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Mathematical physics — The relative power and its invariance, by PAOLO M ARIA
MARIANO, communicated on 11 June 2009.

ABSTRACT. — The relative power of actions in Cauchy bodies suffering mutations due to defect
evolution is introduced. It is shown that its invariance under the action of the Euclidean group
over the ambient space and the material space allows one to obtain (i) the balance of standard
and configurational actions and (ii) the identification of configurational ingredients from a unique
source.
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Actions driving the evolution of defects (such as inclusions, holes, vacancies, dis-
locations, cracks) in materials appear in processes changing the material structure
in such a way that the natural picture involves alterations of the reference macro-
scopic configuration. Such a picture justifies the term ‘configurational’, attributed
to Nabarro (see remarks in [9]). In a pioneering paper [10], Eshelby observed
that, in simple elastic bodies undergoing large deformations, the equations ob-
tained by means of horizontal variations of the bulk elastic energy—they are the
variations generated by altering the reference place by means of appropriate dif-
feomorphisms—describe the balance of actions on defects with non-vanishing
volume. The analysis of the irreversible evolution of these bulk defects requires
also the introduction of peculiar driving forces, which are ‘models’ of the circum-
stances breaking the material bonds. The evolution of point, line, surface and
bulk defects has been discussed largely in the subsequent literature (see [1, 31,
20, 28, 32, 33, 34, 35, 39, 2, 8, 17, 36, 37, 38, 26, 18] and references therein, just
to mention a few contributions).

Various points of view have determined a debate about the nature of the bal-
ances of configurational actions, governing equilibrium and possible evolution of
defects in simple and complex bodies.

® On one side it has been claimed that the local configurational balance is just the
projection through the inverse motion of the Cauchy balance in terms of Piola-
Kirchhoff stress, in absence of dissipative driving forces [24, 25, 27].

e On another side the fundamental independent nature of the balance of config-
urational forces has been supported: such a balance has been postulated a
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priori in an abstract way, then its (at the beginning) unspecified ingredients
(Hamilton-Eshelby stress and configurational bulk forces) have been identified
in terms of energy, standard actions and driving forces by means of an invari-
ance requirement and the second law of thermodynamics, the use of which pre-
sumes the assignment of the free energy [16, 14, 15].

In the mechanics of simple elastic bodies undergoing large deformations,
essential differences between the balance of forces involving the first Piola-
Kirchhoff stress (essentially the Euler-Lagrange equations arising from the ‘verti-
cal’ variations of the elastic energy) and the balance of configurational actions
(the ones accruing in this case by the ‘horizontal’ variations, according to Eshel-
by’s procedure) have been pointed out by the results in [12] (see also further re-
marks in [13] and [11], above all pages 152-153, vol. I, of the last reference).

Consider only the balances in the bulk and neglect circumstances in which
point, line and surface defects occur just for the sake of simplicity. For smooth
minimizers it is obviously true that, in absence of evolution governed by a driving
force, the configurational balance equations can be obtained by pulling back in
the reference place by means of the inverse motion the relevant balances in terms
of standard Piola-Kirchhoff stress. Different is the case of irregular minimizers.
They are common because existence theorems place minimizers of the elastic en-
ergy in Sobolev spaces. Sobolev maps do not admit always tangential derivatives.
For this reason, in absence of regularity of minimizers, one cannot compute the
balance of forces in terms of Piola-Kirchhoff stress from the first (‘vertical’) vari-
ation of the energy functional. The so-called horizontal variations are however
admitted: they alter the reference place and lead to the balance of configurational
forces (at least the one not accounting for driving force, the absence of which is
justified in this case by the purely conservative behavior). Similar variations are
also admissible on the actual place of the body: under appropriate bounds for the
derivatives of the energy (or better of its polyconvex representative) one finds the
weak form of the balance of forces in terms of Cauchy stress and proves also that
such a stress is locally L'. In fact, not always natural minimizers of the elastic
energy admit the inverse. Additional conditions are needed. They are expressed
in [3, 6, 12]. So, even if one reduces the attention to the statics of elastic simple
bodies undergoing large deformation, the use of the inverse deformation to de-
duce the balance of configurational forces has to be tackled perhaps with some
care.

