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of minimal surfaces of general type with pg ¼ q ¼ 1 and K 2 ¼ 4, by Roberto
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Abstract. — This paper is devoted to the irregular surfaces of general type having the smallest

invariants, pg ¼ q ¼ 1. We consider the still unexplored case K 2 ¼ 4, classifying those whose Alba-
nese morphism has general fibre of genus 2 and such that the direct image of the bicanonical sheaf

under the Albanese morphism is a direct sum of line bundles. We find 8 unirational families, and we
prove that all are irreducible components of the moduli space of minimal surfaces of general type.

This is unexpected because the assumption on the direct image bicanonical sheaf is a priori only a
closed condition. One more unexpected property is that all these components have dimension strictly

bigger than the expected one.
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Introduction

Minimal surfaces of general type with pg ¼ q (i.e with wðOÞ ¼ 1, the minimal pos-
sible value) have attracted the interest of many authors, but we are very far from
a complete classification of them. Bombieri’s theorem on pluricanonical maps en-
sures that there is only a finite number of families of such surfaces, but recent
results show that the number of these families is huge (see for instance [PK],
[BCG], [BCGP] for the case pg ¼ q ¼ 0, [Pol1], [Pol2] for the case pg ¼ q ¼ 1,
[Zuc] and [Pen] for the case pg ¼ q ¼ 2).

The irregular case is possibly more a¤ordable, and in fact there is a complete
classification of the case pg ¼ qb 3 ([HP], [Pir], see also [BCP] for more on sur-
faces with wðOÞ ¼ 1).

We are interested in the case pg ¼ q ¼ 1. A classification of the minimal sur-
faces of general type with pg ¼ q ¼ 1 and K 2 a 3 has been obtained ([Cat1],
[CC1], [CC2], [CP]) by looking at the Albanese morphism, which, for a surface
with q ¼ 1, is a fibration onto an elliptic curve.

In this paper we begin the analysis of the next case K 2 ¼ 4, by studying the
surfaces whose general Albanese fibre has the minimal possible genus, i.e., genus 2.

We proved the following

Theorem 0.1. Let M be the algebraic subset of the moduli space of minimal sur-
faces of general type given by the set of isomorphism classes of minimal surfaces S
with pg ¼ q ¼ 1, K 2

S ¼ 4, whose Albanese fibration a is such that



• the general fibre of a is a genus 2 curve;

• a�o
2
S is a direct sum of line bundles.

Then

• M has 8 connected components, all unirational, one of dimension 5 and the others
of dimension 4;

• these are also irreducible components of the moduli space of minimal surfaces of
general type;

• the general surface in each of these components has ample canonical class.

We find noteworthy that all these families have bigger dimension than ex-
pected. Standard deformation theory says that any irreducible component of the
moduli space of minimal surfaces of general type containing a surface S has di-
mension at least �wðTSÞ ¼ 10wðOSÞ � 2K 2

S , but by the general principle ‘‘Hodge
theory kills the obstruction’’ (stated in [Ran] and later made precise in [Cle]) this
bound is not sharp for irregular surfaces. By applying this principle as in [CS],
(proof of theorem 5.10), if q ¼ 1 a better lower bound is 10wðOSÞ � 2K 2

S þ pg ¼
11pg � 2K 2. This new bound is sharp, and in fact ([Cat1], [CC1], [CC2], [CP]) all
irreducible components of the moduli space of surfaces with pg ¼ q ¼ 1 and
K 2 a 3 attain it. For K 2 ¼ 4 this bound is 3, and all our families have strictly
bigger dimension.

For technical reasons we assume a�o
2
S to be a sum of line bundles. This is a

closed assumption, and it is rather surprising that all the families we find are irre-
ducible components of the moduli space of minimal surfaces of general type.
Since [CC1] (thm. 1.4 and prop. 2.2) shows that the number of direct summands
of a�oS is a topological invariant, we ask the following

Question: is the number of direct summands of a�o
2
S a deformation or a topo-

logical invariant?
The author knows of constructions of minimal surfaces with pg ¼ q ¼ 1 and

K 2 ¼ 4 by Catanese ([Cat2]), Polizzi ([Pol2]) and Rito ([Rit1], [Rit2]). Only one
of these constructions gives a family of dimension at least 4, one of Polizzi’s
families. But these are obtained by resolving the singularities of a surface with
4 nodes; since each of our 8 families contains a surface with ample canonical
class, the general surface in each of them is new. In section 5 we show that the
4-dimensional family constructed by Polizzi is a proper subfamily of our ‘‘bigger’’
family, the one of dimension 5.

The proof uses three main tools.
The first one is the study of the relative canonical algebra of genus 2 fibrations

(introduced in [Rei] after the results obtained in [Hor], [Xia], [CC1]) and in par-
ticular the structure theorem for genus 2 fibrations of [CP]. The assumption on
the direct image of the bicanonical sheaf is a natural assumption in view of the
results of [CP].

The second step consists in the analysis of several cases a priori possible: some
of these are excluded through the investigation of the geometry of a certain conic
bundle, which is obtained as the quotient of our surface by the involution which
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induces the hyperelliptic involution on each fibre. Contradictions are derived by
comparing a ‘‘very negative’’ section s with the branch locus (for example, by
showing that s is contained in its divisorial part, which is reduced, with multiplic-
ity 2).

Finally, to show that all our families are irreducible components of the moduli
space of minimal surfaces of general type we need to bound from above the di-
mension of the first cohomology group of the tangent sheaf. To do that, we relate
it with the dimension of a subsystem of the bicanonical system which we can ex-
plicitly compute.

The paper is organized as follows.
In section 1 we recall the structure theorem for genus 2 fibrations.
In section 2, we apply it to construct 8 families of minimal surfaces of general

type with pg ¼ q ¼ 1, K 2 ¼ 4 whose Albanese fibration a has fiber of genus 2 and
a�o

2
S is a sum of line bundles. We also remark that each family contains surfaces

with ample canonical class.
In sections 3 and 4 we show that we have constructed all surfaces with the

above properties. In other words the image of our families in the moduli space
of surface of general type equals the scheme M in theorem 0.1.

In section 5 we first remark that M has 8 unirational connected components
(one for each family) and compute the dimension of each component. We prove
then that they all are irreducible components of the moduli space of minimal sur-
faces of general type by investigating their bicanonical system as mentioned
above.

Acknowledgements. I’m indebted with F. Catanese for explaining me how to use the bicanon-

ical curves on a fibred surface to compute its infinitesimal deformations. I thank F. Polizzi for many

interesting conversations on the properties of the surfaces in [Pol2].

