk 1 n—k—1 and D"Jrl n=k=1. hence either we have a D point or (c) the situation
st =1and s "y = L of Proposmon 3.4. Thus

LEMMA 4.1. Ifall Dpoznts of Tk, n—k—1 are simple, and Ty ,_i—1 contains no point
(P, Q) with sf >0 and s k 1 > 0, the singular points of Tk,, k1 are the (P, P)
with P .a W; point (and c}'; > 1.)

For at any other point at least one of the projections is a local isomorphism.

It follows from Proposition 2.2 that the Milnor number of T} ,_x_ 1 at a W,
pointis (¢!, — 1)%. Hence the total Milnor number W Thnt1) =3 (' — 1)%si,
which was evaluated in Lemma 1.2(iv).

Further, since all D points are neat, by Theorem 3.2, at a point of Dy ,_x_2,
provided sf # 0, the first projection of 7 is an isomorphism (the coefficient of 7,
is non-zero) and the second projection has a point of ramification of multiplicity
(an_k_1 +1) (i.e. ¥(0,1,) has order (an_k_1 +2)).

We are now ready for our main result.

THEOREM 4.2. Suppose all W points of C are simple, all D points of C are
neat, and for each k, S,f =0 for each (P,Q) € Dy p—k—> U DKL=kt phen for
0 <k < (n-2),we have

i nt—2 = 1in—i—2 — (k+2)(n—k)yry — (k+ 1) (n —k + )ry_r—2

+2 Z r,—— (k+1)(k+2)(3(n — k)* — (k +3))(2g — 2).
n—k—1

The values of the remaining invariants follow from the symmetries dj ,(C) =
dp k(C) and d*'(C) =d,_1 k. n-1-¢(C"). In particular, for 1 <k < %n, we have

k=1
AR =42 = k(n— k4 2 — (k+ 1) (n =k + 1)y g
0
1
—ckk+1)B(n—k+ 1)? — (k+2))(29 - 2).
Note that these formulae give incorrect values if k& does not satisfy the stated
condition.

Proor. We will calculate y(7%, ,—x—1) in two different ways. First we suppose
that, for each k, T} ,_x—1 contains no point (P, Q) with s,‘: > 0 and Sankfl > 0,
so is singular only at A(W).
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To simplify the appearance of the next calculation write, for now, Kj for
(k+1)(n — k). On one hand, applying (3) gives

X (Tien—i—1) = 2(rc — Kic) (rn—i—1 — Ki) + (29 — 2)(ric + rp—i—1 — 2Kx)
—29K7 — w(Tien—i—1)-

On the other hand, the projection of Ty, on the first factor has degree
Fn—i—1 — K. Since y(I') =2 — 2g, y(Tk n—k—1) is equal to (r,_x—1 — Ki)(2 — 2g),
diminished by the effect of ramification. According to Lemma 3.1, we have three
cases to consider.

For (P, Q) € Dy i or D*"=* we have an ordinary branch point; it follows
from Theorem 3.2 that, provided (in the former case) s,gkfl = 0, such branch-
ing gives a term dy , k2 + d*"7F.

For P=Q a W; point, T) ,_,—; has a singular point at (P, P) with ¢,
mutually transverse branches. Hence this contributes ¢/, — 1 to the Euler charac-
terlstlc calculation; the total such contribution is thus doilely — l)s, (strictly, if

¢’y = 1 the point is not singular, but the contribution to the sum is 0).

For Q a W,_,_, point and P # Q, we again have an ordinary branch point.
Now Q corresponds in principle to rk — K} points P; however we know that Q
itself counts here with multiplicity ¢, , , , = ¢; ;. Hence the total contribution
from such pairs is (1 — Ki — ¢}l ) sn—s-1. '

If there exists a point (P, Q) € Dy ,_r—» With s " 1 hon-zero (hence equal to
1), then by Theorem 3.2(iii), 7% ,—k—1 is defined in terms of local co-ordinates
at (P, Q) by an equation ¢, = ¢(t,) where ¢ has order 3 at 0. In this case, while
the contribution of the point P to the calculation is increased by 1, that of Q is
decreased by 1, since one of the points (P, Q) € Ty ,—x—1 now coincides with P.
Thus the total contribution is unchanged.

Putting these results together, we have

X(Tk,nfkfl) = <rn7k71 — Kk)(z — 29) _ (dk,n7k72 4 dk.n—k>
= (e = Kx — Cl?,k)‘gn—k—l - Z<C;,lk — 1)s;.

