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vagliami 'l lungo studio e 'l grande amore
che m’ha fatto cercar lo tuo volume.”
(Inferno I, 82—-84)*

ABSTRACT. — A Calderon-Zygmund theory in Lebesgue and Marcinkiewicz spaces for infinite
energy minima of some integral functionals is proved.
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1. INTRODUCTION

1.1. FINITE ENERGY SOLUTIONS. We recall the following regularity theorem
by G. Stampacchia concerning solutions of linear Dirichlet problems in Q,
bounded subset of RY, N > 2, with right hand side a measurable function f(x).

Consider a bounded elliptic matrix M (x) with ellipticity constant « > 0 and
the related boundary value problem

(1)

{—diV(M(x)Du) =f(x) nQ,
u=>0 on 0Q.

! Always remembering (after 40 years) what I have learned from my teacher of “‘Istituzioni di Ana-
lisi Superiore” and **Analisi Superiore” ([7] pg. 1, [8] pg. 1)
2... e piu d’onore ancora assai mi fenno,
ch’e’ si mi fecer de la loro schiera,
si ch’io fui sesto tra cotanto senno.
(Inferno IV, 100-102)
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In [20] (see also® [21] and [16]), the following result is proved about the solution
ue WOI’Z(Q) (recall that the coefficients of M (x) are not smooth*) under the as-
sumption that /" belongs to the Marcinkiewicz space M"(Q)>:
2) if m>N/2, thenu € L*(Q);

if 2N/(N +2) <m < N/2, thenue M™" (Q),

where m** = (m*)* = 5 (see [14] for new contributions in this field). The fun-
damental tool for the proofs of (2) by Stampacchia is the use of the test function
[u — Ty (u)], where Ty (u) is the truncation at the levels +k, —k.

Note that the proofs of (2) do not use the linearity of the differential operator.
Only the ellipticity is used, so that the results of (2) still hold for boundary value

problems with nonlinear operators like

{—div(a(x,u,Du)) = f(x) inQ,

3
3) u=20 on 0Q,

under the ellipticity assumption a(x, s, &)¢ > a|é|?, o > 0.
If the matrix M is symmetric, the solution u of (1) is the minimum of the
functional

J(v):%/QM(x)DvDU—/Qﬁ), ve WOI’Z(Q).

Thus the regularity theorem by Stampacchia can be stated in the following
way: if /e M™(Q) and m > N/2, the minimum u of J belongs to L*(Q); if
2N/(N +2) <m < N/2, the minimum belongs to M™ (Q). Moreover, the
proof of (2) can be easily adapted to the study of minima u of more general inte-
gral functionals like

/j(x,v,Dv)—/fv, veWOI'z(Q).
Q Q

The first result concerning the summability (in Lebesgue spaces) of u, solution
of (1), is again due to G. Stampacchia: u belongs to L™ (Q) if f e L™(Q),
2N /(N +2) <m < N /2. The proof uses (2), linear interpolation theory and the
Marcinkiewicz—Zygmund Theorem. However, a summability result for weak
(finite energy) solutions is proved in [11], [12] by a direct method which uses as
test function a suitable power of u.

In [13] the regularity results for minima of functionals are extend to the
Lebesgue framework.

3but for me see “Appunti del corso di Analisi Superiore—Universita di Roma—a.a. 1969-70"
*(Calderon-Zygmund without derivatives)
SM™(Q), m > 0, is the space of measurable functions v on Q such that

IC>0:meas{x e Q:|v(x)| =} <Cr™, Vi>0
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1.2. INFINITE ENERGY SOLUTIONS. If the datum f belongs to larger spaces
(L"™(Q), 1 <m<2N/(N+2) or M"(Q), 1 <m <2N/(N +2)) the regularity
of the distributional (infinite energy) solutions u of (3) and of Du (nonlinear
Calderon-Zygmund Theory) is proved in [13] in the Lebesgue framework and
in [6] in the Marcinkiewicz framework (see also [17]).

