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Abstract. — The classical relations of Plücker between the invariants and singularities of a plane

curve can be expressed as two linear relations and two involving quadratic terms. The linear rela-
tions were generalised to curves in n-space already in the nineteenth century, but true generalisations

of the others were obtained only in 3-space. In this article, using the classical method of correspon-
dences, we obtain formulae in n-space corresponding to the original ones in the plane.
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Introduction

In 1834, Plücker announced [7] four relations between the degree and class of
a plane curve with ‘ordinary’ singularities and the respective numbers of cusps,
double points, flexes and double tangents. Twenty years later, the concept of ge-
nus had emerged and the relations were enhanced by Riemann [9] and Clebsch
[4] to incorporate the genus. Some years later, the formulae were generalised to
arbitrary (reduced) plane curves by Noether [6]: the number of cusps was to be
interpreted as a sum over double points of the multiplicity minus the number of
branches, and the sum of the numbers of nodes and cusps as the ‘double point
number’: half the sum over all ‘infinitely near points’ Q of mQðmQ � 1Þ, where
mQ denotes the multiplicity.

For curves in 3-dimensional space, Cayley [3] obtained formulae by applying
the above relations to the plane projection of the curve and the dual construct, a
plane section of the tangent surface. Here I draw a distinction between the linear
relations holding between genus, degree, class and numbers of cusps and flexes
and the quadratic relations expressing numbers of double points and double tan-
gents. Cayley’s argument gives a successful account of the linear relations, and
this was generalised by Veronese [11] to curves in n-space. However, it yields the
number of chords through a general point rather than the natural generalisation
of double points, the number of tangents meeting the curve again. A formula for
the latter number was given by Zeuthen [12], and attributed to Salmon.

An account of the Cayley-Plücker formulae, and of Veronese’s work was
given in Baker’s text [1, §8, Part I]; in [2, §1, Part I] he describes the application
of the method of correspondences, and includes a proof of Zeuthen’s formula.
A well written account in modern language is given by Gri‰ths & Harris [5].



For C a curve in Pn, in [5, (2.4)] they define degrees dkðCÞ and indices bkðCÞ
(0a ka n� 1), and establish n relations which they call the Plücker formulae,
which are the linear relations just mentioned. In the following section [5, (2.5)]
they describe the method of correspondences and apply it to these questions for
n equal to 2 or 3. Our debt to the account of [5] will be apparent to the reader.

We now introduce the notation to be used below. Let G be a curve of
genus g and f : G ! Pn an embedding with image C. The associated curve
fk : G ! Gðk þ 1; nþ 1ÞHPðLkþ1Cnþ1Þ ð0a ka n� 1Þ is defined by taking
the exterior product of a (locally defined) vector function F : G ! Cnþ1 defining
f and its first k derivatives with respect to a local parameter on G. In particular,
the curve fn�1ðGÞ is the dual curve, which we denote C4. We can also regard
fkðPÞ as a k dimensional subspace of Pn, and as such it is the osculating k-space
of C at f0ðPÞ, and will be denoted Ok

PðCÞ. Observe that Ok
PðC4Þ ¼ On�k�1

P ðCÞ4.
We define the degree rkðCÞ to be the degree of the image of fk, or equivalently

the number of osculating k-planes to C meeting a generic ðn� k � 1Þ-plane.
Also, for P a G, we define sPk ðCÞ to be the ramification index of fk at P, or equiv-
alently if, in some local a‰ne co-ordinates at P, F is given by xi ¼ cit

ai þ � � �
with 0 ¼ a0 < a1 < � � � < an, we have sPk ðCÞ ¼ akþ1 � ak � 1. We will omit the
ðCÞ from the notations Ok

PðCÞ, rkðCÞ, sPk ðCÞ except to avoid possible confusion.
We call a point for which at least one sPk A 0 a W point of C (here W stands

for Weierstraß). For our main results we will need to assume (as did Plücker) that
the only W points that occur are those such that, for some i, sPi ¼ 1 and sPj ¼ 0
for jA i: we will call such a point a Wi point, for short, and call these simple W
points.

Write skðCÞ for the sum of local indices sPk ðCÞ. It is immediate that rkðC4Þ ¼
rn�1�kðCÞ and skðC4Þ ¼ sn�1�kðCÞ for each k. Then the linear Plücker formulae
are

rk�1 � 2rk þ rkþ1 ¼ 2g� 2� sk; ð0a ka n� 1Þ,

where we set r�1 ¼ rn ¼ 0. We outline a proof, using induction and the method of
projection, in the next section.

When n ¼ 2 these do not include all the original formulae. To generalise the
others, we define Dk�1;n�k�1 to be the set of pairs ðP;QÞ a G� G with PAQ
such that the intersection Ok�1

P BOn�k�1
Q is non-empty, and write dk�1;n�k�1 for

its cardinality. Denote also by Dk;n�k the set of pairs ðP;QÞ with PAQ where
the intersection Ok

PBOn�k
Q has dimensionb 1 and by d k;n�k its cardinality. In

each case, k runs over 1a ka n� 1. Each invariant d is symmetric in the suf-
fices, and d k;n�kðCÞ ¼ dk�1;n�k�1ðC4Þ. Our main result Theorem 4.2 states that
under certain genericity hypotheses we have, for 0a ka 1

2 ðn� 2Þ,

dk;n�k�2 ¼ rkrn�k�2 � ðk þ 2Þðn� kÞrk � ðk þ 1Þðn� k þ 1Þrn�k�2

þ 2
Xn�1

n�k�1

ri �
1

6
ðk þ 1Þðk þ 2Þð3ðn� kÞ2 � ðk þ 3ÞÞð2g� 2Þ:
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To obtain these relations we use the method of correspondences. For ðP;QÞ a
G� G define ðP;QÞ a Tk;n�k�1 if Ok

PBOn�k�1
Q A j. In §2 we determine the nu-

merical properties of the Tk;n�k�1 and give a careful analysis of the local structure
of these correspondences at the Wi points. I am indebted to Don Zagier for argu-
ments giving very clean form for this computation. In §3 we introduce the D
points, and study the local structure of the correspondences at these points. We
obtain our theorem in §4 by applying the standard formulae for numbers of coin-
cidence points and check it by counting intersection points.

1. The linear formulae

We begin with a proof of

Proposition 1.1. For C a reduced curve in Pn, we have

rk�1 � 2rk þ rkþ1 ¼ 2g� 2� sk; 0a ka n� 1;

where we set r�1 ¼ rn ¼ 0.

Proof. The result for n ¼ 2 is a consequence of the Plücker formulae for plane
curves. We deduce it for higher values of n by induction, following essentially the
classical method of [11].

Let CP denote a projection of C onto an ðn� 1Þ-plane from a point P. As-
sume that P does not lie on any osculating space of dimension n� 2 of C or of
dimension n� 1 at any W point. Then the osculating spaces of CP are the projec-
tions of those of C, so skðCPÞ ¼ skðCÞ for 0a ka n� 3, and CP still has genus g.

A general point P c C will lie on the osculating ðn� 1Þ-spaces at rn�1 points,
distinct from each other and from the W points. Their projections give further
Wn�2 points of CP, so we have sn�2ðCPÞ ¼ sn�2ðCÞ þ rn�1ðCÞ.

Now rkðCÞ is the number of osculating k-planes to C meeting a generic
ðn� k � 1Þ-plane. If P is generic, a generic ðn� k � 1Þ-plane through P is a
generic ðn� k � 1Þ-plane. Projecting, we deduce that rkðCPÞ is also the number
of osculating k-planes to CP meeting a generic ðn� k � 2Þ-plane, hence is equal
to rkðCÞ.

The relations (1.1) for k < n� 1 for C now follow from those for CP. The
final relation follows by applying this result for the dual curve C4. r

The same argument shows that if we project from a general point P a C we have
skðCPÞ ¼ skðCÞ for 0a ka n� 3, and as r0ðCPÞ ¼ r0ðCÞ � 1, it follows from the
relations (1.1) for CP that rkðCPÞ ¼ rkðCÞ � ðk þ 1Þ for 0a ka n� 2 and again
sn�2ðCPÞ ¼ sn�2ðCÞ þ rn�1ðCÞ.

