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‘‘. . . onore e lume
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che m’ha fatto cercar lo tuo volume.’’
(Inferno I, 82–84)1

Abstract. — A Calderon-Zygmund theory in Lebesgue and Marcinkiewicz spaces for infinite
energy minima of some integral functionals is proved.
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1. Introduction

1.1. Finite energy solutions. We recall the following regularity theorem
by G. Stampacchia concerning solutions of linear Dirichlet problems in W,
bounded subset of RN , N > 2, with right hand side a measurable function f ðxÞ.

Consider a bounded elliptic matrix MðxÞ with ellipticity constant a > 0 and
the related boundary value problem

�divðMðxÞDuÞ ¼ f ðxÞ in W;

u ¼ 0 on qW:

�
ð1Þ

1Always remembering (after 40 years) what I have learned from my teacher of ‘‘Istituzioni di Ana-

lisi Superiore’’ and ‘‘Analisi Superiore’’ ([7] pg. 1, [8] pg. 1)

2 . . . e piú d’onore ancora assai mi fenno,

ch’e’ sı́ mi fecer de la loro schiera,

sı́ ch’io fui sesto tra cotanto senno.

(Inferno IV, 100–102)



In [20] (see also3 [21] and [16]), the following result is proved about the solution
u a W

1;2
0 ðWÞ (recall that the coe‰cients of MðxÞ are not smooth4) under the as-

sumption that f belongs to the Marcinkiewicz space MmðWÞ5:

if m > N=2; then u a LlðWÞ;
if 2N=ðN þ 2Þ < m < N=2; then u a Mm�� ðWÞ;

�
ð2Þ

where m�� ¼ ðm�Þ� ¼ mN
N�2m (see [14] for new contributions in this field). The fun-

damental tool for the proofs of (2) by Stampacchia is the use of the test function
½u� TkðuÞ�, where TkðuÞ is the truncation at the levels þk, �k.

Note that the proofs of (2) do not use the linearity of the di¤erential operator.
Only the ellipticity is used, so that the results of (2) still hold for boundary value
problems with nonlinear operators like

�divðaðx; u;DuÞÞ ¼ f ðxÞ in W;

u ¼ 0 on qW;

�
ð3Þ

under the ellipticity assumption aðx; s; xÞxb ajxj2, a > 0.
If the matrix M is symmetric, the solution u of (1) is the minimum of the

functional

JðvÞ ¼ 1

2

Z
W

MðxÞDvDv�
Z
W

fv; v a W
1;2
0 ðWÞ:

Thus the regularity theorem by Stampacchia can be stated in the following
way: if f a MmðWÞ and m > N=2, the minimum u of J belongs to LlðWÞ; if
2N=ðN þ 2Þ < m < N=2, the minimum belongs to Mm��ðWÞ. Moreover, the
proof of (2) can be easily adapted to the study of minima u of more general inte-
gral functionals like Z

W

jðx; v;DvÞ �
Z
W

fv; v a W
1;2
0 ðWÞ:

The first result concerning the summability (in Lebesgue spaces) of u, solution
of (1), is again due to G. Stampacchia: u belongs to Lm�� ðWÞ if f a LmðWÞ,
2N=ðN þ 2Þam < N=2. The proof uses (2), linear interpolation theory and the
Marcinkiewicz–Zygmund Theorem. However, a summability result for weak
(finite energy) solutions is proved in [11], [12] by a direct method which uses as
test function a suitable power of u.

In [13] the regularity results for minima of functionals are extend to the
Lebesgue framework.

3but for me see ‘‘Appunti del corso di Analisi Superiore—Università di Roma—a.a. 1969–70’’
4 (Calderon-Zygmund without derivatives)

5MmðWÞ, m > 0, is the space of measurable functions v on W such that

bCb 0 : measfx a W : jvðxÞjb tgaCt�m; Et > 0
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1.2. Infinite energy solutions. If the datum f belongs to larger spaces
(LmðWÞ, 1am < 2N=ðN þ 2Þ or MmðWÞ, 1 < m < 2N=ðN þ 2Þ) the regularity
of the distributional (infinite energy) solutions u of (3) and of Du (nonlinear
Calderon–Zygmund Theory) is proved in [13] in the Lebesgue framework and
in [6] in the Marcinkiewicz framework (see also [17]).