If the datum f belongs to larger spaces as above, it is not possible to use the
definition of minimum, because the associated functional is not well defined on
the “energy space” WOI"Z(Q).

A possible way to handle minimization problems is then the use of 7-minima,
introduced in [2]. Minimization problems for integral functionals with nonregular
data are also studied in [3], [5], [4], [19] (in these papers the function j of (4) can
also depend on u) and [18], where existence of minima is proved also for function-
als with measure data, using the definition of “weak minimum” introduced by
Iwaniec and Sbordone [15].

Of course, it is possible to work with the same proofs if the standard frame-
work is WO1 7(Q) instead of W, *(Q); that is: if the assumption of coercivity is
afE)P < j(x, &) < PIE)P, 1 < p < N, instead of (5) (see below).

1.3. ASSUMPTIONS. Let j(x,¢) be a function defined in Q x RY. On j(x, &) we
assume the standard hypotheses of the integrands in the Calculus of Variations,

which lead to existence and uniqueness of minima in Wol’2 (Q) of / j(x,Dv) —
Q

/f(x)v(x), if /e L*(Q), that is:
Q

@) the function j(x, &) is measurable with respect to x
and strictly convex with respect to &

there exist «, f§ > 0 such that

(5) olé)? < j(x, &) < BlE, VEe RN ae inQ

Recalling the definition of truncation 7 : R — R
T , il <k,
K=k, 1>k
we give the definition and the existence theorem for 7-minima.

DEFINITION 1.1 ([2]). Let f € LY(Q). A measurable function u is a T-minimum
for the functional

(6) ﬂw=lymbw—éfwmm
if
Ti(u) € Wy *(Q), Vi>0:

@ /{|uwgi}j(x’ Du) — /Qf(x)T,'[u -9l < /{uwlsz‘}j(& Dyp),
¥p e Wy (Q) nL*(Q), Vi>0.
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PropoSITION 1 ([2]). Under the assumptions (4) and (5) there exists a T-
minimum u of the functional J defined in (6). Moreover the T-minimum u is unique
and, in the case of differentiability of j(x, ) with respect to &, the T-minimum is the
entropy solution (see [1]) of the Euler-Lagrange equation for J.

REMARK 1. In [2] it is also proved that u € Wol’q(Q), Vg < N/(N —1).

2. A CALDERON-ZYGMUND THEORY IN LEBESGUE SPACES FOR
INFINITE ENERGY MINIMA OF SOME INTEGRAL FUNCTIONALS

For Dirichlet problems with measure (or L') data, existence of distributional so-
lutions is proved in [9]; while in [10] it is proved that the assumption f € L™(Q),
1 <m < 2N/(N + 2), yields more summability for the solutions and their gra-
dients.

We use the following definitions, for k € R™,

A ={xeQ:k<|u(x)|}, Bi={xeQ:k <|u(x)|] <k-+1}.
THEOREM 2.1 (Calderon-Zygmund theory for functionals 1). Under the as-
sumptions (4) and (5), if f € L"(Q), 1 <m < 2N /(N + 2), then there exists a pos-
itive constant Cy such that the T-minimum u of the functional J of (6) satisfies the
estimates |u] - q) < Cr and |Du| pn+ ) < C.

ProOOF. Let k£ > 0 be fixed. In the definition of 7-minimum we use as test func-
tion ¢ = Tx(u) and i = 1. We then obtain

/ j(x,Du)S/ J(x, DTy (u /fx)Tlu—Tk( )],
{lu=Ti(u)| <1} {lu=Ti(u)| <1}

which implies, since j(x,0) =0,

(3) o[ 1ouf < [ oo < [ mle- )< [ 1]