The relations (1.1) can be rewritten in numerous ways, some of which we need
below. We see by induction that

rk ¼ ðk þ 1Þr0 þ
� k þ 1

2

�
ð2g� 2Þ �

Xk�1

0

ðk � iÞsi;

by symmetry, rn�k�1 ¼ ðk þ 1Þrn�1 þ kþ1
2

� �
ð2g� 2Þ �

Pk�1
0 ðk � iÞsn�1�i.
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Summing the relations (1.1) gives �ðr0 þ rn�1Þ ¼ nð2g� 2Þ �
Pn�1

0 sk. Hence

rk þ rn�k�1 ¼ �ðk þ 1Þðn� kÞð2g� 2Þ þ
Xn�1

0

cni;ksi;

where the coe‰cient cni;k is most succinctly written as

cni;k :¼ minði þ 1; k þ 1; n� k; n� iÞ:

We will need several similar formulae below: we collect them now (the verifica-
tions are trivial).

Lemma 1.2. (i)
Pn�k�1

k si ¼ �ðrk�1 þ rn�kÞ þ ðrk þ rn�k�1Þ þ ðn� 2kÞð2g� 2Þ
(ii)

Pn�1
0 si ¼ ðr0 þ rn�1Þ þ nð2g� 2Þ

(iii)
Pn�1

0 cni;ksi ¼ ðrk þ rn�k�1Þ þ ðk þ 1Þðn� kÞð2g� 2Þ
(iv)

Pn�1
0 ðcni;k � 1Þ2si ¼ �ðr0 þ rn�1Þ � 2

Pk�1
1 ðri þ rn�i�1Þ þ ð2k � 1Þðrk þ

rn�k�1Þ þ
�
nk2 � 1

3 kðk þ 1Þð4k � 1Þ
�
ð2g� 2Þ

(v)
Pn�1

0 cni;kðcni;k � 1Þsi ¼ �2
Pk�1

0 ðri þ rn�i�1Þ þ 2kðrk þ rn�k�1Þ þ
�
nkðk þ

1Þ � 1
3 kðk þ 1Þð4k þ 2Þ

�
ð2g� 2Þ

(vi)
Pn�1

0 ðcni;kÞ
2
si ¼ �2

Pk�1
0 ðri þ rn�i�1Þ þ ð2k þ 1Þðrk þ rn�k�1Þ þ

�
nðk þ

1Þ2 � 1
3 kðk þ 1Þð4k þ 5Þ

�
ð2g� 2Þ

(vii)
Pn�1

0 cni;kc
n
i;k�1si ¼ �2

Pk�2
0 ðri þ rn�i�1Þ þ ðk � 1Þðrk�1 þ rn�kÞ þ kðrk þ

rn�k�1Þ þ
�
nkðk þ 1Þ � 1

3 kðk þ 1Þð4k � 1Þ
�
ð2g� 2Þ.

2. The correspondences; local structure at W points

A correspondence on an algebraic curve G is an algebraic curve T HG� G. The
degree d1 and codegree d2 are the degrees of the projections of T on the first
and second factor G respectively. T has valence v if, denoting by TðPÞ the di-
visor of the projection of TB ðfPg � GÞ on the second factor, the divisor class of
TðPÞ þ vP is independent of P.

We recall that if T has valence v then T has the divisor class of

ðd1 þ vÞð� � GÞ þ ðd2 þ vÞðG� �Þ � vDðGÞ;

where D denotes the diagonal. Since the diagonal has self-intersection number
2� 2g, we can calculate all intersection numbers. If we have two correspondences
T , T 0, their mutual intersection number is

d1d
0
2 þ d2d

0
1 � 2gvv 0:ð1Þ

We can regard the diagonal as a correspondence with degrees 1 and valence �1.
The number of self-corresponding points (traditionally called united points) is the
intersection number of T with the diagonal, which is thus

d1 þ d2 þ 2gv:ð2Þ
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The genus formula, in the form mðMÞ � wðMÞ ¼ ½M�:ð½M� þ KEÞ, where m de-
notes the total Milnor number and w the (topological) Euler characteristic, gives

�wðTÞ ¼ 2d1d2 þ ð2g� 2Þðd1 þ d2Þ � 2gv2 � mðTÞ:ð3Þ

For ðP;QÞ a G� G define ðP;QÞ a Tk;n�k�1 if Ok
PBOn�k�1

Q A j: more precisely,
we take the closure of the set of pairs where this condition holds but PAQ. Since
for subspaces of dimensions k and n� k � 1 to have a non-empty intersection is a
single condition, this defines a correspondence on G. The transpose, interchang-
ing the roles of P and Q, gives the correspondence Tn�k�1;k.

Lemma 2.1. The correspondence Tk;n�k�1 has degree rn�k�1 � ðk þ 1Þðn� kÞ, co-
degree rk � ðk þ 1Þðn� kÞ, and valence ðk þ 1Þðn� kÞ.

Proof. We have to find out how many points Q correspond to a given general
point P. Project from Ok�1

P . This is a composite of k projections, each of a curve
from a point of itself. If P is a general point, each of these points of projection is
also general. Hence, by the remark following Proposition 1.1, the invariants of
the image curve D in Pn�k are given by siðDÞ ¼ siðCÞ for 0a ia n� 2� k and
riðDÞ ¼ riðCÞ � kði þ 1Þ for 0a ia n� 1� k. Write YP for the image of Ok

P in
Pn�k. We want to know how many Q have YP a On�k�1

Q . These points are

counted by the class of D, which is rn�k�1ðDÞ ¼ rn�k�1ðCÞ � kðn� kÞ. But this
count includes the point Q ¼ YP itself. The intersection number of On�k�1

YP
ðDÞ

with D at YP is ðn� kÞ. So the correct count is obtained by subtracting this,
giving rn�k�1 � ðk þ 1Þðn� kÞ.

For the valence we argue following [5, p 295]. Write p : G ! Pn�k�1 for the
projection from Ok

P. Then the canonical class is KG ¼ p�ð�ðn� kÞHPn�k�1Þþ
Tk;n�k�1ðPÞ, and p�HPn�k�1 ¼ HPn � ðk þ 1ÞP, so Tk;n�k�1ðPÞ þ ðk þ 1Þðn� kÞP
¼ p�HPn�k�1 þ ðn� kÞHPn . r

We will apply the above formulae (2)–(3) to the Tk;n�k�1. The Weierstraß
points will play a key role, so we first explore what happens at them. It is here
that we need to restrict to simple W points.

Proposition 2.2. Suppose P a Wi point. Then at ðP;PÞ, the curve Tk;n�k�1

consists of cni;k mutually transverse smooth branches. Branches of Tk�1;n�k and
Tk;n�k�1 are all mutually transverse at ðP;PÞ.

We begin the proof by taking local co-ordinates at P in which C has para-
metrisation xr ¼ tr for ra i and xr ¼ trþ1 for r > i, modulo higher order terms
in t. Consider xðtÞ as a vector. Then the condition that the point ðt; uÞ a Tk;n�k�1

is that the matrix Mn
i;k with rows xðtÞ � xðuÞ, d rxðtÞ=dtr ð1a ra kÞ, d rxðuÞ=dur

ð1a ra n� 1� kÞ is singular.
The determinant of Mn

i;k has order

� nþ 2

2

�
� 1�

� k þ 1

2

�
�
� n� k

2

�
� i ¼ ðk þ 1Þðn� kÞ þ n� i:
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We can take out powers of t, u and t� u appearing as factors: the quotient gives
the local equation of Tk;n�k�1, and the terms of least degree give the tangent cone
of this curve. These terms are obtained by the same procedure, but setting the
‘higher terms’ equal to zero. It will thus su‰ce to analyse these.

I am indebted to Don Zagier for the following elegant treatment of these
polynomials, and in particular for the next result.