If the datum f belongs to larger spaces as above, it is not possible to use the
definition of minimum, because the associated functional is not well defined on
the ‘‘energy space’’ W 1;2

0 ðWÞ.
A possible way to handle minimization problems is then the use of T-minima,

introduced in [2]. Minimization problems for integral functionals with nonregular
data are also studied in [3], [5], [4], [19] (in these papers the function j of (4) can
also depend on u) and [18], where existence of minima is proved also for function-
als with measure data, using the definition of ‘‘weak minimum’’ introduced by
Iwaniec and Sbordone [15].

Of course, it is possible to work with the same proofs if the standard frame-
work is W

1;p
0 ðWÞ instead of W 1;2

0 ðWÞ; that is: if the assumption of coercivity is
ajxjp a jðx; xÞa bjxjp, 1 < paN, instead of (5) (see below).

1.3. Assumptions. Let jðx; xÞ be a function defined in W� RN . On jðx; xÞ we
assume the standard hypotheses of the integrands in the Calculus of Variations,

which lead to existence and uniqueness of minima in W
1;2
0 ðWÞ of

Z
W

jðx;DvÞ�Z
W

f ðxÞvðxÞ, if f a L2ðWÞ, that is:

the function jðx; xÞ is measurable with respect to x

and strictly convex with respect to x

�
ð4Þ

there exist a; b > 0 such that

ajxj2 a jðx; xÞa bjxj2; Ex a RN ; a:e: in W:ð5Þ

Recalling the definition of truncation Tk : R 7! R

TkðtÞ ¼
t; jtja k;

k t
jtj ; jtj > k;

(

we give the definition and the existence theorem for T-minima.

Definition 1.1 ([2]). Let f a L1ðWÞ. A measurable function u is a T-minimum
for the functional

JðvÞ ¼
Z
W

jðx;DvÞ �
Z
W

f ðxÞvðxÞð6Þ

if

TiðuÞ a W 1;2
0 ðWÞ; Ei > 0:Z

fju�jjaig
jðx;DuÞ �

Z
W

f ðxÞTi½u� j�a
Z
fju�jjaig

jðx;DjÞ;

Ej a W
1;2
0 ðWÞBLlðWÞ; Ei > 0:

8>>><
>>>:

ð7Þ
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Proposition 1 ([2]). Under the assumptions (4) and (5) there exists a T-
minimum u of the functional J defined in (6). Moreover the T-minimum u is unique
and, in the case of di¤erentiability of jðx; xÞ with respect to x, the T-minimum is the
entropy solution (see [1]) of the Euler-Lagrange equation for J.

Remark 1. In [2] it is also proved that u a W
1;q
0 ðWÞ, Eq < N=ðN � 1Þ.

2. A Calderon-Zygmund theory in Lebesgue spaces for

infinite energy minima of some integral functionals

For Dirichlet problems with measure (or L1) data, existence of distributional so-
lutions is proved in [9]; while in [10] it is proved that the assumption f a LmðWÞ,
1 < m < 2N=ðN þ 2Þ, yields more summability for the solutions and their gra-
dients.

We use the following definitions, for k a Rþ,

Ak ¼ fx a W : ka juðxÞjg; Bk ¼ fx a W : ka juðxÞj < k þ 1g:

Theorem 2.1 (Calderon-Zygmund theory for functionals 1). Under the as-
sumptions (4) and (5), if f a LmðWÞ, 1 < m < 2N=ðN þ 2Þ, then there exists a pos-
itive constant Cf such that the T-minimum u of the functional J of (6) satisfies the
estimates jjujjLm�� ðWÞ aCf and jjDujjLm� ðWÞ aCf .