Horizontal variations have been used later to justify the use of configurational
forces in various circumstances (see, e.g., [26]).

2.

In the ensuing sections, by restricting the attention to simple continuous bodies, I
present a procedure based on R® X SO(3) invariance of a certain power that I
call the relative power. It allows one to obtain (i) the balance of both standard
and configurational actions and (ii) the identification of configurational ingre-
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dients from a unique source. The idea is based on the definition of two virtual
velocity fields v and w acting one over the ambient space and the other over the
space in which the material configuration of the body is placed. The latter field is
then pushed forward on the ambient space, along the motion, and the power per-
formed by the standard actions in the difference between v and the image of w is
evaluated. Such a power is supplemented by power generated in the matter by the
possible disarrangement and permutation of defects that are determined by the
action of w in the material space. The sum of all these contributions is exactly
the functional that I call the relative power. Its definition is not exotic and is not
different in essence from the one of standard power. It reduces to the standard
expression of the power when the reference place is fixed once and for all as it
happens in standard continuum mechanics.

Neither surface, line and point defects, nor material complexity inside material
elements are accounted for. They are matter of future work. Here the attention is
focused only on the basic skeletal idea.

Use of the inverse motion is not required. No integral configurational balance
is postulated. The integral balance of configurational forces and a configurational
balance of torques are derived and correspond to Killing fields of the metric in
the material space. The existence of a free energy density is postulated but the
list of state variables entering its constitutive structure is not specified to a certain
extent. No use is made of the mechanical dissipation inequality to identify the
purely mechanical part of configurational forces. The procedure does not require
a variational structure. A balance arising by the requirement of invariance of the
relative power under changes in observers corresponds in purely conservative
case to an integral version of Nother theorem.

Differences and analogies with the two different points of view analyzed in [25]
and [14] (developed in subsequent papers) are further discussed in the last section.

3.

The description of the standard kinematics of simple continuous deformable
bodies is so well known that it barely needs to be retold. The setting is the clas-
sical space-time. A fit region # (more simply, an open, connected set with
Lipschitz boundary) of the standard ambient space &> (the three-dimensional
Euclidean point space) receives a body in its reference place. Each ensuing config-
uration is reached in an isomorphic copy of &3, indicated by &3, by means of a
transplacement, an orientation preserving diffeomorphism x — y := y(x) € &”.
The set %, := y(%) is then the actual configuration (placement) of the body. The
spatial derivative of x + y is indicated by F := Dy(x) € Hom(T %, T} %a).
The positivity of the determinant of F at each x from 4, i.e. det F > 0, is implied
by the assumption that the generic transplacement be orientation preserving. The
additional requirement

/f(x,y(x))detDy(x)dxs/ sup f(x,z)dz
& R

3xes
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forall f e Cy(# x R?) is a global one-to-one condition allowing frictionless self-
contact of the boundary while still preventing self-penetration (see [13]).

The forethought to put the reference place % and the corresponding actual
places in different (isomorphic) copies of the Euclidean space allows one to ex-
plain in a simple way the manner in which changes in observers are used here.
Such a choice is also common in calculus of variations; it appears an useful point
of view in determining the existence of minimizers of the energy of elastic simple
bodies (see [13], above all vol. II).

In representing motions, time come into play and one has

(1) = y=y(x0) e R, xe B 1e0,7],

with a presumption of sufficient smoothness in time ¢, so that the velocity field is
defined by

(v0) = 5= 9 y(xd) € B,

in the reference configuration.

Every subset b from % with non-vanishing ‘volume’ measure and the same
regularity of 4 itself is called a part. The set P3(#) of all parts of Z is an algebra
with respect to the operations of meet and join (see [5]).

Virtual velocity fields are defined over the ambient space and the reference
places:

xeB, tel0,7], (x,0)—v:=0v(x,0)eR, (x,1)—w:=w(x1) eR.

They are assumed to be differentiable in space at every instant. The symbols V,
and V,, denote the function spaces containing them. Elements from V, and V,
can be considered as virtual velocity fields over the body.