Comparing our two calculations of (7%, ,—x—1) gives
2(rk — Ki)(rn—k—1 — Kk) (29 — 2)(ric + ra—k—1 — 2Ki) — 2gK;;
= Z Cilg — )78i + (w1 — Ki)(2 = 29) — (dy -t + d*"7F)

— (Vk — Kk — Ck,k)sn—k—l — Z(C;,lk — 1)S,’ =0.

i
Substituting for s,_;_; and collecting terms, we have
dient—z + d*"F = 1 (ra—ie—2 + i) — Ki(2rk + k-2 + i)
+ gk (2rn—k—1 = Fnk—2 — In— k+(29—2))
26] 2 Kk Z Cl k 1 k
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We can now replace Ky by (k 4 1)(n — k) and substitute ), ¢/ (¢, — 1)si =
Le(k + 1)(3n — 4k — 2)(2g — 2) = XK 2(r 4 rit) + 2k(rk + 1 g 1) from
Lemma 1.2(v).

We may now consider the case when T} , 1 contains a point (P, Q) with
sk =1 and sn «1 = L. Then by Proposition 3. 4, the curve T} ,_—1 has an ordi-
nary double point at (P, Q), with neither branch tangent to either axis. The effect
of this on the calculations is to increase our estimate of y (7% ,—x—1) by 1, but also
to increase u( T, ,—x—1) by 1. These cancel out, so the result is unchanged.

This yields equations Ej, say, for 0 < k <n — 1, where Ej gives an explicit
value for di ,—ik—2 + dkn=k_ Since die—1,n—k—1 and d*"=* are only defined for
1 <k <n—1, Ey has only one term on the left, and gives dj ,—» explicitly; dually
E, gives d" 1! = dn~1 Now E; gives d; ,_3 +d""~! and hence d, ,_3. Con-
tinuing by induction, we can determine all the dj_1 ,,—1 and d kon—k.

It will thus suffice to verify that the stated formula gives the correct values of
dic n—k—2 +d*"*_ Note that if n = 2m is even, we have 2m equations for 2m
variables; if n = 2m + 1 1s odd, there are 2m + 1 equations for 2m variables: there
is a consistency requirement that sz( ) E) vanish identically, which has been
a useful check in my calculations. Given the explicit formula stated above, all
that remains is a rather trivial verification. We note a few points which clarify
how to do this.

It is simpler to split each equation into 3 terms: (q) quadratic in the r;, (1)
linear in the r;, and (c) independent of the r; (but divisible by (2g — 2)).

The easiest is

e ni—2(q) +d*"5(q) = re(Fu—i—2 + ru_i);
now by induction we find dy ,_x_2(q) = rxrn_i—2 and d*"*(q) = rir, i

For the equations Ei(/), we need to distinguish cases k <n—k — 2,
k=n—k—1and k >n— k. All are similar. For k <n —k — 2, E;(/) gives

ik o) +d5" (1) = —(k + 1) (n = k) (rpt—2 + 2 + Tt
k‘i' )(rn k— 2_2rn k=1 + I'n— k)

—~

k-1
+Z2 Fi4 neic1) — 2k(ri + Fpi—1),
0

and the desired result follows easily.
Finally, dividing by 2¢g — 2 gives, for 2k <n —1,

din i a(0)+ A" K () = k41— (k+ 1)2(n— k) — %k(k F1)(Bn— 4k —2).

As the right hand side of Ek(c) is unaltered by interchanging kandn—k—1,
the only verification requlred in this case is that this expression is the sum of
—t(k+1)(k+2)(3(n — k)* = (k +3)) and the expression obtained from this by
replacing kby (k—1). O
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As a check on the calculation, we apply (1) to the correspondences T ,—k—1
and Tj_y p—k for 1 <k <n—1. The common points are A(W) and points of
Dy_1., k1 and D%"~% By Proposition 2.2, the intersection number at a W; point
1S cl kcl w1~ 1t follows from Theorem 3.2 that at a point (P, Q) € Di_1 y—k—1,
Tj—1,n—r touches {P} xI" and Tj , 1 touches I' x {Q}, so the intersection
number is 1; similarly for DX”~* Hence

ke, n—k
i1 k-1 +d" + E ¢l k_1Si
i

— (aket = (e 1) = K)) (11 — K — K+ 1))
+ (e = (k+1)(n = k) (rni — k(n =k + 1))
—2gk(k+1)(n—k)(n—k+1)
= Tpk-1Tk—1 + Tklnk — (K +1)(n — k) (ri—1 + 10i)
—k(n—k+1)(r—r—1 +r) — (29 —2)k(k+1)(n—k)(n—k+1).
Substituting for >, ¢' ¢’y _ys; from Lemma 1.2(vii), we obtain

k=2
kon—k _
i1 k=1 +d" =TT A g+ 2 E (ri 4 Fu—ic1)
0

—((k+1)(n—k)+k—1)(rk—1 +ru—x)
—(k(n—k+1)+k)(re +rpr1)
—{k(k+1)(n—k)(n—k+1)+nk(k+1)