1. The structure theorem for genus 2 fibrations

1.1. The relative bicanonical map. In this section we recall results of [CP]
(section 4) without giving any proof. The goal is to explain the structure theorem
for genus 2 fibration (4.13 there).

Let f : S ! B be a relatively minimal fibration of a smooth compact complex
surface to a smooth curve whose general fibre has genus 2. We denote by Fp the
fibre f �1ðpÞ.

Consider the relative dualizing sheaf oSjB :¼ oS n f �o�1
B . The direct images

Vn :¼ f�o
n
SjB are vector bundles on B whose fibre over any point p is canonically

isomorphic to H 0ðon
Fp
Þ. Therefore the induced rational maps jn : SdPðVnÞ :¼

ProjðSymVnÞ (cf. [Har], chapter 2, section 7) map each fibre Fp to the corre-
sponding fibre of PðVnÞ by its own n-canonical map.

We remember to the reader that the canonical map of a smooth genus 2 curve
F is a double cover of P1 and that its bicanonical map is the composition of this
map with the 2-Veronese embedding of P1 onto a conic in P2, defined by the
isomorphism Sym2ðH 0ðoF ÞÞGH 0ðo2

F Þ. The relative analog is an injective
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morphism of sheaves s2 : Sym
2 V1 ,! V2 (surjectivity fails on the stalks of points

p such that Fp is not 2-connected) giving a relative 2-Veronese v : PðV1ÞdPðV2Þ
birational onto a conic bundle C, the image of j2. In fact j2 ¼ v � j1.

The main point is that j2 is always a morphism. More precisely, j2 is a quasi-
finite morphism of degree 2 contracting exactly the ð�2Þ curves contained in fi-
bres. In other words, if we substitute S with its relative canonical model (the sur-
face obtained contracting that curves), j2 becomes a finite morphism of degree 2.
Moreover C can only have singularities of type An or Dn, that are Rational Dou-
ble Points.

The structure theorem proves that to reconstruct the pair ðS; f Þ one only
needs to know s2 (that gives at once C and the isolated branch points of j2) and
the divisorial part D of the branch locus of j2. It gives moreover a concrete recipe
to construct all possible pairs (s2;D).

We now introduce the 5 ingredients ðB;V1; t; x;wÞ, and then explain how to
cook s2 and D from them.

1.2. The 5 ingredients. Their order is important, since each ingredient is
given as an element in a space that depends on the previously given ingredients.
They are

(B): Any curve.
(V1): Any rank 2 vector bundle over B.
(t): Any e¤ective divisor on B.
(x): Any extension class

x a Ext1OB
ðOt; Sym

2ðV1ÞÞ=AutOB
ðOtÞ

such that the central term, say V2, of the corresponding short exact se-
quence

0 ! Sym2ðV1Þ !
s2

V2 ! Ot ! 0ð1Þ

is a vector bundle.
(w): A nontrivial element of

HomððdetV1 nOBðtÞÞ2;A6Þ=C�:

where A6 is a vector bundle determined by the other 4 ingredients as we
explain in the following.

Consider the map n in the natural short exact sequence

0 ! ðdetV1Þ2 !
n
Sym2ðSym2ðV1ÞÞ ! Sym4ðV1Þ ! 0;

given locally, if x0, x1 are generators of the stalk of V1 in a point, by

nððx0bx1Þn2Þ ¼ ðx0Þ2ðx1Þ2 � ðx0x1Þ2:ð2Þ
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A6 is the cokernel of the (automatically injective) composition of maps

ðdetV1Þ2 nV2 ��������!nnidV2
Sym2ðSym2ðV1ÞÞnV2ð3Þ

��������!Sym2ðs2ÞnidV2
Sym2ðV2ÞnV2 ��������!m2; 1

Sym3ðV2Þ:

In other words, writing i3 for the composition of the maps in (3), we have an
exact sequence

0 ! ðdetV1Þ2 nV2 !
i3

Sym3ðV2Þ ! A6 ! 0:ð4Þ

The 5 ingredients are required to satisfy some open conditions, just to ensure
that what you cook is eatable. We need first to give the recipe.

1.3. The recipe. The conic bundle C comes from the first 4 ingredients, and
more precisely is the image of the relative 2-Veronese PðV1ÞdPðV2Þ given by
the map s2 in the exact sequence (1).

We give an equation defining C as a divisor in PðV2Þ. A conic bundle in a pro-
jective bundle PðVÞ is given by an injection of a line bundle to Sym2 V ; in this
case the map Sym2ðs2Þ � n : ðdetV1Þ2 ! Sym2 V2.

Now we explain how to get D from w. The curve D is locally (on B) the
complete intersection of C with a relative cubic in PðV2Þ. In other words, a divi-
sor in the linear system associated to the restriction to C of the line bundle
OPðV2Þð3Þn p�L�1 for p being the projection on B, L a line bundle on B.

Why a map from a line bundle to the vector bundle A6 gives such a divi-
sor? The equation of a divisor G a jOPðV2Þð3Þn p�L�1j is an injective map
L ,! Sym3 V2. Intersecting it with C we do not obtain all divisor in that linear
system since in general they are not all complete intersections of the form CBG.
To get the complete linear system we need to consider injections L ,! A6 where
A6 is the quotient of Sym

3 V2 by the subbundle of the relative cubics vanishing on
C, that is exactly the image of the map i3 in the exact sequence (4).

1.4. The open conditions. We need to impose that

• C has only Rational Double Points as singularities;

• the curve D has only simple singularities, where ‘‘simple’’ means that the germ
of double cover of C branched on it is either smooth or has a Rational Double
Point.

Definition 1.1. The map s2 gives isomorphisms of the respective fibres of
Sym2 V1 and V2 over points not in suppðtÞ. On the points of suppðtÞ it defines a
rank 2 matrix, whose image defines a pencil of lines in the corresponding P2, thus
having a base point. We denote by P the union of these (base) points. So P is in
natural bijection with suppðtÞ.

Remark 1.2. By theorem 4.7 of [CP], PH SingðCÞ is the set of isolated branch
points of c2, so in particular DBP ¼ j.
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Remark 1.3. By remark 4.14 in [CP], if t is a reduced divisor and every fibre of
C ! B is reduced (it is enough to check the preimages of points of t, the other
fibres being smooth) then the first open condition is fulfilled. More precisely au-
tomatically SingðCÞ ¼ P and these points are A1 singularities of C.

It follows that if moreover D is smooth and DBP ¼ j both open conditions
are fulfilled and the relative canonical model of the surface is smooth.