In the previous picture, the generic material element is collapsed just in a point
which is the sole geometrical descriptor of its morphology. I use to call Cauchy
bodies those bodies for which the minimalist approach summarized above is suf-
ficient to represent the essential peculiarities of their morphology, the representa-
tion of actions is then conjugated in terms of power. Different is the case of com-
plex bodies for which descriptors of the material substructure selected in a
differentiable manifold are included in the representation of the morphology of
the generic material element’.

4,

An observer is a representation of all geometrical environments that are necessary
to describe the morphology of a body and its. motzon Here an observer is then a
triple of atlas, one over the ambient space R*, one over the material space con-

!See [4, 5, 7, 22] and references therein.
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taining 4 and the last one over the time interval [0, 7]. Changes in observers are
then changes in these atlas, governed by the relevant groups of diffeomorphisms.
In particular I consider synchronous isometric changes in observers. Synchronic-
ity means that the representation of the time interval is left invariant.

The requirement that changes in observers be isometric means that one is con-
sidering the action of R? x SO(3) over &” (the symbol X indicates the semi-
direct product) and the one of R* < SO,(3) over &°. To maintain distinguished
the changes in observers in ¢ and &2 respectively, R® and R> are considered dis-
tinct isomorphic spaces. The same relation occurs between SO(3) and SO, (3).

By indicating by v* the pull-back in the frame of the first observer of the rate
measured by the second observer, the action of R? x SO(3) over & gives rise to
the standard formula

vt =¢(t) +q(1) x (¥ = yo) +v,

where yj is an arbitrary point in &, é(1) € R? and (1) x € so(3), with so(3) the
Lie algebra of SO(3).

In standard approaches, it is then assumed that all observers evaluate the same
2. Here the assumption is removed and the independent action of R* X SO,(3)
over &7 leads to

w' = c(t) +q(t) x (x —x0) + w,

where w* is the pull-back in the frame of the first observer of the counterpart w’
of w measured by the second observer, x is an arbitrary point in &7, ¢(f) € R?
and ¢(7) x € 50,(3), with s0,(3) the Lie algebra of SO,(3). The transformation
w — w* can be also considered as an isometric shift superposed to a generic re-
labeling in the ‘material space’ with infinitesimal generator w.3

5.

Surface and bulk actions are associated with (generated by) relative changes
of places between neighboring material elements: at every x € # they are repre-
sented respectively by the first Piola-Kirchhoff stress P € Hom(T %, T, T(x)@a) ~
R?® ® R3** and the vector of bulk forces » € B> which includes inertial actions
when they are present.

2Such a definition has non-trivial consequences above all in the mechanics of complex bodies,
rather than in the one of simple bodies (see references in footnote 2).

3The point of view has been also discussed in [29] for different purposes. It is also used in [15]
with strict reference to the derivation of configurational balances. In fact, a requirement of invari-
ance of an expression of a power with respect to such changes in observers is called upon. The power
selected is different from the one used here and involves a number of configurational actions
(stresses, internal and external bulk forces and couples) in an abstract way, without having at that
stage their possible expression in terms of standard actions. This point is further analized in the last
section.
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The standard power of external actions over a generic part b is defined by
PENP) = /b - ydx + / Pn-yda?.
b ab

Notice that the expression of the external power is usually written by imagining
that the reference place # does not undergo mutations. The requirement of in-
variance of 2™ (), under changes in observers leaving invariant % and alter-
ing isometrically the ambient space, furnishes integral and then pointwise bal-
ance equations under appropriate regularity conditions [30].

In the lines above it has been stressed that bulk actions » and standard trac-
tions Pn are co-vectors. Consequently, the products b - y and Pn - y have to be
intended as the values that the co-vectors b and Pn take over the vector y. No
use is made here of the internal product in R*. Of course, in the present setting
such a distinction can be considered superfluous because R* and its dual are nat-
urally isomorphic, so that co-vectors and vectors can be identified. I maintain the
distinction because it plays a non-trivial role when one would try to extend the
procedure to the mechanics of complex bodies.