Write uðtÞ for the vector ð1; t; t2; . . . ; tn�1Þ, and let u½r�ðtÞ denote 1
r! d

ruðtÞ=dtr
(and similarly in other cases). For any integers 1a aa n define Ma;nðtÞ to be

the a� n matrix with coe‰cients in Z½t� having rows uðtÞ; u½1�ðtÞ; . . . ; u½a�1�ðtÞ.

Proposition 2.3 (Zagier). Let n and a1; . . . ; ak be positive integers with
a1 þ � � � þ ak ¼ n, and x1; . . . ; xk be variables. Let M be the matrix with the rows
of the Mai;nðxiÞ. Then the determinant of M ise

Q
1ai<jakðxi � xjÞaiaj .

Proof. Write Vnðx1; . . . ; xnÞ for the Vandermonde matrix with rows uðx1Þ; . . . ;
uðxnÞ, hence with determinante

Q
1aiajanðxj � xiÞ.

Write V for the direct sum (with block diagonal terms)

V :¼ Va1ðe1;1; . . . ; e1;a1Þa � � �aVakðek;1; . . . ; ek;akÞ;

where the ei; r (1a ia k, 1a ra ai) are variables satisfying eaii; r ¼ 0. Then direct
calculation gives VM ¼ Vnðx1 þ e1;1; . . . ; xn þ ek;akÞ.

Equating determinants gives

Yk
i¼1

Y
1ar<saai

ðei; r � ei; sÞ detðMÞ

¼e
Yk
i¼1

Y
1ar<saai

ðei; r � ei; sÞ
Y

1ai<jak

Yai
r¼1

Yaj
s¼1

ðxi þ ei; r � xj � ej; sÞ:

Cancelling the common factor
Qk

i¼1

Q
1ar<saai

ðei; r � ei; sÞ and then setting all ei; r
equal to 0 now gives the result. r

Apply this result with k ¼ 3, a1 ¼ 1, a2 ¼ k þ 1, a3 ¼ n� k and x1 ¼ v, x2 ¼ t,
x3 ¼ u. The determinant is then eðv� tÞkþ1ðv� uÞn�kðt� uÞðkþ1Þðn�kÞ. The ma-
trix has nþ 2 columns, with first row xðvÞ ¼ ð1; . . . ; vnþ1Þ. Expanding by this
row gives the sum of ð�vÞ iþ1 multiplied by the minor in which the first row and
column i þ 1 are omitted. In each such minor we can subtract the row xðuÞ from
the first row xðtÞ. The resulting matrix has only one non-zero entry in the first
column. Expanding by the first column now gives the n� n determinant of
the matrix with rows xðtÞ � xðuÞ, x½i�ðtÞ, ð1a ia kÞ, x½i�ðuÞ, ð1a ia n� k � 1Þ,
and the columns labelled by 0 and i þ 1 omitted, and this agrees up to constant
multiples with the matrix Mn

i;k above. Denote the quotient of this determinant by
ðt� uÞðkþ1Þðn�kÞ by Pn

i;kðt; uÞ, up to signs, which we fix by the formula

ðt� vÞkþ1ðu� vÞn�k ¼
Xn

�1

ð�vÞ iþ1
Pn
i;kðt; uÞ:ð4Þ
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To complete the proof of Proposition 2.2, it remains to establish that, other
than possible factors t and u, Pn

i;kðt; uÞ has no repeated factor and Pn
i;kðt; uÞ and

Pn
i;kþ1ðt; uÞ have no common factor. The polynomials with n ¼ 3 are exhibited

in the matrix

u4 tu3 t2u2 t3u t4

4u3 3tu2 þ u3 2t2uþ 2tu2 t3 þ 3t2u 4t3

6u2 3tuþ 3u2 t2 þ 4tuþ u2 3t2 þ 3tu 6t2

4u tþ 3u 2tþ 2u 3tþ u 4t

1 1 1 1 1

0
BBBBBB@

1
CCCCCCA
:

We collect a number of properties of these polynomials in the next lemma.

Lemma 2.4. (i) Pn
i;k is homogeneous of degree n� i in t and u.

(ii) Pn
i;kð1; 1Þ ¼

�
nþ1
iþ1

�
.

(iii) Pn
�1;kðt; uÞ ¼ tkþ1un�k, Pn

n;kðt; uÞ ¼ 1.

(iv) Pn
i;�1ðt; uÞ ¼

�
nþ1
iþ1

�
un�i, Pn

i;nðt; uÞ ¼
�
nþ1
iþ1

�
tn�i.

(v) Pn
i;kðt; uÞ ¼

P
r

�
kþ1
r

��
n�k
n�i�r

�
trun�i�r:

(vi) Pn
i;kðt; uÞ is divisible by tmaxð0;k�iÞumaxð0;n�i�kþ1Þ.

(vii)
�

n
kþ1

�
tiPn

i;kðt; uÞ ¼
�

n
iþ1

�
tkPn

k; iðt; uÞ.
(viii) Pn

i;kðt; uÞ ¼ Pn
i;n�1�kðu; tÞ, Pn

n�i�1;kðt; uÞ ¼ tkþiþ1�nui�kPn
i;kðu; tÞ.

(ix) ðn� kÞPn
i;kþ1ðt; uÞ � ði � kÞPn

i;kðt; uÞ ¼ ði þ 2ÞtPn
iþ1; kðt; uÞ.

(x) ðk þ 2ÞPn
i;kðt; uÞ � ði þ k � nþ 2ÞPn

i;kþ1ðt; uÞ ¼ ði þ 2ÞuPn
iþ1; kþ1ðt; uÞ.

Proof. (i) is immediate from the definition (4); (ii) follows by substituting
t ¼ u ¼ 1. For (iii) we pick out the coe‰cients of v0 and vnþ1 on both sides; (iv)
follows by taking k ¼ �1 or k ¼ n.

To obtain (v) we expand the left hand side of (4) by the binomial theorem to
obtain

�Xkþ1

r¼0

� k þ 1

r

�
trð�vÞkþ1�r

��Xn�k

s¼0

� n� k

s

�
usð�vÞn�k�s

�
;

and equate coe‰cients of trun�i�r. The range of summation is defined by 0a
ra k þ 1 and 0a n� i � ra n� k, thus maxð0; k � iÞa raminðn� i; k þ 1Þ.
Hence Pn

i;kðt; uÞ is divisible by tmaxð0;k�iÞumaxð0;n�i�kþ1Þ, proving (vi).
The coe‰cient of trun�i�r in

�
n

kþ1

�
Pn
i;kðt; uÞ is n!=ðr!ðk þ 1� rÞ!ðn� i � rÞ! �

ði þ r� kÞ!Þ; that of tsun�k�s in
�

n
iþ1

�
Pn
k; iðt; uÞ is n!=ðs!ði þ 1� sÞ!ðn� k � sÞ! �

ðk þ s� iÞ!Þ, and these are equal if s ¼ i þ r� k, proving (vii).
The first identity (viii) is immediate from the definition (4); the second follows

by combining it with (vi).
We prove (ix) by direct calculation: it su‰ces to verify that, for each

r with maxð0; k � iÞa raminðn� i; k þ 2Þ, the coe‰cient of trun�i�r in
ðn� kÞPn

i;kþ1ðt; uÞ � ði � kÞPn
i;kðt; uÞ � ði þ 2ÞtPn

iþ1;kðt; uÞ vanishes. (For the ex-
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treme values of r, one of the binomial coe‰cients below must be interpreted as
0: this does not a¤ect our calculation.) We see from (v) that this coe‰cient is

ðn� kÞ
� k þ 2

r

�� n� k � 1

n� i � r

�
� ði � kÞ

� k þ 1

r

�� n� k

n� i � r

�

� ði þ 2Þ
� k þ 1

r� 1

�� n� k

n� i � r

�
:

Multiplying each term by r!ðk þ 2� rÞ!ðn� i � rÞ!ði þ r� kÞ!=ðk þ 1Þ!ðn� kÞ!,
this becomes ðk þ 2Þði þ r� kÞ � ði � kÞðk þ 2� rÞ � ði þ 2Þr, which indeed re-
duces to 0.