1.5. The dish. What we get is a genus 2 fibration f : S ! B (the base is the
first ingredient) with V1 G f�oSjB and V2 G f�o

2
SjB. The structure theorem says

that any relatively minimal genus 2 fibration is obtained in this way.
Denoting by b the genus of the base curve B

wðOSÞ ¼ degV1 þ ðb� 1Þ K 2
S ¼ 2 degV1 þ 8ðb� 1Þ þ deg t

2. The families

In this section we construct 8 families of surfaces of general type with pg ¼ q ¼ 1,
K 2 ¼ 4 and Albanese of genus 2 using the recipe described in the section 1. We
need then to give the ingredients, quintuples ðB;V1; t; x;wÞ with B elliptic curve
and (by 1.5) degV1 ¼ 1, deg t ¼ 2.

As first ingredient we take any elliptic curve B. For later convenience we fix a
group structure on B and denote by h0 ¼ 0 its neutral element, and by h1, h2 and
h3 the nontrivial 2-torsion points.

The choice of the next 3 ingredients for the 8 families is summarized in the
tables 1 and 2, which we are going to explain.

As second ingredient, V1, we need a vector bundle of rank 2. V1 can be sum of
line bundles (table 1) or indecomposable (table 2).

In the decomposable case we take V1 GOBðpÞaOBð0� pÞ where p is a t-
torsion point for some t a f2; 3; 4; 6g, V2 :¼ OBðD1ÞaOBðD2ÞaOBðD3Þ for D1,
D2 and D3 suitable divisors on B. Since

V1 GOBðpÞaOBð0� pÞ ) Sym2 V1 GOBð2 � pÞaOBð0ÞaOBð2 � 0� 2 � pÞ

the splitting of the source and the target of s2 as sum of line bundles allows to
represent s2 by a 3� 3 matrix whose entries are global sections of line bundles
over B. The table 1 give 4 families of choices of t, D1, D2, D3 and s2. The pair
ðai; biÞ must be taken general in the sense of 1.4, and we will later show that this
open condition is nonempty. The linear system on which t varies depends on the
other data, and can be computed by (1): we wrote the result on the last column.

Otherwise we take V1 to be the only indecomposable rank 2 vector bundle on
B with detV1 ¼ OBð0Þ. By [Ati], (as shown for the analogous case K 2

S ¼ 3 in
[CP]) it follows that also in this case Sym2 V1 is sum of line bundles, and more
precisely

Sym2 V1 GOBðh1ÞaOBðh2ÞaOBðh3Þ:
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Therefore also in this case, writing V2 :¼ OBðD1ÞaOBðD2ÞaOBðD3Þ we can
represent s2 by a matrix. The table 2 give 4 families of choices of D1, D2, D3

and s2, and the resulting t (it moves in a pencil in all cases but the first); in the
last row s denotes a nontrivial 3-torsion point of B. ai, bi, ci, di are general in the
sense of 1.4.

Table 1. s2 : Sym
2 V1 ! 03

i¼1
OBðDiÞ for V1 GOBðpÞa

OBð0� pÞ, p t-torsion

family t D1 D2 D3 s2 jtj

M2;3 2 2 � 0 2 � 0 0

0 0 a1

1 0 b1

0 1 0

0
B@

1
CA j2 � 0j

M4;2 4 2 � 0 2 � p 0

0 0 a2

1 0 b2

0 1 0

0
B@

1
CA j2 � pj

M3;1 3 0þ p 2 � p 0

0 0 a3

1 0 b3

0 1 0

0
B@

1
CA j2 � 0j

M6;1 6 4 � p� 2 � 0 2 � p 0

0 0 a4

1 0 b4

0 1 0

0
B@

1
CA j2 � 0j

Table 2. s2 : Sym
2 V1 ! 03

i¼1
OBðDiÞ for V1 indecomposable,

detV1 GOBð0Þ
family D1 D2 D3 s2 t

Mi; 3 2 � 0 2 � 0 h3

a5 0 0

0 d5 0

0 0 1

0
B@

1
CA ¼ h1 þ h2

Mi; 2 2 � 0 h1 þ h2 h3

a6 b6 0

c6 d6 0

0 0 1

0
B@

1
CA a j2 � 0j

M 0
i; 2

2 � 0 0þ h1 h3

a7 b7 0

c7 d7 0

0 0 1

0
B@

1
CA a j0þ h2j

Mi; 1 0þ s 2 � s h3

a8 b8 0

c8 d8 0

0 0 1

0
B@

1
CA a j0þ h3j
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Now that we have the first 4 ingredients, we can construct the conic bundle.
The splitting of V2 as sum of line bundles gives relative coordinates on PðV2Þ,
by taking the injections yi : OBðDiÞ ,! V2. We can use these coordinates to give
equations of CHPðV2Þ.

Lemma 2.1. The conic bundle C obtained by the ingredients given in a row of the
table 1 or 2 following the recipe in 1.3 has the equation given in the first column
(and corresponding row) of the table 3.

Proof. As explained in 1.3, an equation of C is given by the map Sym2ðs2Þ � n,
where n is given in (2).

In the cases of table 1 V1 is sum of two line bundles, so we can use the splitting
to give two generators x0, x1 on each stalk. When we write Sym2 V1 G
OBð2 � pÞaOBð0ÞaOBð2 � 0� 2 � pÞ the first summand correspond to x2

0 , the
second to x0x1, the third to x2

1 . So by the expression of s2

x2
0 7! y2

x0x1 7! y3
x2
1 7! aiy1 þ biy2

8<
:

and the equation ðx0Þ2ðx1Þ2 ¼ ðx0x1Þ2 maps to y2ðaiy1 þ biy2Þ ¼ y23 .
In the cases of table 2, V1 is indecomposable so we do not have ‘‘global’’

x0, x1. Anyway, as noticed in remark 6.13 of [CP], the map n : OBð2 � 0Þ !
Sym2ð0OBðhiÞÞ is given by a 6� 1 matrix whose entries are

– 0 the three entries corresponding to the ‘‘mixed terms’’ (OBðhi þ hjÞ for iA j),
since iA j ) HomðOBð2 � 0Þ;OBðhi þ hjÞÞ ¼ 0

– isomorphisms the three entries corresponding to the pure powers (OBðhi þ hiÞ)
since the Veronese image of P1 in P2 has rank 3.