Proof. Let k > 0 be fixed. In the definition of T-minimum we use as test func-
tion j ¼ TkðuÞ and i ¼ 1. We then obtainZ

fju�TkðuÞja1g
jðx;DuÞa

Z
fju�TkðuÞja1g

jðx;DTkðuÞÞ þ
Z
W

f ðxÞT1½u� TkðuÞ�;

which implies, since jðx; 0Þ ¼ 0,

a

Z
Bk

jDuj2 a
Z
Bk

jðx;DuÞa
Z
W

fT1½u� TkðuÞ�a
Z
Ak

j f jð8Þ

Define y ¼ m��

2� , so that y2� ¼ ð2y� 1Þm 0 ¼ m��. Then a consequence of (8) is
that

a

Z
Bk

jDuj2

ð1þ jujÞ2ð1�yÞ a a

Z
Bk

jDuj2

ð1þ kÞ2ð1�yÞ a

Z
Ak

j f j
ð1þ kÞ2ð1�yÞ ;ð9Þ

which implies, summing on k ranging from 0 to M � 1,

a
Xk¼M�1

k¼0

Z
Bk

jDuj2

ð1þ jujÞ2ð1�yÞ a
Xk¼M�1

k¼0

Z
Ak

j f j
ð1þ kÞ2ð1�yÞð10Þ

a
Xk¼M

k¼0

Z
Ak

j f j
ð1þ kÞ2ð1�yÞ :
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Observe that Ak ¼
Sh¼l

h¼k Bh, and that fjujaMg ¼
Sk¼M�1

k¼0 Bk, so that a conse-
quence of (10) is

a

Z
W

jDTMðuÞj2

ð1þ jTMðuÞjÞ2ð1�yÞ a
XM
k¼0

Xh¼l

h¼k

Z
Bh

j f j
ð1þ kÞ2ð1�yÞ :

Exchanging the summation order in the right hand side, we obtain����������������

Xk¼M

k¼0

Xh¼l

h¼k

Z
Bh

j f j
ð1þ kÞ2ð1�yÞ ¼

Xk¼M

k¼0

1

ð1þ kÞ2ð1�yÞ

Xh¼l

h¼k

Z
Bh

j f j

¼
Xh¼l

h¼0

Z
Bh

j f j
Xk¼TM ðhÞ

k¼0

1

ð1þ kÞ2ð1�yÞ a
Xh¼l

h¼0

1

2y� 1

Z
Bh

j f jð1þ TMðhÞÞ2y�1

a
1

2y� 1

Z
W

j f j½1þ jTMðuÞj�2y�1;

ð11Þ

since one has

Xk¼TM ðhÞ

k¼0

1

ð1þ kÞ2ð1�yÞ a
Xk¼TM ðhÞ

k¼0

Z kþ1

k

dx

x2ð1�yÞ ¼
Z 1þTM ðhÞ

0

dx

x2ð1�yÞ

¼ ½1þ TMðhÞ�2y�1

2y� 1
:

Thus we have

a

Z
W

jDTMðuÞj2

ð1þ jTMðuÞjÞ2ð1�yÞ a
1

2y� 1

Z
W

j f j½1þ jTMðuÞj�2y�1;ð12Þ

and (thanks to the Sobolev inequality),��������
jjð1þ jTMðuÞjÞyjjL2� ðWÞ a jj½ð1þ jTMðuÞjÞy � 1�jjL2� ðWÞ þ CW

aC1

Z
W

j f j½1þ jTMðuÞj�2y�1

� �1=2
þ CW:

Using the Hölder inequality, we then haveZ
W

ð1þ jTMðuÞjÞy2
�
aC2jj f jj2

�=2
LmðWÞ

Z
W

½1þ jTMðuÞj�ð2y�1Þm 0
� �2�=2m 0

þ C2:

Note that 1
2 < y < 1 since 1 < m < 2N

Nþ2 . Thus we proved the inequality

Z
W

½1þ jTMðuÞj�m
��

� �1=m��

aCf jj f jjLmðWÞ þ Cf ;
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which implies, as M ! l (thanks to Fatou Lemma),Z
W

½1þ juj�m
��

� �1=m��

aCf jj f jjLmðWÞ þ Cf ;ð13Þ

that is the first part of the result.
Now we use (12), the above estimate (13) and Hölder inequality.Z