We can prove (x) similarly, or deduce it from (ix) by substituting k ¼ n� s� 2
and applying the symmetry (viii). r

We now prove, by downward induction on i, that Pn
i;kðt; uÞ and Pn

i;kþ1ðt; uÞ
have no common factor other than powers of t and u: by (iii) this holds if i ¼ �1 or
if i ¼ n. But it follows from (ix) and (x) that any common factor of Pn

i;kðt; uÞ and
Pn
i;kþ1ðt; uÞ other than t and u divides also Pn

iþ1;kðt; uÞ and Pn
iþ1;kþ1ðt; uÞ.

Now suppose u� lt appears as a repeated factor of Pn
i;kðt; uÞ, and hence also

of detðMn
i;kÞ. Then the derivative of detðMn

i;kÞ with respect to t also vanishes when

u ¼ lt. Hence so does the determinant obtained from Mn
i;k by replacing the row

d kxðtÞ=dtk by d kþ1xðtÞ=dtkþ1. Hence the n� ðnþ 1Þ matrix obtained by adjoin-
ing this row has ranka n� 1 when u ¼ lt. Thus u� lt also divides detðMn

i;kþ1Þ,
hence is a common factor of Pn

i;kðt; uÞ and Pn
i;kþ1ðt; uÞ, contradicting what we

have just proved. This completes the proof of Proposition 2.2.
Some of the above properties are simpler in terms of the following modifica-

tion pn
i;kðt; uÞ of Pn

i;kðt; uÞ. First divide by tmaxðk�i;0Þumaxðn�i�kþ1;0Þ, giving a poly-
nomial of degree cni;k not divisible by t or u (replacing (i) and (vi)); divide by a

constant factor (if necessary) to achieve pn
i;kð1; 1Þ ¼

�
nþ1
cn
i; k

�
, replacing (ii). Then

(iii) and (iv) become pn
i;kðt; uÞ ¼ 1 if cni;k ¼ 0, and the symmetry properties (vii),

(viii) become

pn
i;kðt; uÞ ¼ pn

k; iðt; uÞ ¼ pn
n�1�i;kðu; tÞ ¼ pn

i;n�1�kðu; tÞ:

However, (v) and the recurrence relations (ix), (x) become more complicated.
It is not always true that the branches of distinct Tk;n�k�1 are mutually trans-

verse at ðP;PÞ: for example, if n ¼ 2mþ 1 and P has type Wm, the above symme-
try property (viii) gives P2mþ1

m;k ðt; uÞ ¼ tk�mum�kP2mþ1
m;2m�kðt; uÞ. Also, each P2mþ1

m;2r is
divisible by tþ u. These may perhaps be the only exceptions.

Write DðWÞ for the of points ðP;PÞ with P a W point. Then

Lemma 2.5. If all W points are simple, the intersections of Tk;n�k�1 with DðGÞ
occur only at DðWÞ. The intersection multiplicity at a Wi point is c

n
i;k.

Proof. For Tk;n�k�1, (2) gives rk þ rn�k�1 � 2ðk þ 1Þðn� kÞ þ 2gðk þ 1Þðn� kÞ
for the number of united points. By Lemma 1.2(iii), this equals

Pn�1
0 cni;ksi. But
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by Proposition 2.2, this is equal to the sum of the intersection multiplicities of
Tk;n�k�1 with DðGÞ at the points of DðW Þ. r

3. The invariants; local structure at D points

It follows by counting dimensions that if 1a ka n� 1, the setDk�1;n�k�1 of pairs
ðP;QÞ a G� G where PAQ and the intersection Ok�1

P BOn�k�1
Q is non-empty

consists of a finite number dk�1;n�k�1 of points. Also, again if 1a ka n� 1, the
set Dk;n�k of pairs ðP;QÞ with PAQ and the intersection Ok

PBOn�k
Q of di-

mension at least 1 consists of a finite number d k;n�k of points. We call ðP;QÞ a D
point if it belongs to one of these sets. Since ðP;QÞ a Dk�1;n�k�1 , ðQ;PÞ a
Dn�k�1;k�1 and Dk;n�kðC4Þ ¼ Dn�k�1;k�1ðCÞ, each invariant d is symmetric in
the su‰ces, and d k;n�kðC4Þ ¼ dk�1;n�k�1ðCÞ.

Lemma 3.1. The points where the projection of Tk;n�k�1 HG� G on the first fac-
tor is not a local bijection are as follows: DðGÞBTk;n�k�1, points ðP;QÞ a Tk;n�k�1

with s
Q
n�k�1 > 0, and points of Dk;n�k�2 and Dk;n�k.

Proof. A general point P a C corresponds to rn�k�1 � ðk þ 1Þðn� kÞ points Q,
in general distinct: we want cases when two of these coincide. The points Q are
those whose images in fn�k�1ðGÞ lie on a certain hyperplane HP in PðLn�kCnþ1Þ.

If fn�k�1ðQÞ is a singular point of fn�k�1ðGÞ, equivalently, sQn�k�1 > 0, then
any intersection of HP with fn�k�1ðGÞ at fn�k�1ðQÞ is multiple.

Otherwise, fn�k�1ðQÞ is a smooth point of fn�k�1ðGÞ, and we require the hy-
perplane to contain the tangent line at this point. By the discussion on [5, p 272],

this tangent line is the Schubert cycle of k-planes in Pn containingOn�k�2
Q and con-

tained in On�k
Q . If PAQ, either Ok

PBOn�k�2
Q is non-empty and ðP;QÞ a Dk;n�k�2

or Ok
PBOn�k

Q contains a line and ðP;QÞ a Dk;n�k. r

Take local co-ordinates tp, tq for G at P, Q respectively; write cðtp; tqÞ ¼ 0 for a
local equation of Tk;n�k�1 at ðP;QÞ, so that cð0; 0Þ ¼ 0. Thus Lemma 3.1 gives a
necessary and su‰cient condition for the coe‰cient of tq in c to be zero.

Interchanging the factors, it follows that the projection of Tk;n�k�1 HG� G
on the second factor is not a local bijection at ðP;QÞ, or equivalently, the coe‰-
cient of tp in c is zero, if and only if ðP;QÞ a DðGÞ, sPk > 0, ðP;QÞ a Dk�1;n�k�1

or ðP;QÞ a Dkþ1;n�k�1. We observe that Tk;n�k�1 is singular at ðP;QÞ if and only
if both coe‰cients vanish, i.e. neither projection is a local isomorphism.

We will need further details; to prepare for the argument to follow, we re-
prove the above.

Theorem 3.2. Let ðP;QÞ a Dk;n�k�2 with sPk ¼ 0, ðP;QÞ c Dk�1;n�k�1 and
ðP;QÞ c Dkþ1;n�k�1. Then

(i) the coe‰cient of tp in c is non-zero;
(ii) the coe‰cient of t2q in c is non-zero if and only if ðP;QÞ c Dkþ1; n�k�3,

ðP;QÞ c Dk;n�k and s
Q
n�k�1 ¼ 0;
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(iii) more generally, if ðP;QÞ c Dkþ1;n�k�3 and ðP;QÞ c Dk;n�k, cð0; tqÞ has
order s

Q
n�k�1 þ 2.

Proof. Since ðP;QÞ c Dk�1;n�k�1, we have Ok�1
P BOn�k�1

Q ¼ j, so we can take
(projective) co-ordinates ðx0; . . . ; xnÞ such that if 0a ia k � 1, Oi

P is defined by
xr ¼ 0 for r > i, and if 0a ja n� k � 1, Oj

Q is defined by xr ¼ 0 for r < n� j.
Thus the expansions of a point of G near P are given in local co-ordinates

by xi ¼ ait
ai
p þ higher terms ðai A 0Þ for ia k � 1, while for ib k, we write

xi ¼ takp ðai þ a 0
i tp þ � � �Þ. Thus if A is the point with co-ordinates xi ¼ 0 for

ia k � 1 and xi ¼ ai for ib k, and A 0 the same with ai replaced by a 0
i , O

k
P is

spanned by Ok�1
P and A, and Okþ1

P is spanned by Ok�1
P , A and A 0. Here the

sequence ai is increasing; indeed, unless sPi > 0 for some i < k, we have ai ¼ i
for ia k. We may also take ai ¼ 1 for ia k � 1. Observe that since sPk ¼ 0,
akþ1 ¼ ak þ 1.