Table 3. C and D ¼ CBG

family C G

M2;3 y2ða1y1 þ b1y2Þ ¼ y23
P3

0 kiy
3�i
1 yi

2 ¼ 0

M4;2 y2ða2y1 þ b2y2Þ ¼ y23 y1ðk0y21 þ k2y
2
2Þ ¼ 0

M3;1 y2ða3y1 þ b3y2Þ ¼ y23 k0y
3
1 þ k3y

3
2 ¼ 0

M6;1 y2ða4y1 þ b4y2Þ ¼ y23 k0y
3
1 þ k3y

3
2 ¼ 0

Mi;3 a25y
2
1 þ d 2

5 y
2
2 þ y23 ¼ 0

P3
0 kiy

3�i
1 yi

2 ¼ 0

Mi;2 ða6y1 þ c6y2Þ2 þ ðb6y1 þ d6y2Þ2 þ y23 ¼ 0 y1ðk0y21 þ k2y
2
2Þ ¼ 0

M 0
i;2

ða7y1 þ c7y2Þ2 þ ðb7y1 þ d7y2Þ2 þ y23 ¼ 0 y1ðk0y21 þ k2y
2
2Þ ¼ 0

Mi;1 ða8y1 þ c8y2Þ2 þ ðb8y1 þ d8y2Þ2 þ y23 ¼ 0 k0y
3
1 þ k3y

3
2 ¼ 0
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It follows that the equation of the relative Veronese embedding PðV1Þ ,!
PðSym2 V1Þ is z21 þ z22 þ z23 ¼ 0 for suitable choice of coordinates zi : OBðhiÞ ,!
Sym2 V1 on PðSym2 V1Þ. Composing with s2 we get the equations in the table. r

We still have to give the last ingredient. Since in each case OBð2 � tÞG
OBð4 � 0Þ, we have ðdetV1 nOBðtÞÞ2 GOBð6 � 0Þ, therefore w is the class (modulo
C�) of a map OBð6 � 0Þ ! A6, where A6 is a quotient of Sym3 V2 as in (4).

We choose this map as composition of a general map w : OBð6 � 0Þ ! Sym3 V2

with the projection to the quotient. This geometrically means that we take
D ¼ CBG for a relative cubic GHPðV2Þ whose equation is given by w. Since
Sym3 V2 is sum of line bundles whose maximal degree is 6, the nonzero entries
of w are constants and correspond to the summands of the target isomorphic to
OBð6 � 0Þ. In the table 3 we give the exact equation of G in each case. The param-
eters ki a C must be taken general in the sense of 1.2, requiring that D has only
simple singularities.

Proposition 2.2. Cooking the ingredients given above (B general elliptic curve,
V1, t, x given by a row of the table 1 or 2, w by the corresponding row in the table
3) following the recipe 1.3, one finds 8 unirational families of minimal surfaces of
general type with pg ¼ q ¼ 1, K 2 ¼ 4, Albanese morphism a with fibres of genus 2
and a�o

2
S sum of line bundles. The general element in each family has ample canon-

ical class.

Proof. By the recipe (1.3) and remark 1.3, if we show that all these families of
ingredients contain one element such that

on t: coker s2 GOt for t reduced divisor;
on C: all fibres of C ! B are reduced conics;
on D: D is smooth and DBP ¼ j.

then all these examples give families of genus 2 fibrations f : S ! B with (by 1.5)
K 2

S ¼ 4 and wðOSÞ ¼ 1 with smooth relative canonical model. Since B has genus
1, qðSÞb 1, so pg ¼ q ¼ 1. By the universal property of the Albanese morphism
a ¼ f , and therefore a�oS GV1, a�o

2
S GOðD1ÞaOðD2ÞaOðh3Þ.

So we only need to find an element in each family satisfying the three condi-
tions. Since all conditions are open and each family irreducible, it is enough to
show that each condition (separately) is fulfilled by some choice of the parame-
ters. This is easy, we sketch a way to do it.

On t: we need to choose the entries of the matrix of s2 so that the determinant is
not a perfect square.

On C: a conic of the form y23 ¼ qðy1; y2Þ is a double line if and only if q ¼ 0. By
the equation of C in the table 3 we see that in the first 4 cases it is enough
to choose ai, bi without common zeroes, whereas in the last 4 cases it is
enough det s2A 0.

On D: in 5 cases the linear system jGj has fixed locus fy1 ¼ y2 ¼ 0g which do not
intersect C. So jDj is free and therefore we can conclude by Bertini. In the
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remaining cases M4;2, Mi;2 and M 0
i;2 the fixed part of jDj is fy1 ¼ 0gBC

and the general element of the movable part of jDj do not intersect the
fixed part. So we only need to check fy1 ¼ 0gBC smooth and not con-
taining P. For M4;2 if we take b2A 0 we get smoothness, and the other
condition comes automatically since PH fy2 ¼ y3 ¼ 0g. In the other two
cases c2i þ d 2

i square free gives the smoothness, and from (e.g.) aibicidi A 0
follows fy1 ¼ 0gBCRP. r

We end the section by explaining the choice of the indices of the name of each
family.

The first index remembers us which V1 we have chosen: i stands for ‘‘V1 inde-
composable’’, a number t means ‘‘V1 has a t-torsion bundle as direct summand’’.

The second index gives the number of connected components of the curve D
for a surface in the family. Let us show this decomposition.

The equation of G is homogeneous of degree 3 in two variables (with constant
coe‰cients), so we can formally decompose it as product of three linear factors.
When D1 ¼ D2 (M2;3 and Mi;3) each factor gives a map of a line bundle
(OBð2 � 0Þ) to V2, so a relative hyperplane of PðV2Þ: these three relative hyper-
planes cut on C three components of D that pairwise they do not intersect.

When OBðD1ÞZOBðD2Þ a factor cy1 þ c 0y2 determines a relative hyperplane
only if cc 0 ¼ 0. In the cases M4;2, Mi;2, M

0
i;2 one can then decompose D as union

of its fixed part fy1 ¼ 0g and its movable part.

3. Direct image of the canonical sheaf decomposable

In this section we prove the following

Proposition 3.1. All minimal surfaces of general type S with K 2
S ¼ 4,

pg ¼ q ¼ 1 such that the general fibre of the Albanese morphism a has genus 2
and a�oS, a�o

2
S are direct sum of line bundles belong to M2;3, M4;2, M3;1 or M6;1.

By the structure theorem of genus 2 fibrations, we need to classify 5-tuples
ðB;V1; t; x;wÞ with B elliptic curve, degV1 ¼ 1, deg t ¼ 2 such that V1 and V2

are sum of line bundles.
Since h0ðV1Þ ¼ h0ðoSÞ ¼ pg we can assume up to translations V1 GOBðpÞa

OBð0� pÞ for some pA 0. We write V2 ¼ OBðD1ÞaOBðD2ÞaOBðD3Þ, with Di

divisors of degree di, d3 a d2 a d1. We consider relative coordinates in V1 and V2

as follows: xi correspond to the summand of degree i in V1, yj correspond to the
summand OBðDjÞ in V2.