W

jDTMðuÞj2

ð1þ jTMðuÞjÞ2ð1�yÞ aC4jj f jjL1ðWÞ þ C4jj f jjLmðWÞ

Z
W

jujm
��

� �1=m 0

¼ C0:

Then the use of (once more) estimate (13) and Fatou Lemma (as M ! l) in the
inequality����������

Z
W

jDTMðuÞjm
�
¼

Z
W

jDTMðuÞjm
�

ð1þ jTMðuÞjÞm�ð1�yÞ ð1þ jTMðuÞjÞm
�ð1�yÞ

aC0
m�=2

Z
W

ð1þ jujÞm
��

� �ð2�m�Þ=2
ð14Þ

gives the second part of the result. r

Theorem 2.2 (A borderline case). Under the assumptions (4) and (5), ifZ
W

j f j logð1þ j f jÞ < l;

then the T-minimum u of the functional J of (6) belongs to W 1;1�

0 ðWÞ.

Proof. Since one has

Xk¼TM ðhÞ

k¼0

1

ð1þ kÞ a 1þ
Xk¼TM ðhÞ

k¼1

Z kþ1

k

dx

x
¼ 1þ log½1þ TMðhÞ�;

if we put y ¼ 1=2 in (11), inequality (12) becomes

a

Z
W

jDTMðuÞj2

ð1þ jTMðuÞjÞ a
Z
W

j f j þ
Z
W

j f j logð1þ jTMðuÞjÞ:ð15Þ

Then (thanks to Sobolev and Young inequalities) we have�������������

Z
W

ð1þ jTMðuÞjÞN=ðN�2Þ
� �ðN�2Þ=2N

¼ jjð1þ jTMðuÞjÞ1=2jjL2N=ðN�2ÞðWÞ a jjð1þ jTMðuÞjÞ1=2 � 1jjL2N=ðN�2ÞðWÞ þ C1

aC1 þ C2

Z
W

j f j
� �1=2

þ C2

Z
W

j f j logð1þ j f jÞ
� �1=2

þ C2

Z
W

e logð1þjTM ðuÞjÞ
� �1=2

:
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Thus we proved the inequality

Z
W

jTMðuÞjN=ðN�2Þ
aCf ;

which implies (as M ! l)

Z
W

jujN=ðN�2Þ
aCf :

As a consequence of this estimate, of inequality (15) and of Fatou Lemma (as
M ! l) we have Z

W

jDuj2

ð1þ jujÞ aC0:

Here we repeat (14) with m ¼ 1 and we prove the result concerning the sum-
mability of the gradient. r

3. A Calderon-Zygmund theory in Marcinkiewicz spaces for

infinite energy minima of some integral functionals

Theorem 3.1 (Calderon-Zygmund theory for functionals 2). Under the as-
sumptions (4) and (5), if f a MmðWÞ, 1 < m < 2N=ðN þ 2Þ, then there exists a
positive constant Cf such that the T-minimum u of the functional J of (6) satisfies
the estimates

measfka jujga Cf

km��

and

measfta jDujga Cf

tm
� :

Proof. We start as in Theorem 2.1, we use (9) with y ¼ m��

2� . If we sum these
inequalities, with k ranging now between jb 1 and M, we obtain

a

Z
jajuj<M

jDuj2

juj2ð1�yÞ ¼ a
Xk¼M�1

k¼ j

Z
Bk

jDuj2

juj2ð1�yÞ a
Xk¼M

k¼ j

Z
Ak

j f j
k2ð1�yÞ :ð16Þ

Exchanging the summation order, as in (11), we have

a

Z
jajuj

jDTMðuÞj2

jTMðuÞj2ð1�yÞ aCy

Z
jajuj

j f j jTMðuÞj2y�1;