Similarly at a point near Q we can write xn�i ¼ t
bi
q þ higher terms for

ia n� k � 1, while for ib n� k, xn�i is divisible by t
bn�k
q , and we will denote

the coe‰cient of t
bn�k
q by bn�i. Thus if B is the point with co-ordinates xi ¼ bi

for ia k and xi ¼ 0 for i > k, On�k
Q is spanned by On�k�1

Q and B. Here bi is in-
creasing, and bi ¼ i for ia n� k � 1 unless sQj > 0 for some j < n� k � 1.

As in the proof of Proposition 2.2, the local equation of Tk;n�k�1 is given by
the vanishing of the determinant of the matrix whose rth row is d rxðtpÞ=dtrp
if 1a ra k, d n�rxðtqÞ=dtn�r

q if k þ 1a ra n� 1 and xðtpÞ � xðtqÞ if r ¼ n. Here
we must use a‰ne co-ordinates, so modify the above by setting x 0

0 ¼ x0 þ xn
(which takes the value 1 at both P and Q), and taking co-ordinates x 0

i ¼ xi=x
0
0

for 1a ia n: their local expansions have the same form as before, and we now
denote the determinant by cðtp; tqÞ.

(i) Since ðP;QÞ a Dk;n�k�2, A must lie in On�k�2
Q , so ak ¼ akþ1 ¼ 0. Further,

Okþ1
P is spanned by Ok�1

P , A and A 0; since ðP;QÞ c Dkþ1;n�k�1, we must have
A 0 c On�k�1

Q , so a 0
k A 0.

To obtain the coe‰cient of tp in the determinant it su‰ces to replace tq by 0 in
the calculation. Let us first consider the general case when ai ¼ i for ia k and
bi ¼ i for ia n� k � 1. Then in the last ðn� kÞ rows of the matrix, all terms be-
low the main diagonal vanish, and those on the diagonal are non-zero constants.

It remains to consider the submatrix formed by the first k rows and columns.
Now the kth row is divisible by tp. The non-zero constant terms in the other rows
all lie on the principal diagonal. Hence the only term linear in tp is a non-zero
multiple of the ðk; kÞ entry, which is a 0

ktp.
To allow for di¤ering ai and bi it is convenient to modify the matrix as fol-

lows. In place of d rxðtpÞ=dtrp, we take t�ar
p

Qr�1
i¼0 ðtpq=qtp � aiÞxðtpÞ. Note that the

linear span of the operators
Qr�1

i¼0 ðtpq=qtp � aiÞ (1a ra k) is the same as that of
the trpðq=qtpÞ

r, so we have divided the result by a power of tp. However the new
row r has zero entries in the columns xi for ia r. Perform a corresponding mod-
ification for tq. The above argument now applies to the resulting matrix.

(ii) Again we first consider the case when ai ¼ i for ia k and bi ¼ i for
ia n� k � 1. To obtain the desired coe‰cient we may substitute tp ¼ 0. We
claim that to obtain a coe‰cient of t2q we must take the elements in columns k,
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k þ 1, k þ 2 in the rows with the same numbers: these entries yield, on dividing
by k!ðn� kÞ!ðn� k � 1Þ!,

0 0 akþ2

bktq bkþ1 0
1
2 bkt

2
q bkþ1tq bkþ2=ðn� k � 1Þ

�������

�������
:

For in column k, the only terms not divisible by t3q are those in these 3 rows. The
entry in row ðk þ 2Þ can only be taken together with constant terms, which are
either on the diagonal or in row k. The term in row ðk þ 1Þ is divisible by tq.
The only term in column ðk þ 1Þ and not in row ðk þ 1Þ which is not divisible
by t2q is in row ðk þ 2Þ. The claim follows.

As in (i), we now have the product of the non-zero constant determinant
formed from the first ðk � 1Þ rows and columns, the determinant formed from
the last ðn� k � 2Þ, which has non-zero constant term, and the above, which re-
duces to 1

2 bkbkþ1akþ2t
2
q . It remains to consider bkakþ2.

Now akþ2 ¼ 0 if and only if A a On�k�3
Q , if and only if ðP;QÞ a Dkþ1;n�k�3.

Also bk ¼ 0 if and only if B a Ok�1
P , and we easily see that this is equivalent to

Ok
PBOn�k

Q containing a line (necessarily AB), i.e. to ðP;QÞ a Dk;n�k.

To allow arbitrary ai, br we proceed as in (i). The one point to note is that
to obtain the t2q , at the point where we prove bk A0 above, we now require
bn�k ¼ bn�k�1 þ 1, i.e. sQn�k�1 ¼ 0.

(iii) If s
Q
n�k�1A 0, then since bn�k ¼ bn�k�1 þ s

Q
n�k�1 þ 1, the expansion of

xkðtqÞ starts at a power of tq increased by s
Q
n�k�1, so the e¤ect on the above matrix

is to multiply the kth column by t
s
Q

n�k�1
q (and to alter the numerical coe‰cients).

Essentially the same argument as above now applies in this case. r

It follows by duality that a result corresponding to Theorem 3.2 holds also for
Dk;n�k. As the hypothesis appears somewhat clumsy, we now present an alterna-
tive viewpoint.

The sequence of osculating spaces Ok
P at a point P of G defines a complete flag

of subspaces of Cnþ1. Write G :¼ GLnþ1ðCÞ and B for the Borel subgroup con-
sisting of upper triangular matrices: then P defines a coset gPBHG=B, so a pair
of points P;Q a G defines a double coset Bg�1

P gQB. It is well known that each
double coset contains a unique permutation matrix a (representing an element
of the Weyl group of G), so the double cosets BaB, the Schubert cells, partition
G=B. The dimension of the cell is equal to the number of inversions (i.e. pairs
with i < j and aðiÞ > að jÞ) of a. As we are interested in cells of low codimension,
introduce the reversal permutation r with rðiÞ ¼ n� i for each i, and for each
permutation t denote by St the Schubert cell corresponding to a ¼ tr: this has
codimension the number of inversions of t.

Suppose the pair ðP;QÞ a G� G determines the permutation a. Then there
exists a basis feig of Cnþ1 such that. for each k, Ok

P is spanned by e0; . . . ; ek and
Ok

Q by eað0Þ; . . . ; eaðkÞ: thus the pair of flags belongs to St. The condition that
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ðP;QÞ a Tk;n�k�1 is now that f0; 1; . . . ; kgB ftðnÞ; . . . ; tðk þ 1ÞgA j, hence that
for some ia k we have k þ 1a t�1ðiÞ. The case of lowest codimension satisfying
this is t ¼ ðk; k þ 1Þ, with just one reversal. It is convenient also to write s ¼ t�1.

Similarly we have ðP;QÞ a Dk;n�k�2 if and only if, for some ia k, we have
sðiÞb k þ 2; the generic case here s ¼ ðk; k þ 2; k þ 1Þ, with codimension 2.

Also, ðP;QÞ a Dk;n�k if and only if there exist i < ja k with sðiÞ; sð jÞb k.
We see in succession that this is equivalent to

aðs½0; k�B ½k; n�Þb 2; aðs½0; k�B ½0; k � 1�Þa k � 1;

aðs�1½0; k � 1�B ½0; k�Þa k � 1; aðs�1½0; k � 1�B ½k þ 1; n�Þb 1;

and hence to: for some ia k � 1, we have tðiÞb k þ 1. Here the generic case is
t ¼ ðk � 1; k þ 1; kÞ.