Lemma 3.2. d1 ¼ d2 ¼ 2, d3 ¼ 1.

Proof. By the exact sequence (1), since Sym2 V1 is direct sum of three line bun-
dles of respective degrees 0, 1 and 2, d1 þ d2 þ d3 ¼ 5, di b 3� i.

Since d3 a d2 a d1 to show d3 ¼ 1 we assume by contradiction d3 ¼ 0. Then
the summands of positive degree in Sym2 V1 map trivially on OBðD3Þ. In other
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words s2ðx2
1Þ; s2ðx0x1Þ a Spanðy1; y2Þ. In particular, the equation of C being

s2ðx2
0Þs2ðx2

1Þ ¼ s2ðx0x1Þ2, the section s :¼ fy1 ¼ y2 ¼ 0g is contained in C.
We consider s as Weil divisor in C. Note that C has only canonical singular-

ities, so s is Q-Cartier, and the self-intersection number s2 is well defined, as the
numbers s �D a Z for any Cartier divisor D on C, including KC.

We denote by H the numerical class of a divisor in OPðV2Þð1Þ, by F the class
of a fiber of the map PðV2Þ ! B. Then s, as a cycle in PðV2Þ, has numerical
class ðH � d1FÞðH � d2F Þ ¼ H 2 � 5HF . D is Cartier on C, and the correspond-
ing line bundle is the restriction to C of a line bundle in PðV2Þ whose numerical
class is 3H � 6F (since degðdetV1 nOBðtÞÞ2 ¼ 6). It follows D � s ¼ ð3H � 6FÞ �
ðH 2 � 5HFÞ ¼ �6 < 0. Being s irreducible, s < D.

Consider now a minimal resolution of the singularities r : ~CC ! C and let ~ss be
the strict transform of s. Then ~ss is a smooth elliptic curve and ~ss ¼ r�s� e for
some exceptional Q-divisor e, so s2 þ KCsb s2 þ e2 þ KCs ¼ ~ss2 þ K ~CC~ss ¼ 0. Since
the class of C is 2H � 2F it follows �s2 aKCs ¼ ð�H þ 3FÞðH 2 � 5HFÞ ¼ 3
and ðD� sÞs ¼ �s2 � 6a�3 < 0. It follows so 2s < D, contradicting 1.4.

Then d3 ¼ 1 and to conclude we can assume by contradiction d2 ¼ 1, then
s2ðx1Þ2 a Spanðy1Þ. It follows that the equation of C is a square modulo y1.
In other words the relative hyperplane fy1 ¼ 0g cut 2 � s 0 where s is a section
of the map PðV2Þ ! B. The class of s 0 is H 2 � 4HF : repeating the above argu-
ment we find D � s 0 ¼ �3, ðD� s 0Þ � s 0a�1 ) 2s 0 < D, the same contradiction as
above. r

Lemma 3.3. s2ðx0x1Þ c Spanðy1; y2Þ.

Proof. Since s2ðx2
1Þ a Spanðy1; y2Þ, if also s2ðx0x1Þ a Spanðy1; y2Þ, then the

section s :¼ fy1 ¼ y2 ¼ 0g is contained in C. The numerical class of s is
H 2 � 4HF so (as in the previous proof ) D � s ¼ �3, ðD� sÞ � sa�1 ) 2s < D,
a contradiction. r

Remark 3.4. The lemma 3.3 says that the composition of s2 with the projec-
tion onto the summand OBðD3Þ is di¤erent from zero. Since any nonzero mor-
phism between line bundles of the same degree is an isomorphism, it follows
OBðD3ÞGOBð0Þ.

Lemma 3.5. The exact sequence (4) splits.

Proof. By the lemma 3.3 and remark 3.4 the coe‰cient of the term y23 in the
relative conic s2ðx2

0Þs2ðx1Þ
2 � s2ðx0x1Þ2 defining C is a nonzero constant. Then

each relative conic can be uniquely decomposed as a sum of a multiple of this
equation with an equation where the multiples of y23 (y1y

2
3 ; y2y

2
3 ; y

3
3) do not

appear.
Since the multiples of the equation of C define exactly the image of i3, this

means that the restriction of the projection Sym3 V2 ! A6 to Sym3ðOBðD1Þa
OBðD2ÞÞa ðSym2ðOBðD1ÞaOBðD2ÞÞnOBðD3ÞÞ is an isomorphism. Its inverse
splits the exact sequence (4). r
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In particular every morphism to A6 lift to a morphism to Sym3 V2, and there-
fore the last ‘‘ingredient’’ w comes from a map w : ðdetV1 nOBðtÞÞ2 ! Sym3 V2.
It follows

Corollary 3.6. T :¼ OBðD1 �D2Þ is a t-torsion bundle for some t a f1; 2; 3g,
and up to exchange D1 and D2, OBð0þ tÞ2 GOBðD1Þ3.

Proof. The source of w is the line bundle OBð0þ tÞ2 of degree 6. Since Sym3 V2

is sum of line bundles of degree at most 6, its image is contained in the sum of
those having exactly degree 6, Sym3ðOBðD1ÞaOBðD2ÞÞ, and more precisely
in those summands isomorphic to OBð0þ tÞ2.

So D ¼ CBG with G ¼
P

kiy
3�i
1 yi

2 where ki are constant that can be di¤erent
form 0 only when OBðð3� iÞD1 þ iD2ÞGOBð0þ tÞ2. The claim follows since D is
reduced, and then at least two ki’s are di¤erent from 0. r

Proof of proposition 3.1. By remark 3.4 and corollary 3.6 V2 GTðD2Þa
OBðD2ÞaOBð0Þ for some t-torsion line bundle T, t a f1; 2; 3g. Moreover, by
exact sequence (1) and corollary 3.6

Tð2 �D2 þ 0ÞGOBð3 � 0þ tÞ OBð2 � 0þ 2 � tÞGT3ð3 �D2Þ:

equivalently

OBðD2ÞGTð2 � 0Þ OBðtÞGT3ð2 � 0Þð5Þ

Moreover, by the injectivity of s2, 2p must be linearly equivalent to D1 or D2,
i.e.

OBð2 � pÞGTð2 � 0Þ or OBð2pÞGT2ð2 � 0Þð6Þ

If t ¼ 1: TGOB and the two alternatives in (6) are identical: OBð2 � pÞG
OBð2 � 0Þ. Since pA 0, p is a 2-torsion point. We can choose coordinates
in V2 such that y2 ¼ s2ðx2

1Þ and (by lemma 3.3) y3 ¼ s2ðx0x1Þ. We can
also assume s2ðx2

0Þ a Spanðy1; y2Þ by changing the coordinates ðx0; x1):
we have found the family M2;3.