Here the point of view is different: the body can mutate its material structure.
The world ‘mutation’ needs mechanical definition. I do not consider any specific
mechanism of mutation. Rather, I account for the indirect effects of classes of
mutations: energy fluxes in the material, bulk driving forces and configurational
couples. All these ingredients are pictured in 4. They can be considered as due to
the rearrangements of possible inhomogeneities, their possible evolution and/or
to more general alterations of the material structure that can be pictured through
mutations of the reference placement 4. An extended notion of power is then re-
quired. I call it the relative power: it is the power of standard actions evaluated on
the relative velocity to the rates of mutations in the reference place, and supple-
mented by the energy fluxes and the power of additional bulk actions. The defini-
tion of the relative power is presented after necessary ensuing preliminaries.

A free energy density e is defined over 4; it is function of the state ¢, the place
x and the time ¢, namely

e:=e(x,5¢).

The state ¢ of a material element is not specified here. The explicit (direct) de-
pendence on x underlines the assumption that the material is not homogeneous.
The explicit dependence on time may describe only some aspects of possible mu-
tations like aging. For example, for elastic bodies with time-dependent moduli,
the Clausius-Duhem inequality in its isothermal version implies d,e < 0 which
corresponds exactly to aging in time. In what follows the derivative d.e is consid-
ered as the ‘explicit’ derivative of e with respect to x, holding fixed the state and
the time.

For the sake of simplicity, I do not consider below the explicit dependence
on time, so that from now on the free energy depends on the place x and the
state ¢.
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Standard tractions and bulk forces arise during a generic motion. They are
power-conjugated with the rate of changes of (relative) places of material ele-
ments. They contribute to the equilibrium of defects and their evolution.

In presence of evolving structural mutations in the bulk, annihilation and cre-
ation of material bonds occur. Moreover, microscopic viscous or plastic phenom-
ena may cluster up to determining macroscopic structural bulk mutations which
have consequent configurational effects. Bulk actions are then power-conjugated
with mechanisms of annihilation and creation (or restoration) of material bonds
and the other dissipative effects just mentioned. Such actions are modeled here by
a force f and a couple i (co-vectors over #) with the proviso that

(1) f be power-conjugated with the translational part of the material velocity
field x — w, namely w — curlw x (x — xp),
(i) /& be power-conjugated with the rotational part of x — w, namely curiw.

The items (i) and (ii) can be assumed by definition. A reasonable assumption is
that f and fi can be each one decomposed additively in parts /" and g" associated
with the rupture of the material bonds and parts f* and " determined by the
other dissipative effects (namely f = f" + f¥ and g = g" + @*). If the material
bonds are not broken in the process described by the field x — w, one gets
f"=0and g" = 0. The material velocity can be also irrotational. In this case it
can describe mutations that do not involve material couples: think for example to
a planar interface evolving in an isotropic bar by maintaining itself orthogonal to
the axis of the bar. When the body is not homogeneous and not isotropic, the re-
distribution of the material elements may generate a flow 0.e of energy. More-
over, if the redistribution of inhomogeneities determines anisotropies, a configu-
rational couple u¢ can also appear in principle.

The symbol pu is adopted from now on to identify in a concise way the sum
Ia + #6.4

Both f and u are co-vectors over % because they are associated with mecha-
nisms changing & itself. No configurational traction associated with a primitive
configurational stress is presumed a priori: it is found later as a derived ‘object’.

Inertia is neglected here for the sake of simplicity. It can be included by con-
sidering the bulk forces decomposed additively into inertial and non-inertial parts
and ‘adding’ to e the kinetic energy.

DEFINITION 1. For Cauchy bodies a functional 2" B(B) x Vyx Vyy — Rois
called a relative power when (1) it is additive over disjoint parts, (ii) is linear over
the space of rates and admits the explicit expression

P (0, w) := PP (0, w) + 2T (v, w)

with

*Configurational bulk couples have been introduced in [15] with the analogous meaning.
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g;el—a(vy W) = / b . (U — FW) dx + / Pn - (U — FM}) dﬂzy
b ab

P (0, w) = / (n-w)eds? - /(@e + 1) (w—curlw x (x = xo)) dx
ab b

+ / - curlw dx
b

I call 2[/=4(v, w) the relative power of actions and 2(v,w) the power due to

disarrangements.