Although in fact we can only construct it locally, we can think of a map
p : G� G ! G=B, and we expect that away from the diagonal this is transverse
to the stratification by Schubert varieties, hence in particular that we only en-
counter those of codimension at most 2. We note also that the cohomology ring
of G=B is generated by the classes of the Schubert varieties of codimension 1, and
Sðk;kþ1Þ and Sðkþ1;kþ2Þ intersect transversely along Sðk;kþ1;kþ2Þ and Sðk;kþ2;kþ1Þ.

The assumptions made in Theorem 4.2 are somewhat weaker than this. Let
ðP;QÞ a G� G correspond to the permutations t and s ¼ t�1. For ja k, denote
by ½ j; k� the set of integers i with 0a ia n and ja ia k. Then

Lemma 3.3. A point ðP;QÞ a Tk;n�k�1 lies in none of Dk;n�k�2, Dk�1;n�k�1,
Dk;n�k, Dkþ1;n�k�1 if and only if tðkÞ ¼ k þ 1, tðk þ 1Þ ¼ k, and t permutes
½0; k � 1� and ½k þ 2; n�.

If ðP;QÞ a Dk;n�k�2, then it lies in none of Dk�1;n�k�1, D
kþ1;n�k�1, Dk;n�k,

Dkþ2;n�k�2 and Dkþ1;n�k�3 if and only if tðkÞ ¼ k þ 2, tðk þ 1Þ ¼ k, tðk þ 2Þ ¼
k þ 1, and t permutes ½0; k � 1� and ½k þ 3; n�.

Proof. Since ðP;QÞ a Tk;n�k�1, we have i0 a k with sði0Þb k þ 1.
Since ðP;QÞ c Dk;n�k�2, ia k ) sðiÞa k þ 1, so sði0Þ ¼ k þ 1.
Since ðP;QÞ c Dk�1;n�k�1, ia k � 1 ) sðiÞa k, so i0 ¼ k.
Since ðP;QÞ c Dk;n�k,aðsð½0; k�ÞB ½k; n�Þa 1; we already have sðkÞ ¼ k þ 1,

so ia k � 1 ) sðiÞa k � 1, i.e. s permutes ½0; k � 1�.
Since ðP;QÞ c Dkþ1;n�k�1, aðsð½0; k þ 1�ÞB ½k þ 1; n�Þa 1; we already have

sðkÞ ¼ k þ 1, so sðk þ 1Þa k, and it now follows that sðk þ 1Þ ¼ k, and hence
s permutes the remaining elements ½k þ 2; n�.

Next, since ðP;QÞ a Dk;n�k�2, for some i0 a k we have sði0Þb k þ 2.
Since ðP;QÞ c Dk�1;n�k�1, ia k � 1 ) sðiÞa k; hence i0 ¼ k.
Since ðP;QÞ c Dkþ1;n�k�3, ia k þ 1 ) sðiÞa k þ 2; hence sði0Þ ¼ k þ 2.
Now as ðP;QÞ c Dk;n�k, there can be no ja k other than k with sð jÞb k, so

s induces a permutation of ½0; k � 1�.
As ðP;QÞ c Dkþ1;n�k�1, k is the only number ja k þ 1 with sð jÞb k þ 1, so

sðk þ 1Þ ¼ k.
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Finally as ðP;QÞ c Dkþ2;n�k�2, k is the only number ja k þ 2 with sð jÞb
k þ 2, so sðk þ 2Þ ¼ k þ 1. r

To apply Theorem 3.2, we must restrict Dk;n�k�2 to be disjoint from
Dk�1;n�k�1, D

kþ1;n�k�1, Dkþ1;n�k�3 and Dk;n�k. Interchanging the su‰ces, we
see that we also need it disjoint from Dkþ2;n�k�2, so the hypothesis of Lemma
3.3 holds. We call a Dk;n�k�2 point neat if this is the case. It now follows from
the lemma that the condition that all the D strata are neat is equivalent to
restricting each permutation to be a product of disjoint cycles of the form
ðk � 1; kÞ, ðk � 1; k þ 1; kÞ and ðk � 1; k; k þ 1Þ.

We can deal with the singular points of Tk;n�k�1 other than D points and
DðWÞ points by an argument similar to the above.

Proposition 3.4. If ðP;QÞ a Tk;n�k�1 with sPk ¼ 1 and s
Q
n�k�1 ¼ 1 is not a D

point, then at ðP;QÞ the curve Tk;n�k�1 has an ordinary double point, with neither
branch tangent to either axis. More precisely, the coe‰cients of t2p and t2q in c are
non-zero, while the coe‰cient of tptq vanishes.

Proof. By Lemma 3.3, ðP;QÞ corresponds to a permutation which preserves
the subsets ½0; k � 1� and ½k þ 2; n� and interchanges k and k þ 1. We can thus
take co-ordinates such that the leading terms in the local expansion at P are
xi ¼ taip for ia k þ 1 and ait

akþ2
p for i > k þ 1, and at Q are xn�i ¼ t

bi
q for

i < n� k � 1, xkþ1 ¼ bkþ1t
bn�k
q , xk ¼ bkt

bn�k�1
q and xi ¼ bit

bn�kþ1
q for i < k; where

bk, bkþ1 are non-zero and the other ai and bi may contain powers of tp and tq
respectively.

It will be convenient first to suppose ai ¼ i for ia k and bi ¼ i for
ia n� k � 1. Since sPk ¼ 1 and s

Q
n�k�1 ¼ 1, we then have akþ1 ¼ k þ 2 and

bn�k ¼ n� k þ 1.
As in the proof of Theorem 3.2, the equation c is given by a determinant, the

rows of which are derivatives of the rows xðtpÞ and xðtqÞ. First set tq ¼ 0 to find
the coe‰cient of t2p . Then in the last ðn� k � 2Þ rows the non-zero entries are
those in the main diagonal; in row ðk þ 1Þ we just have the entry in column
k. In the ðk þ 1Þst column, all entries are divisible by t2p ; indeed all of these except
the entry in row k are divisible by t3p , so for the desired coe‰cient we must use
this entry. There remain the first ðk � 1Þ rows and columns: here the entries with
non-zero constant term are just those on the principal diagonal. Hence the de-
sired coe‰cient is non-zero.

Similarly, setting tp ¼ 0, the non-zero entries in the first k rows are just those
on the principal diagonal. In column ðk þ 1Þ, all entries are divisible by t2q , so the
coe‰cient of t2q in c comes only from elements of the principal diagonal, so
this too is non-zero. Indeed, this result also follows from the first by interchang-
ing the roles of P and Q.

Since each element of column ðk þ 1Þ is divisible either by t2p or by t2q , the
coe‰cient of tptq in c vanishes.

As in the proof of Theorem 3.2, we can infer that the supposition that ai ¼ i
for ia k and bi ¼ i for ia n� k � 1 is not essential for the result. r
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4. The main theorem

From now on, we assume that all W points are simple and all D points are neat.
Then by Lemma 2.5, all the intersections of Tk;n�k�1 with DðGÞ occur at W
points, i.e. at DðWÞ, and by Lemma 3.1 at any other singular point of Tk;n�k�1

we have (a) one of sQn�k�1 > 0, Dk;n�k�2 and Dk;n�k, and also (b) one of sPk > 0,

Dk�1;n�k�1 and Dkþ1;n�k�1; hence either we have a D point or (c) the situation
sPk ¼ 1 and s

Q
n�k�1 ¼ 1 of Proposition 3.4. Thus

Lemma 4.1. If all D points of Tk;n�k�1 are simple, and Tk;n�k�1 contains no point
ðP;QÞ with sPk > 0 and s

Q
n�k�1 > 0, the singular points of Tk;n�k�1 are the ðP;PÞ

with P a Wi point (and cni;k > 1.)

For at any other point at least one of the projections is a local isomorphism.
It follows from Proposition 2.2 that the Milnor number of Tk;n�k�1 at a Wi

point is ðcni;k � 1Þ2. Hence the total Milnor number mðTk;n�k�1Þ ¼
P

iðcni;k � 1Þ2si,
which was evaluated in Lemma 1.2(iv).