If t ¼ 2: If OBð2 � pÞGTð2 � 0Þ, p is a 4-torsion point. Changing coordinates in
V1 and V2 as above we find the family M4;2.
Else OBð2 � pÞGT2ð2 � 0Þ. In this case (OBðD2ÞZOBð2 � pÞ) s2ðx2

1Þ a
Spanðy1Þ, therefore (see definition 1.1) PH fy1 ¼ 0g. On the other
hand G ¼ fy1ðk0y21 þ k2y

2
2Þ ¼ 0g, so the fixed part of jDj contains P,

contradicting remark 1.2: this case do not occur.
If t ¼ 3: If OBð2 � pÞGTð2 � 0Þ, p is either a 3-torsion point or a 6-torsion point.

Changing coordinates as above we find respectively the families M3;1

and M6;1. The other case OBð2 � pÞGT2ð2 � 0Þ gives the same families
(with D1 and D2 exchanged). r
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4. Direct image of the canonical sheaf indecomposable

In this section we prove the following

Proposition 4.1. All minimal surfaces of general type S with K 2
S ¼ 4, pg ¼

q ¼ 1 such that the general fibre of the Albanese morphism a has genus 2, a�oS is
an indecomposable vector bundle and a�o

2
S is a direct sum of line bundles belong to

Mi;3, Mi;2, M
0
i;2 or Mi;1.

We need to classify 5-tuples ðB;V1; t; x;wÞ with B elliptic curve, V1 indecom-
posable of degree 1, deg t ¼ 2 such that V2 is sum of three line bundles.

B can be any elliptic curve and by Atiyah’s classification of the vector bundles
on an elliptic curves [Ati], we can assume (up to translations) V1 ¼ E0ð2; 1Þ, that
is the only indecomposable vector bundle over B whose determinant is OBð0Þ.

From Atiyah’s results follows Sym2ðV1ÞGOBðh1ÞaOBðh2ÞaOBðh3Þ. As in
the previous case we write V2 ¼ OBðD1ÞaOBðD2ÞaOBðD3Þ, with Di divisors
of degree di, d3 a d2 a d1.

Remark 4.2. As shown in the proof of lemma 2.1, in this case the relative
2-Veronese PðV1Þ ,! PðSym2 V1Þ has equation z21 þ z22 þ z23 ¼ 0 for a suitable
choice of coordinates zi : OBðhiÞ ,! Sym2 V1.

It follows that, in these coordinates, C is defined by the polynomialP3
i¼1 s2ðziÞ

2.

Lemma 4.3. We can assume D3 ¼ h3, and we can choose coordinates in V2 so that
s2ðz3Þ ¼ y3. Moreover the exact sequence (4) splits.

Proof. Since
P

di ¼ 5 and by the injectivity of s2, Ei di b 1, d3 ¼ 1. The injec-
tivity of s2 forces now one of the induced maps OBðhiÞ ! OBðD3Þ to be an iso-
morphism and then (renaming the torsion points) we have D3 ¼ h3. Changing
coordinates in V2 we can assume s2ðOBðh3ÞÞ ¼ OBðD3Þ.

By remark 4.2 the coe‰cient of the term y23 in the equation of C is a nonzero
constant and we can conclude as in the proof of lemma 3.5. r

Lemma 4.4. d1 ¼ d2 ¼ 2.

Proof. We assume by contradiction d2 ¼ 1, d1 ¼ 3. By lemma 4.3 the curve D is
a complete intersection GBC for a relative cubic G defined by an immersion w of
a line bundle of degree 6 to Sym3 V2.

The image of w is then contained in OBðD1Þ2 nV2 since all other summands
have degree strictly smaller than 6. In other words the equation of G is divisible
by y21 . In particular D contains fy1 ¼ 0gBC with multiplicity 2, contradicting
1.4. r

It follows, as in the previous case

Corollary 4.5. T :¼ OBðD1 �D2Þ is a t-torsion bundle for some t a f1; 2; 3g
and, up to exchange D1 and D2, OBð0þ tÞGOBðD1Þ3.
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Proof. Identical to the proof of the analogous corollary 3.6. r

Proof of proposition 4.1. By lemma 4.3 and corollary 4.5, V2 GTðD2Þa
OBðD2ÞaOBðh3Þ, and, by the exact sequence (1) and corollary 4.5

Tð2 �D2 þ h3ÞGOBð3 � 0þ tÞ OBð2 � 0þ 2 � tÞGT3ð3 �D2Þ;

equivalently

OBðD2ÞGTð2 � 0Þ OBðtÞGT3ð0þ h3Þ:ð7Þ

Recall that by lemma 4.5 we can choose y3 ¼ s2ðz3Þ and since d1 ¼ d2 ¼ 2,
s2ðz1Þ; s2ðz2Þ a Spanðy1; y2Þ. In other words the matrix of s2 is as the matrices
in the last three rows of table 2.

If t ¼ 1: TGOB, OBðD1ÞGOBðD2ÞGOBð2 � 0Þ and OBðtÞGOBð0þ h3Þ. In
fact, since D1 ¼ D2 we can change coordinates in V2 to add to one of
the first two rows any multiple of the other and diagonalize the matrix:
this is the family Mi;3. Note that t ¼ h1 þ h2 cannot move.

If t ¼ 2: then either TGOBðh3Þ or we can rename h1 and h2 to get TGOBðh1Þ.
This gives respectively the families Mi;2 and M 0

i;2.
If t ¼ 3: Then TGOBð0� sÞ for some 3-torsion point s. This is the family

Mi;1. r

5. Moduli

In this section we consider the scheme M in theorem 0.1, subscheme of the
moduli space of the minimal surfaces of general type given by the surfaces with
pg ¼ q ¼ 1, K 2 ¼ 4 whose Albanese fibration a has general fibre a genus 2 curve
and such that a�o

2
S is sum of line bundles.

We have constructed 8 unirational families of such surfaces in proposition
2.2, labeled M2;3, M4;2, M3;1, M6;1, Mi;3, Mi;2, M

0
i;2 and Mi;1. Their parameter

spaces have a natural map to M.

Remark 5.1. M has 8 connected components, that with a natural abuse of no-
tation we will denote by M2;3, M4;2, M3;1, M6;1, Mi;3, Mi;2, M

0
i;2 and Mi;1. Each

component is the image of the parameter space of the namesake family, in partic-
ular is unirational.

Proof. The map from the parameter space of our families to M is surjective by
propositions 3.1 and 4.1.