- %k(k +1)(4k — 1)}(29 - 2),

while substituting from Theorem 4.2 gives

ie—1n—k—1 = Th—1Fn—k—1 — (k +1)(n—k+ Dy —k(n—k +2)r,_x

+2Zrl k(k+1)(3(n—k+1)" — (k+2))(2g - 2),

k-1
d5m R =, g+ 22"1‘ —k(n—k+2)rr—(k+1)(n—k+1)r,—«
0

1
— ke +1)(3(n—k+ 1)? — (k+2))(29 -2),
giving the same result.

5. FURTHER COMMENTS

In Theorem 3.2, we needed to consider the conditions sf = 0 and s "1 =0 at
a point (P, Q) € Dy ,_k—»; in Theorem 4.2 we had to exclude the ﬁrst case, but
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permitted the second. To illustrate this, note that in the case of plane curves, this
means that we exclude a singular point with two branches and a cusp at one of
them, but permit a flecnode. Observe also that since our hypotheses bear only on
pairs of points of I', we do not exclude the case of a triple (or higher multiple)
point with transverse smooth branches. We do exclude the case o = (0, 2), giving
a double point with coincident tangents (a tacnode).

For curves in 3-space, the ‘neat’ hypothesis allows the permutation ¢ =
(0,1)(2,3) corresponding to the situation P € Oé, Q € 03%. Presumably there is
here, as well as in the plane, a way of counting multiplicities that will make our
formula correct in general. Finding this seems to be interesting but difficult prob-
lem.

For curves which are ordinary in the sense of maps I' — P”, we have s; =0
for 0 <i<n—2, hence ry = (k + 1)ro + (*3')(2g — 2) for 0 < k < n — 1. Substi-
tuting in Theorem 4.2 gives an expression for di ,_r—_1, quadratic in ry and ¢, with
coefficients depending on k and n, which can be reduced to

N —

(k+1)(n—k — 1){2rg + (n—2)ro(2g — 2) +%k(n —k—2)(2g9-2)*

—2(n+ Drg — (n* — nk +k* —n+2k)(2g — 2)}

For low values of n, Theorem 4.2 gives

n=2 doyo=r3—Tro+2r —3(2g—-2)

n=3 dy;=rory —6rg—4r +2r — 829 —2)

n=4 dyr=rorp—8rg— 5ry+2r; — 15(29 — 2)

n=4 dy=ri—17r +2r+2r; — 23(2g - 2)
= do3 = rors — 10rg — 6r3 + 2r4y — 24(2g — 2)

n=>5 di,=riry—12r; —10r; + 2r3 + 2r4 — 44(2g — 2)

do,4 = rors — 12rg — Trg + 2rs — 35(2g — 2)
n==6 dy3=rrs— 151 — 12r3 4+ 2r4 + 2rs — 71(2g —

n==6 dyy=r3—31ry+2r;+2rs +2rs — 86(2g — 2)

2)

and formulae for the d%"* are easily read off, e.g.
n=>5 d** =ry3 — 12r3 — 10/, + 21 + 2rg — 44(2g — 2).

In the case n = 2 this does indeed give the traditional relations, on noting that
ro is the degree, r| the class, sy the number of cusps, s; the number of flexes, dp  is
double the number of nodes (since Dy o was a set of ordered pairs of points of T,
each node contributes 2: a similar comment applies to dj 4 in general), and d'"! is
twice the number of bitangents. The result for n = 3 is, of course, equivalent to
the formula given by Zeuthen [12].



PLUCKER FORMULAE FOR CURVES IN HIGH DIMENSIONS 177

The method can in principle be extended to obtain further formulae. In
[5, (2.5)], the correspondence on a space curve defined by having the chord PQ
meet the curve again is considered. In general one may consider the condition
on a set of points P; € I' (1 < i < N) that the osculating spaces Oféj lie in a hyper-
plane, or more generally a subspace of dimension n — D. In principle, this im-
poses ¢ := D(> (ki + 1) — (n+ 1) + D) conditions, so if ¢ = N — 1, it defines a
correspondence between P, and P,. The cases when ¢ = N each define a finite
number of N™  and studying these correspondences will give information
about these numbers.
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