Further, since all D points are neat, by Theorem 3.2, at a point of Dk;n�k�2,
provided sPk A 0, the first projection of T is an isomorphism (the coe‰cient of tp
is non-zero) and the second projection has a point of ramification of multiplicity
ðsQn�k�1 þ 1Þ (i.e. cð0; tqÞ has order ðsQn�k�1 þ 2Þ).

We are now ready for our main result.

Theorem 4.2. Suppose all W points of C are simple, all D points of C are
neat, and for each k, sPk ¼ 0 for each ðP;QÞ a Dk;n�k�2 ADk�1;n�kþ1: then for
0a ka 1

2 ðn� 2Þ, we have

dk;n�k�2 ¼ rkrn�k�2 � ðk þ 2Þðn� kÞrk � ðk þ 1Þðn� k þ 1Þrn�k�2

þ 2
Xn�1

n�k�1

ri �
1

6
ðk þ 1Þðk þ 2Þð3ðn� kÞ2 � ðk þ 3ÞÞð2g� 2Þ:

The values of the remaining invariants follow from the symmetries dk; ‘ðCÞ ¼
d‘;kðCÞ and d k; ‘ðCÞ ¼ dn�1�k;n�1�‘ðC4Þ. In particular, for 1a ka 1

2 n, we have

d k;n�k ¼ rkrn�k þ 2
Xk�1

0

ri � kðn� k þ 2Þrk � ðk þ 1Þðn� k þ 1Þrn�k

� 1

6
kðk þ 1Þð3ðn� k þ 1Þ2 � ðk þ 2ÞÞð2g� 2Þ:

Note that these formulae give incorrect values if k does not satisfy the stated
condition.

Proof. We will calculate wðTk;n�k�1Þ in two di¤erent ways. First we suppose
that, for each k, Tk;n�k�1 contains no point ðP;QÞ with sPk > 0 and s

Q
n�k�1 > 0,

so is singular only at DðW Þ.
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To simplify the appearance of the next calculation write, for now, Kk for
ðk þ 1Þðn� kÞ. On one hand, applying (3) gives

�wðTk;n�k�1Þ ¼ 2ðrk � KkÞðrn�k�1 � KkÞ þ ð2g� 2Þðrk þ rn�k�1 � 2KkÞ
� 2gK 2

k � mðTk;n�k�1Þ:

On the other hand, the projection of Tk;n�k�1 on the first factor has degree
rn�k�1 � Kk. Since wðGÞ ¼ 2� 2g, wðTk;n�k�1Þ is equal to ðrn�k�1 � KkÞð2� 2gÞ,
diminished by the e¤ect of ramification. According to Lemma 3.1, we have three
cases to consider.

For ðP;QÞ a Dk;n�k�2 or D
k;n�k we have an ordinary branch point; it follows

from Theorem 3.2 that, provided (in the former case) sQn�k�1 ¼ 0, such branch-
ing gives a term dk;n�k�2 þ d k;n�k.

For P ¼ Q a Wi point, Tk;n�k�1 has a singular point at ðP;PÞ with cni;k
mutually transverse branches. Hence this contributes cni;k � 1 to the Euler charac-
teristic calculation; the total such contribution is thus

P
iðcni;k � 1Þsi (strictly, if

cni;k ¼ 1 the point is not singular, but the contribution to the sum is 0).
For Q a Wn�k�1 point and PAQ, we again have an ordinary branch point.

Now Q corresponds in principle to rk � Kk points P; however we know that Q
itself counts here with multiplicity cnn�k�1;k ¼ cnk;k. Hence the total contribution
from such pairs is ðrk � Kk � cnk;kÞsn�k�1.

If there exists a point ðP;QÞ a Dk;n�k�2 with s
Q
n�k�1 non-zero (hence equal to

1), then by Theorem 3.2(iii), Tk;n�k�1 is defined in terms of local co-ordinates
at ðP;QÞ by an equation tp ¼ fðtqÞ where f has order 3 at 0. In this case, while
the contribution of the point P to the calculation is increased by 1, that of Q is
decreased by 1, since one of the points ðP;QÞ a Tk;n�k�1 now coincides with P.
Thus the total contribution is unchanged.

Putting these results together, we have

wðTk;n�k�1Þ ¼ ðrn�k�1 � KkÞð2� 2gÞ � ðdk;n�k�2 þ d k;n�kÞ
� ðrk � Kk � cnk;kÞsn�k�1 �

X
i

ðcni;k � 1Þsi:

Comparing our two calculations of wðTk;n�k�1Þ gives

2ðrk � KkÞðrn�k�1 � KkÞ þ ð2g� 2Þðrk þ rn�k�1 � 2KkÞ � 2gK 2
k

�
X
i

ðcni;k � 1Þ2si þ ðrn�k�1 � KkÞð2� 2gÞ � ðdk;n�k�2 þ d k;n�kÞ

� ðrk � Kk � cnk;kÞsn�k�1 �
X
i

ðcni;k � 1Þsi ¼ 0:

Substituting for sn�k�1 and collecting terms, we have

dk;n�k�2 þ d k;n�k ¼ rkðrn�k�2 þ rn�kÞ � Kkð2rk þ rn�k�2 þ rn�kÞ
þ cnk;kð2rn�k�1 � rn�k�2 � rn�k þ ð2g� 2ÞÞ
� ð2g� 2ÞK 2

k �
X
i

cni;kðcni;k � 1Þsi:
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We can now replace Kk by ðk þ 1Þðn� kÞ and substitute
P

i c
n
i;kðcni;k � 1Þsi ¼

1
3 kðk þ 1Þð3n� 4k � 2Þð2g� 2Þ �

Pk�1
0 2ðri þ rn�i�1Þ þ 2kðrk þ rn�k�1Þ from

Lemma 1.2(v).
We may now consider the case when Tk;n�k�1 contains a point ðP;QÞ with

sPk ¼ 1 and s
Q
n�k�1 ¼ 1. Then by Proposition 3.4, the curve Tk;n�k�1 has an ordi-

nary double point at ðP;QÞ, with neither branch tangent to either axis. The e¤ect
of this on the calculations is to increase our estimate of wðTk;n�k�1Þ by 1, but also
to increase mðTk;n�k�1Þ by 1. These cancel out, so the result is unchanged.

This yields equations Ek, say, for 0a ka n� 1, where Ek gives an explicit
value for dk;n�k�2 þ d k;n�k. Since dk�1;n�k�1 and d k;n�k are only defined for
1a ka n� 1, E0 has only one term on the left, and gives d0;n�2 explicitly; dually
En�1 gives d n�1;1 ¼ d 1;n�1. Now E1 gives d1;n�3 þ d 1;n�1 and hence d1;n�3. Con-
tinuing by induction, we can determine all the dk�1;n�k�1 and d k;n�k.

It will thus su‰ce to verify that the stated formula gives the correct values of
dk;n�k�2 þ d k;n�k. Note that if n ¼ 2m is even, we have 2m equations for 2m
variables; if n ¼ 2mþ 1 is odd, there are 2mþ 1 equations for 2m variables: there
is a consistency requirement that

P2m
0 ð�1ÞkEk vanish identically, which has been

a useful check in my calculations. Given the explicit formula stated above, all
that remains is a rather trivial verification. We note a few points which clarify
how to do this.

It is simpler to split each equation into 3 terms: (q) quadratic in the ri, (l)
linear in the ri, and (c) independent of the ri (but divisible by ð2g� 2Þ).