There are many way to show that the closure of the images of two of these
parameter spaces do not intersect. For example, since the number of direct sum-
mands of V1 is a topological invariant by [CC1],

ðM2;3 AM4;2 AM3;1 AM6;1ÞB ðMi;3 AMi;2 AM 0
i;2 AMi;1Þ ¼ j:
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The closure of two of the first 4 families cannot intersect because the degree
0 summand of V1 is in all cases a torsion line bundle but with di¤erent torsion
order. To show Mi;2BM 0

i;2 ¼ j we apply the same argument to ðdetV1Þ2 n
holBð�tÞ. Finally the same argument applied to holBðD1 �D2Þ shows that also
the closures of the remaining pairs of families do not intersect. r

Proposition 5.2. dimM2;3 ¼ 5. All other components of M have dimension 4.

Proof. The natural way to compute the dimension of each component is com-
puting the dimension of the corresponding parameter space, and then subtract to
the result the dimension of the general fibre of the map into M. These fibres cor-
respond to orbits for the action of certain automorphism groups.

AutV1 and AutV2 do not act on our data, since in the tables 1 and 2 we re-
quire the matrix of s2 to have special form. But in fact in all cases this ‘‘special’’
form is the form of a general morphism Sym2 V1 ! V2 in suitable coordinates
(for V1 and V2). It is then equivalent (but easier to compute) to consider s2 gen-
eral in HomðSym2 V1;V2Þ and act on it with the full group AutV1 �AutV2.

Are there other automorphisms to consider? We can forget the action of AutB
since we have fixed a point of B by choosing detV1 GOBð0Þ, so only a finite sub-
group of AutB act on our data, and quotienting by it do not a¤ect the dimension.
The other automorphism to consider is (since we are interested in D and not in
its equation) ‘‘multiply the equation of G by a constant leaving the other data
fixed’’. If you prefer, that’s the action of the automorphisms of the line bundle
ðdetV1 nOBðtÞÞ2. Anyway, multiplying V1 by l and V2 by l2 do not change s2
but multiply the equation of G by l�6: this shows that we can restrict to consider
the action of AutV1 �AutV2.

We leave to the reader the check that the subgroup of AutV1 �AutV2 fixing
our data is finite. It follows (the moduli space of elliptic curves has dimension 1)
that the dimension of each family is

1þ hþ d� a1 � a2

where h, d, ai are respectively the dimensions of HomðSym2 V1;V2Þ,
HomððdetV1 nOBðtÞÞ2; Sym3 V2Þ and AutVi.

Now the computation is easy:

dimM2;3 ¼ 1þ 10þ 4� 3� 7 ¼ 5

dimM4;2 ¼ 1þ 9þ 2� 3� 5 ¼ 4

dimM3;1 ¼ 1þ 9þ 2� 3� 5 ¼ 4

dimM6;1 ¼ 1þ 9þ 2� 3� 5 ¼ 4

dimMi;3 ¼ 1þ 7þ 4� 1� 7 ¼ 4

dimMi;2 ¼ 1þ 7þ 2� 1� 5 ¼ 4

dimM 0
i;2 ¼ 1þ 7þ 2� 1� 5 ¼ 4

dimMi;1 ¼ 1þ 7þ 2� 1� 5 ¼ 4 r
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Proposition 5.3. All connected components of M are irreducible components of
the moduli space of minimal surfaces of general type.

Proof. We need to show that for the general surface in each component,
h1ðTSÞ is not greater than the dimension of the family, say d. By proposition
5.2, d a f4; 5g and more precisely d ¼ 5 only for the family M2;3.

Equivalently (by Serre duality and since h0ðTSÞ ¼ 0 for a surface of general
type) we can show h0ðW1

S noSÞ ¼ 2K 2
S � 10wðOSÞ þ h1ðTSÞa d � 2.

For a fibration f : S ! B, we denote by Critð f ÞHS the scheme of its critical
points, DHCritð f Þ its divisorial part. By definition D is supported on the non-
reduced components of the singular fibres.

Then (cf. [Cat3] lect. 9) computing kernel and cokernel of the natural map
x 0 : W1

S ! oSjB locally defined by x 0ðhÞ ¼ ðhbdtÞn ðdtÞ�1 (for t a local parame-
ter on B) one finds an exact sequence

0 ! OSð f �oB þDÞ ! W1
S ! oSjB ! OCritð f ÞðoSjBÞ ! 0ð8Þ

By the proof of proposition 2.2, the Albanese fibration a of a general element
S in each of our families factors as composition of

• a conic bundle C ! B with two singular fibres, both reduced, with SingðCÞ
consisting in two nodes, at the vertices of the two singular fibres;

• a finite double cover S ! C branched on the two nodes of C and on a smooth
curve D not passing through the nodes.

It follows that each component of each fibre of a is reduced, so D ¼ j. Since
oB ¼ OB twisting the exact sequence (8) by oS we get the exact sequence

0 ! oS ! W1
S noS ! o2

S ! OCritðaÞðo2
SÞ ! 0

Since pg ¼ 1 the required inequality h0ðW1
S noSÞa d � 2 follows if we show

dimkerðH 0ðo2
SÞ ! H 0ðOCritðaÞðo2

SÞÞÞ ¼ d � 3. In other words we must show that

1) the set of bicanonical curves containing the 0-dimensional scheme CritðaÞ of
the general surface in M2;3 is a pencil;

2) the general surface in each of the other families has only one bicanonical curve
containing CritðaÞ.

We study the bicanonical system of S. The involution on a surface induced by
a genus 2 fibration (acting as the hyperelliptic involution on any fibre) acts on
H 0ð2KSÞ as the identity. In our cases, at least for a general surface as above (the
relative canonical model is smooth and minimal), the quotient by this involution
is C. So the bicanonical system of S is the pull-back of a linear system on C, more
precisely (oS ¼ oSjB) the restriction of jOPðV2Þð1Þj.

We study the critical points of a. Since C has only reduced fibres the critical
points of a must be fixed points for the involution on S. The isolated fixed points
are the preimages of the two nodes of C, and they are critical for a (in suitable
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local coordinates aðx; yÞ ¼ xy). The other critical points of a lies on the divisorial
fixed locus of the involution, where the involution has the form ðx; yÞ 7! ðx;�yÞ:
they are critical for a if and only if qa

qx
¼ 0. In other words we need their image on

C to be a ramification point for the map D ! B.
So we need to compute the dimension of the subsystem of jOPðV2Þð1Þj contain-

ing the nodes of C and the critical points of the map D ! B. Note that by the
local computation above this is true schematically: we need H to contain the
zero dimensional scheme SingðCÞACritðD ! BÞ.