(1) The power of actions is said to be relative because it is developed along the
difference between the actual velocity and the push forward of the material
velocity w in 4,,. A

(2) More difficult is the interpretation of the terms in 2¢*(v,w). Recall that the
velocity field (x,7) — v moves just points in space where no material elements
are necessarily placed. The field (x, f) — w alters the distribution of the mate-
rial elements, even permuting them in a virtual way. A flux of energy through
the boundary ¢b appears because the material elements can cross db. Such a
flux through 0b has density (- w)e. The second and the third addenda in the
expression of ?f"(v, w) are sources of power due to the possible rupture of
material bonds, to other dissipative effects and to the redistribution of inho-
mogeneities. The assumption that d.e develops power only in the transla-
tional part of w is suggested by the circumstance that it is rather natural to
imagine that, at least locally, the energy levels are parallel. The negative
sign before (dye + f) appears for the sake of convenience.

Take note that v may coincide with the true velocity y at x and ¢.
Further physical justifications of Definition 1 are presented later.

THEOREM 1. The following two sets of assertions are equivalent. Set 1: 2/ (v, w)
is invariant under isometric changes in observers for any choice of b. Set 2: (i) If the
fields x — b := b(x) and x — P := P(x) are integrable over %, then for every part
b the following integral balances hold:

/bdx—l—/ Pnd#* =0,
b b

/(yyo) dex+/ (y — y0) X Pnd#? =0,
b ab

/ IPndez—/F*bdx—/(axe+f)dx:0,
b b b

/(x—xo)xPnd%z—/(x—xo)xF*bdx+/,udx:0.
b b b

where, with I the second order unit tensor,
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P:=el — F*P.
(i) If the fields x — P and x — P are of class C'(#) N C°(%) then
DivP+ b =0,
Skw PF* =0,
DivP — F'b—d0ve = f.
2Skw P = ux

(iii) If the material is homogeneous, no driving force is present, and yu = 0, then P is
symmetric and, in absence of body forces,

/ b PndA* =0
(iv) An extended version of the virtual power principle holds:
Pl (v, w) = DLy ),

where

P () = /(P -Vo+P-Vw+ (x — x)

®b(6xe —f) - SkwVw + p - curlw) dx;
it reduces to
/bb~ (v—F\v)dx+Aan~ (v — Fw)d#? —/b(axe+f) -wdx
= /b P-(Vo—FVw)dx — /b Ve - wdx.

PrOOF. Here only Set I = Set 2 is proven because the converse is almost imme-
diate. The axiom of invariance and some elementary algebra impose that

é.</bbdx+/aande2)+q.</b(y_y0)><bdx+£b(y—yo) XPndﬂz)
+c'(/a (6”—F*P)ndéfz—/bF*bdx+/b(axe—f)dx)
b

—H]-(ﬁb(x—xo)xPnd//z—/(x—xo)xF*bdx—k/ﬂdx):o'

0 b b

The arbitrariness of ¢, ¢, ¢ and ¢ implies the integral balances in Theorem 1, once
one defines P := el — F*P. The pointwise balances follow by the application of
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Gauss theorem. They imply the equality between 2/ (v, w) and 2/~ (v, w).
The remaining statements follow straight away by direct calculation. |

The tensor P, representing in Theorem 1 the sum e/ — F*P in a concise way,
is called the Hamilton-Eshelby stress. As recalled in the preamble, the word ‘con-
figurational’ is attributed to balances involving it. Besides its immediateness, the
earlier theorem has some stringent theoretical consequences, as anticipated in the
preamble.

(1) To obtain the balance of configurational forces it is not necessary to make use
of the procedure exploiting the inverse motion.

(2) The Hamilton-Eshelby stress P := e/ — F*P and the bulk actions —F*b and
—0ye are not introduced a priori as unknown objects and then identified with
a procedure discussed further in the last section.

(3) A version of the principle of virtual power different from usual arises, it
includes the standard one when the reference place is considered invariant,
invariance intended in the sense of absence of evolving defects.