201a calderon-zygmund theory for minima of integral functionals



which implies Z
jajuj

jTMðuÞjy2
�

" #2=2�

aCf

Z
jajuj

jTMðuÞjð2y�1Þm 0

" #1=m 0

;ð17Þ

so that, since 2
2� >

1
m 0 Z

jajuj
jTMðuÞjm

��

" #1=m��

aC1

and, as M ! l,

j½measf ja jujg�1=m
��
a

Z
jajuj

jujm
��

" #1=m��

aC1;

that is the Marcinkiewicz estimate on u:

measf ja jujga C0

jm
�� :ð18Þ

With respect to the gradient, from (8) and (18) we have, since our assumption on
m implies m��

m 0 < 1,����������

a

Z
W

jDTMðuÞj2 ¼ a
Xk¼M�1

k¼0

Z
Bk

jDuj2 a
Xk¼M

k¼0

Z
Ak

j f j

a

Z
W

j f j þ
Xk¼M

k¼1

~CCf

km��=m 0 aC1M
ð2N�2m�mNÞ=ðN�2mÞ

Here we follow a technique of [1]. The previous estimate also implies

t2 jfjuj < kgB fjDujb tgja
Z
fjuj<kgBfjDujbtg

jDuj2 a C1

a
k1�m��ð1�1=mÞ

On the other hand the inequality

jfjDujb tgja jfjDujb t; juj < kgj þ jfjujb kgj

and (18) give

jfjDujb tgja C1

a

k1�m��ð1�1=mÞ

t2
þ C0

1

km�� :

Note that

m��
�
1� 1

m

�
¼ ðm� 1ÞN

N � 2m
; 1�m��

�
1� 1

m

�
¼ 2N �mðN þ 2Þ

N � 2m
a ð0; 1�:

The minimization with respect to k gives (choose k ¼ tðN�2mÞ=ðN�mÞ)
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jfjDujb tgja Cf

tm
� ;ð19Þ

as desired. r

Lemma 3.2 (A borderline case). Under the assumptions (4) and (5), if
f a M 2N=ðNþ2ÞðWÞ, then there exists a positive constant Cf such that the T-
minimum u of the functional J of (6) satisfies the estimates

measfka jujga Cf

k2N=ðN�2Þð20Þ

Proof. Let 1 < m < 2N=ðN þ 2Þ and y ¼ m��

2� . We start as in Theorem 3.1, we
get (17), we use Hölder and Young inequalities and we have������������

Z
jajuj

jTMðuÞjm
��

" #2=2�

aCm

Z
jajuj

j f jm
" #1=m Z

jajuj
jTMðuÞjm

��

" #1=m 0

a
1

2

Z
jajuj

jTMðuÞjm
��

" #2=2�

þ C1

Z
jajuj

j f jm
" #ðN�2Þ=ðN�2mÞ

:

Now, thanks to Fatou Lemma (as M ! l), we haveZ
jajuj

jujm
��

" #2=2�

a 2C1

Z
jajuj

j f jm
" #ðN�2Þ=ðN�2mÞ

:

Now we use Hölder inequality in Marcinkiewicz framework and we haveZ
jajuj

jujm
��

" #2=2�

aC2½measf ja jujg�½2N�mðNþ2Þ�ðN�2Þ=2NðN�2mÞ

which implies

j2m
��=2� ½measf ja jujg�ðN�2Þ=N

aC2½measf ja jujg�½2N�mðNþ2Þ�m��=mN2�

that is

measf ja jujga Cf

j2N=ðN�2Þ ;

that is the Marcinkiewicz estimate on u. r

Remark 2. We are not able to prove the Marcinkiewicz estimate in M 2ðWÞ on
the gradient, under the same assumptions of the previous lemma. Note that, if we
put together the above estimate and (8), we have

a

Z
Bk

jDuj2 a Cf

k
;

203a calderon-zygmund theory for minima of integral functionals



which implies (with the previous techniques)

a

Z
W

jDTMðuÞj2 aC0 logðMÞ:

Then, if we follow the second part of the proof of Theorem 3.1, we can show

measfta jDujgaCf

logðtÞ
t2

;

but we are not able to prove that

measfta jDujgaCf

1

t2
:ð21Þ

We point out that the similar bordeline case for the Dirichlet problems involving
equations has been recently treated in [17], where the estimate (21) is proved.
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