Define 0 =", so that 02* = (20 — 1)m’ = m**. Then a consequence of (8) is
that

|Duf? / |Duf? / /]
9 oc/ — < ——< [ —
( ) B (1 + |u|)2(170) B, (1 + k)2(170) Ay (1 + k>2(170)

which implies, summing on k ranging from 0 to M — 1,

k= M 1 k= M 1
|Du|
(10) / )= L 20-0)
B/c 1 + |u| A/( 1+ k

]
S;/<w>
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Observe that A, = |J/=" By, and that {|ju] < M} = ;="' By, so that a conse-
quence of (10) is

o(/ ‘DTM(L{)lz - M h= OC/
aﬂmwww>kowzn+klg

Exchanging the summation order in the right hand side, we obtain

k Mh 0 k=M h=00
/ m -y — L5 [
k 0 ik B ( = (1 + k)0 = s,

k= TM (h) 1

h=0
! ! 20—1
" Z W2 g < g f,, VI Tul)

< s L U+ T

since one has

k=Ty (h) 1 k=T (h) k+1 dx 1+Ty () dx
; (1+k)2(1’9) = 1; /k x2(10>:/0 2(1-0)
LR 00
20 — 1

Thus we have

DT () a0t
(12) “Aaﬂndm“” s I+ TG

and (thanks to the Sobolev inequality),

1L+ 1T )) e @y < L+ [ Tar@)])” = 1] 2 g + Ca
1/2
sauymﬂmwwﬂ | Ca

Using the Holder inequality, we then have

, 2% )2m’
i,,,/z UQ[I + | T () |01 + G

Luﬂnmm”<@m

Note that <O<lsincel <m< /\%12 Thus we proved the inequality

. 1/11’1**
[@Hﬂmww] < G Ly + G-
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which implies, as M — oo (thanks to Fatou Lemma),

(13) { AR ] < G Iy + G

that is the first part of the result.
Now we use (12), the above estimate (13) and Hoélder inequality.

|DTM(M)|2 |:/ m**:|l/m/
<C + C. m u = ().
/Q(l | Tar (w))) 7 Wloa + Cilflim) Q| | ’

Then the use of (once more) estimate (13) and Fatou Lemma (as M — o0) in the

inequality
m* |DTM<u)|m* m*(1-0)
DT ()] —/ —C
/g a (14 |Ty(u))™ "

< G2 [/(1+Iu|>’” }
Q

gives the second part of the result. |

(14)

THEOREM 2.2 (A borderline case). Under the assumptions (4) and (5), if

/Q flog(1 + |/]) < 0

then the T-minimum u of the functional J of (6) belongs to Wo1 Q.

PRrROOF. Since one has

k=T (h) k=T (h) k41 gy
; (+k <1+ Z/ ——1+10g[1+TM(h)],

if we put = 1/2 in (11), inequality (12) becomes
15 o [ Q2D [ [ estt + Tt

+ | T (u

Then (thanks to Sobolev and Young inequalities) we have

(N=2)/2N
U(l+|T N/M)]

= 11+ I Ta @) owiov 2y < 1+ 1Tar @) = 1 v 2 + G
1/2 1/2 1/2
<C+G U |f|] + G [/ |f|log(1 + |f|)] + G U e‘°g<1+lTM<">>] .
Q Q Q
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Thus we proved the inequality

2)
/T N/N Cf,

which implies (as M — )
/|MN/(N—2) <C
Q

As a consequence of this estimate, of inequality (15) and of Fatou Lemma (as

M — oo) we have
| Duf’
—— < (.
/Qa ) = °

Here we repeat (14) with m =1 and we prove the result concerning the sum-
mability of the gradient. O

3. A CALDERON-ZYGMUND THEORY IN MARCINKIEWICZ SPACES FOR
INFINITE ENERGY MINIMA OF SOME INTEGRAL FUNCTIONALS

THEOREM 3.1 (Calderon-Zygmund theory for functionals 2). Under the as-
sumptions (4) and (5), if f € M"(Q), 1 <m <2N/(N +2), then there exists a
positive constant Cy such that the T-minimum u of the functional J of (6) satisfies
the estimates

C
meas{k < |u|} < .
km
and
C
meas{s < [Du|} < t”{* .