The easiest is

dk;n�k�2ðqÞ þ d k;n�kðqÞ ¼ rkðrn�k�2 þ rn�kÞ;

now by induction we find dk;n�k�2ðqÞ ¼ rkrn�k�2 and d k;n�kðqÞ ¼ rkrn�k.
For the equations EkðlÞ, we need to distinguish cases ka n� k � 2,

k ¼ n� k � 1 and kb n� k. All are similar. For ka n� k � 2, EkðlÞ gives

dk;n�k�2ðlÞ þ d k;n�kðlÞ ¼ �ðk þ 1Þðn� kÞðrn�k�2 þ 2rk þ rn�kÞ
� ðk þ 1Þðrn�k�2 � 2rn�k�1 þ rn�kÞ

þ
Xk�1

0

2ðri þ rn�i�1Þ � 2kðrk þ rn�k�1Þ;

and the desired result follows easily.
Finally, dividing by 2g� 2 gives, for 2ka n� 1,

dk;n�k�2ðcÞ þ d k;n�kðcÞ ¼ k þ 1� ðk þ 1Þ2ðn� kÞ2 � 1

3
kðk þ 1Þð3n� 4k � 2Þ:

As the right hand side of EkðcÞ is unaltered by interchanging k and n� k � 1,
the only verification required in this case is that this expression is the sum of
� 1

6 ðk þ 1Þðk þ 2Þð3ðn� kÞ2 � ðk þ 3ÞÞ and the expression obtained from this by
replacing k by ðk � 1Þ. r
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As a check on the calculation, we apply (1) to the correspondences Tk;n�k�1

and Tk�1;n�k for 1a ka n� 1. The common points are DðWÞ and points of
Dk�1;n�k�1 and Dk;n�k. By Proposition 2.2, the intersection number at a Wi point
is cni;kc

n
i;k�1. It follows from Theorem 3.2 that at a point ðP;QÞ a Dk�1;n�k�1,

Tk�1;n�k touches fPg � G and Tk;n�k�1 touches G� fQg, so the intersection
number is 1; similarly for Dk;n�k. Hence

dk�1;n�k�1 þ d k;n�k þ
X
i

cni;kc
n
i;k�1si

¼ ðrn�k�1 � ðk þ 1Þðn� kÞÞðrk�1 � kðn� k þ 1ÞÞ
þ ðrk � ðk þ 1Þðn� kÞÞðrn�k � kðn� k þ 1ÞÞ
� 2gkðk þ 1Þðn� kÞðn� k þ 1Þ

¼ rn�k�1rk�1 þ rkrn�k � ðk þ 1Þðn� kÞðrk�1 þ rn�kÞ
� kðn� k þ 1Þðrn�k�1 þ rkÞ � ð2g� 2Þkðk þ 1Þðn� kÞðn� k þ 1Þ:

Substituting for
P

i c
n
i;kc

n
i;k�1si from Lemma 1.2(vii), we obtain

dk�1;n�k�1 þ d k;n�k ¼ rn�k�1rk�1 þ rkrn�k þ 2
Xk�2

0

ðri þ rn�i�1Þ

� ððk þ 1Þðn� kÞ þ k � 1Þðrk�1 þ rn�kÞ
� ðkðn� k þ 1Þ þ kÞðrk þ rn�k�1Þ
� fkðk þ 1Þðn� kÞðn� k þ 1Þ þ nkðk þ 1Þ

� 1

3
kðk þ 1Þð4k � 1Þgð2g� 2Þ;

while substituting from Theorem 4.2 gives

dk�1;n�k�1 ¼ rk�1rn�k�1 � ðk þ 1Þðn� k þ 1Þrk�1 � kðn� k þ 2Þrn�k�1

þ 2
Xn�1

n�k

ri �
1

6
kðk þ 1Þð3ðn� k þ 1Þ2 � ðk þ 2ÞÞð2g� 2Þ;

d k;n�k ¼ rkrn�k þ 2
Xk�1

0

ri � kðn� k þ 2Þrk � ðk þ 1Þðn� k þ 1Þrn�k

� 1

6
kðk þ 1Þð3ðn� k þ 1Þ2 � ðk þ 2ÞÞð2g� 2Þ;

giving the same result.

5. Further comments

In Theorem 3.2, we needed to consider the conditions sPk ¼ 0 and s
Q
n�k�1 ¼ 0 at

a point ðP;QÞ a Dk;n�k�2; in Theorem 4.2 we had to exclude the first case, but
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permitted the second. To illustrate this, note that in the case of plane curves, this
means that we exclude a singular point with two branches and a cusp at one of
them, but permit a flecnode. Observe also that since our hypotheses bear only on
pairs of points of G, we do not exclude the case of a triple (or higher multiple)
point with transverse smooth branches. We do exclude the case s ¼ ð0; 2Þ, giving
a double point with coincident tangents (a tacnode).

For curves in 3-space, the ‘neat’ hypothesis allows the permutation s ¼
ð0; 1Þð2; 3Þ corresponding to the situation P a O2

Q, Q a O2
P. Presumably there is

here, as well as in the plane, a way of counting multiplicities that will make our
formula correct in general. Finding this seems to be interesting but di‰cult prob-
lem.

For curves which are ordinary in the sense of maps G ! Pn, we have si ¼ 0
for 0a ia n� 2, hence rk ¼ ðk þ 1Þr0 þ kþ1

2

� �
ð2g� 2Þ for 0a ka n� 1. Substi-

tuting in Theorem 4.2 gives an expression for dk;n�k�1, quadratic in r0 and g, with
coe‰cients depending on k and n, which can be reduced to

1

2
ðk þ 1Þðn� k � 1Þ

�
2r20 þ ðn� 2Þr0ð2g� 2Þ þ 1

2
kðn� k � 2Þð2g� 2Þ2

� 2ðnþ 1Þr0 � ðn2 � nk þ k2 � nþ 2kÞð2g� 2Þ
	
:

For low values of n, Theorem 4.2 gives

n ¼ 2 d0;0 ¼ r20 � 7r0 þ 2r1 � 3ð2g� 2Þ
n ¼ 3 d0;1 ¼ r0r1 � 6r0 � 4r1 þ 2r2 � 8ð2g� 2Þ
n ¼ 4 d0;2 ¼ r0r2 � 8r0 � 5r2 þ 2r3 � 15ð2g� 2Þ
n ¼ 4 d1;1 ¼ r21 � 17r1 þ 2r2 þ 2r3 � 23ð2g� 2Þ
n ¼ 5 d0;3 ¼ r0r3 � 10r0 � 6r3 þ 2r4 � 24ð2g� 2Þ
n ¼ 5 d1;2 ¼ r1r2 � 12r1 � 10r2 þ 2r3 þ 2r4 � 44ð2g� 2Þ
n ¼ 6 d0;4 ¼ r0r4 � 12r0 � 7r4 þ 2r5 � 35ð2g� 2Þ
n ¼ 6 d1;3 ¼ r1r3 � 15r1 � 12r3 þ 2r4 þ 2r5 � 71ð2g� 2Þ
n ¼ 6 d2;2 ¼ r22 � 31r2 þ 2r3 þ 2r4 þ 2r5 � 86ð2g� 2Þ

and formulae for the d k;n�k are easily read o¤, e.g.

n ¼ 5 d 2;3 ¼ r2r3 � 12r3 � 10r2 þ 2r1 þ 2r0 � 44ð2g� 2Þ:

In the case n ¼ 2 this does indeed give the traditional relations, on noting that
r0 is the degree, r1 the class, s0 the number of cusps, s1 the number of flexes, d0;0 is
double the number of nodes (since D0;0 was a set of ordered pairs of points of G,
each node contributes 2: a similar comment applies to dk;k in general), and d 1;1 is
twice the number of bitangents. The result for n ¼ 3 is, of course, equivalent to
the formula given by Zeuthen [12].
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The method can in principle be extended to obtain further formulae. In
[5, (2.5)], the correspondence on a space curve defined by having the chord PQ
meet the curve again is considered. In general one may consider the condition
on a set of points Pi a G ð1a iaNÞ that the osculating spaces Oki

Pi
lie in a hyper-

plane, or more generally a subspace of dimension n�D. In principle, this im-
poses c :¼ Dð

P
ðki þ 1Þ � ðnþ 1Þ þDÞ conditions, so if c ¼ N � 1, it defines a

correspondence between P1 and P2. The cases when c ¼ N each define a finite
number of Ntuples, and studying these correspondences will give information
about these numbers.
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177plücker formulae for curves in high dimensions




	mk1
	mk10
	mk11
	mk12
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mkEnd-page