In all cases (see table 3) C ¼ fqðy1; y2Þ þ y23 ¼ 0g: in particular the nodes of C
lie in fy3 ¼ 0g. Moreover D ¼ CBG for G ¼ fGðy1; y2Þ ¼ 0g. CritðD ! BÞ is
defined by

rank

qq
qy1

qq
qy2

2y3
qG
qy1

qG
qy2

0

 !
a 1

therefore (being q and G homogeneous in the yi’s) CritðD ! BÞ ¼ DB fy3 ¼ 0g.
We have shown that ðSingðCÞACritðD ! BÞÞH fy3 ¼ 0g. First consequence

is that any relative hyperplane of the form f fy3 ¼ 0g contains the nodes of C and
CritðD ! BÞ.

Choosing f a H 0ðOBðD3ÞÞ, OBðD3Þ being the direct summand of V2 given by
the coordinate y3, we find a curve whose pull-back is a bicanonical curve through
CritðaÞ. Note that degD3 ¼ 1 so in all cases we have found exactly one bicanon-
ical curve through CritðaÞ.

If there are further bicanonical curves through CritðaÞ, then in the corre-
sponding system of relative hyperplanes in PðV2Þ there is an element H not con-
taining fy3 ¼ 0g and HBCB fy3 ¼ 0g contains the 0-dimensional scheme DB
fy3 ¼ 0g. If HBCB fy3 ¼ 0g is also 0-dimensional, then by intersection compu-
tation both HBCB fy3 ¼ 0g and DB fy3 ¼ 0g have length 6, so they must be
equal, a contradiction since SingCHHBCB fy3 ¼ 0g but SingðCÞQD. There-
fore, if there are further bicanonical curves through CritðaÞ, then HBCB
fy3 ¼ 0g contains a curve.

To conclude the proof we must now argue di¤erently according to the family.

(Mi;1;M
0
i;2;Mi;3)

We set b5 :¼ c5 :¼ 0 to treat these cases together. If aj, bj, cj , dj have no com-
mon zeroes, CB fy3 ¼ 0g has a finite map of degree 2 onto B and then, if it
is reducible, its components are cut on fy3 ¼ 0g by two relative hyperplanes
fa 0y1 þ b 0y2 ¼ 0g and fc 0y1 þ d 0y2 ¼ 0g and ðajy1 þ cjy2Þ2 þ ðbjy1 þ djy2Þ2 ¼
ða 0y1 þ b 0y2Þðc 0y1 þ d 0y2Þ.

This is impossible for general choice of aj, bj, cj, dj . In fact, take for simplicity
bj ¼ cj ¼ 0, ajdj A 0. Then the only possible formal decomposition (up to C� is

ðajy1Þ2 þ ðdjy2Þ2 ¼ ðajy1 þ idjy2Þðajy1 � idjy2Þ (here i ¼
ffiffiffiffiffiffiffi
�1

p
). But, since ‘‘ajy1’’

is a map from OBðD1 � h1Þ to V2 and ‘‘djy2’’ is a map from OBðD2 � h2Þ to V2,
these factors make sense as relative hyperplanes only when OBðD1 �D2ÞG
OBðh1 � h2Þ, that is not the case.
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It follows that CB fy3 ¼ 0g is irreducible, then HBCB fy3 ¼ 0g is 0-
dimensional and therefore there are no further bicanonical curves through
CritðaÞ and h1ðTSÞa 4.

(Mi;2)
The di¤erence with the previous cases is that OBðD1 �D2ÞGOBðh1 � h2Þ, so,
setting as above b6 ¼ c6 ¼ 0, a6d6A 0 we can obtain that HBCB fy3 ¼ 0g
contains a curve by taking H :¼ fa6y1 e id6y2 ¼ 0g. But then HBD is 0-
dimensional of length 3 so HBCB fy3 ¼ 0g cannot contain DB fy3 ¼ 0g, that
has length 6. It follows that there are no further bicanonical curves through
CritðaÞ and h1ðTSÞa 4.

(M6;1;M3;1;M4;2)
CB fy3 ¼ 0g reduces as union of fy2 ¼ 0g and fajy1 þ bjy2 ¼ 0g, that are irre-
ducible for aj, bj without common zeroes. The first component do not intersect D,
so to find a bicanonical curve we need to take H containing fajy1 þ bjy2 ¼ 0g.
This is possible only when OBð2 � 0� 2 � pÞ is the trivial bundle.

Since this is not the case for the three families under consideration, arguing as
above there are no further bicanonical curves through CritðaÞ and h1ðTSÞa 4.

(M2;3)
Arguing exactly as above we find that the only possibility to get a further bica-
nonical curve through CritðaÞ is by choosing H :¼ fa1y1 þ a2y2 ¼ 0g. It follows
that the set of bicanonical curves through CritðaÞ is a pencil and therefore
h1ðTSÞa 5. r

Proof of theorem 0.1. The first statement comes from remark 5.1 and prop-
osition 5.2. The second statement is proposition 5.3. The last statement was
shown in proposition 2.2. r

Remark 5.4. As mentioned in the introduction the biggest family of minimal
surfaces with K 2 ¼ 4, pg ¼ q ¼ 1 constructed by Polizzi is a subfamily of M2;3.
We can be more precise, by looking at the properties of these surfaces (that we
will claim without proof, all follow from the description in [Pol2]).

It is a family of nodal surfaces obtained as quotient of a product of curves by
an action of Z=2Z � Z=2Z. The group is abelian, so (arguing as in the proof of
[Pol1], theorem 6.3) a�o

n
S in a sum of line bundles for each n a N. By proposition

3.1 their smooth minimal models give a subfamily of M2;3 AM4;2 AM3;1 AM6;1.
All Polizzi’s surfaces have 4 nodes. Since each of our families contains a

(smooth minimal) surface with ample canonical class by proposition 2.2, and Po-
lizzi’s family is irreducible, then it gives a proper subfamily of one of the compo-
nents M2;3, M4;2, M3;1, M6;1. Since it has dimension 4, by proposition 5.2 it has
codimension 1 in M2;3.

We can be more precise. The 4 nodes are contained in two fibres of the Alba-
nese morphism (two on each fibre), fibres that are 2-divisible as Weil divisors on
the relative canonical model. It follows that the singular conics of C are two dou-
ble lines. By the equation of C in table 3, these are exactly the surfaces for which
b1 ¼ 0.

224 r. pignatelli



Acknowledgements

Part of the article was developped when the author was visiting professor at the
university of Bayreuth financed by the DFG Forschergruppe ‘‘Klassifikation alge-
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