ProOF. We start as in Theorem 2.1, we use (9) with 0 =
inequalities, with k ranging now between j > 1 and M, we obtaln

|DH|2 k—M—l/ |Du‘2 k—M/ |f|
16 O‘/ =0 < _
e ilul<a ]~ kZ 5 Ju 7 kz 4, K200

Exchanging the summation order, as in (11), we have

«f lW < ce/<| 11T
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1/m’
/ | Tar ()| 07
J<ul

1/m**
[ i <a
J < |ul
and, as M — oo,

1/m*
j[meas{jswu]””’**ﬁl/ lul’””] < C,
J< |l

which implies

2/2¢
(17) Vl |TM<u>|”*] <q

1

m'

so that, since £ >

that is the Marcinkiewicz estimate on u:

Co

-1

(18) meas{j < [ul} <

With respect to the gradient, from (8) and (18) we have, since our assumption on

*x

m implies - < 1,

k=M-1

k=M
IRCCIEED S AL S AT
¢ k=0 By k=0 7 Ak
k=M C
= / 71+ Z mif/m < Cy M@N=2m=mN)/(N—2m)
Q p] k

Here we follow a technique of [1]. The previous estimate also implies

‘Du|2 < gkl—m**(l—l/m)
o

2 {lu| < kY~ {|Du| = 1] < /

{Ju| <k} ~{|Du| = 1}
On the other hand the inequality

[{[Du| > t}| < [{|Du| = 1, |u| <k} + [{[u] = k}|
and (18) give

C klfm**(lfl/m) 1
Du| > t}| < — C .
Y [ L .

Note that

m

(1) G (1) B

The minimization with respect to k gives (choose k = (N =27)/(N=m))
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Cr

tm

(19) {IDu] = 1} <

as desired. O

LemMA 3.2 (A borderline case). Under the assumptions (4) and (5), if
f e MPNIWNH2(Q) . then there exists a positive constant Cr such that the T-
minimum u of the functional J of (0) satisfies the estimates

C.
(20) meas{k < |u|} < W{;\,_z)

PROOF. Let 1 <m <2N/(N +2) and 0 =-. We start as in Theorem 3.1, we

get (17), we use Holder and Young inequalities and we have

2/2* 1/m 1/m’
/ Tu()™ | <G, / Tk / |TM<u>'”1
J<ul J<|ul J<|ul

| 2/2* - !
<3 [/ Ta()]™
J<ul

(N=2)/(N-2m)
val[
|7 <l i
Now, thanks to Fatou Lemma (as M — o0), we have
r 7(N=2)/(N-2m)

2/2%
i<l i< T

Now we use Holder inequality in Marcinkiewicz framework and we have

2/2%
[/ |u|m**‘| < Cz[meas{jg |u|}][Zme(N+2)](N72)/2N(N72m)
J<ul

which implies
jZm**/2*[meas{j < |u|}](N72)/N < Cz[meas{j < |u|}][Zme(NJrZ)]m**/mNZ*
that is

Cr

meas{;j < |u|} < W,

that is the Marcinkiewicz estimate on u. O

REMARK 2. We are not able to prove the Marcinkiewicz estimate in M?(Q) on
the gradient, under the same assumptions of the previous lemma. Note that, if we
put together the above estimate and (8), we have

C
o [ |Dul* < iy
By k
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which implies (with the previous techniques)

oc/ |DTy (u)|* < Colog(M).
Q

Then, if we follow the second part of the proof of Theorem 3.1, we can show

log(t
meas{t < [Du|} < Cy Olgz( ),
but we are not able to prove that
1
(21) meas{t < |Du|} < Cfl—z.

We point out that the similar bordeline case for the Dirichlet problems involving
equations has been recently treated in [17], where the estimate (21) is proved.
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