The result can be extended to the case of complex bodies and to the case in
which structured discontinuity surfaces and line defects are present. In the pro-
cess, appropriate additional measures of interactions need to be introduced as ob-
jects power conjugated with the rate of change of the morphological descriptors
of the substructure in the material elements (in the case of complex bodies) and/
or deformations and evolution of surface and line defects. Even in that cases the
procedure avoids the specification of the constitutive structure of the local state
and the use to the mechanical dissipation inequality to identify the expression of
the configurational forces in terms of standard measures of interaction.

Actually, all observers ‘measure’ the same value of the power which is a sca-
lar. The statement in the Set 1 in the theorem above can be assumed as axiom. In
this case it would be not different in its intrinsic meaning from the axiom of in-
variance of the standard power [30]. Differences in the expression of the power
are dictated only by the situation under scrutiny.

6.

To explain further on the nature of the relative power, one may notice that in
purely conservative case the equation

ggel(v’ W) — ygel—inn(v) W)

reduces to an integral version of the pointwise balance appearing in Nother
theorem.

To prove such a statement consider a non-linear elastic inhomogeneous body
with total energy given by

e(x, F) +u(y),
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with e the elastic energy density—a function which is polyconvex in the gradient
of deformation—and u the potential of body forces. Both ¢ and u are assumed to
be differentiable with respect to their arguments. The essential ingredients prepar-
ing Nother theorem need also to be recalled briefly. o

Consider smooth curves s — f; on the group of diffeomorphisms Diff(R*, R?)
such that fy = identity and at every point in R® one gets v = disf s|s_o» Where the
field y — v(y) coincides with the virtual velocity field introduced above over the
ambient space.

The usual relabeling of the reference place is accounted for in R®. From a
physical point of view it reduces just to the permutation of inhomogeneities over
4. The relabeling is induced by the action of the special group of diffeomor-
phisms SDiff(R?, R?), a group on which one selects smooth curves s; — f il such
that f) = identity and at every x one gets w = %lfﬂ |,—0> Where the field x — w(x)
is a special case of the virtual velocity field w introduced earlier, special in the
sense that it is isochoric.

Balance equations are obtained by requiring the minimum of the overall
energy

£(y) = / (e(x, F) + u(y)) dx

over an appropriate Sobolev space (commonly such a space is some W!? or,
more precisely, the space of weak diffeomorphisms discussed in [12, 13]). In the
case of C' minimizers, pointwise Euler-Lagrange equations can be derived in
standard way. They read

b+ DivP =0,

where now b := —0,u € R3* and P := dre € Hom(T %, T;<x>,%’,,). In the case of
irregular minimizers one cannot obtain the previous equation because Sobolev
maps do not admit in general tangential derivatives. The balance of configura-
tional forces (discussed previously) arises as a consequence of the evaluation of
the horizontal variations—the ones generated by altering # through s; — f;l.
Moreover, one may obtain in distributional sense the balance of forces in terms
of Cauchy stress o := (detF)_lapeF** e R¥* ® R* and may prove also that
y +— o belongs to L}  (see [13]), as mentioned previously.

By focusing the attention for the sake of simplicity on the Euler-Lagrange
equations above, if one defines the vector density

= (e+u)w+ dre” (v — Fw),

if the total energy is equivariant with respect to the action of Diff(R*, R?) and
SDIff(R?, R*), then (Nother theorem, see e.g. [23] and [19] for a rather different
point of view)

Divg = 0.
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The requirement that the total energy be equivariant means that

e(x,F)+u(y) = e(f},l (x), (gradfs(y))F(Vf},l (x))fl) + u(fy(y)),

where grad is the gradient with respect to y. The previous relation is verified
when (Nother conditions)

d

$(€(f§1 (%), (grad £() F(VE;, () ™) + u(fs(1)) ] = 0,

d

7 (e(f (x), (grad £,()F(VE} (x)) ") + u(fs(»)],,—o = 0.

Such conditions read explicitly
Oyu-v+ dpe- Vo =0,
Oye-w—0dpe- FVw = 0.

By taking into account that (i) in this case the field x — w(x) is isochoric, namely
divw =0, and (ii) absence of dissipative effects implies /' = 0, and considering
also (iii) the explicit form of Nother conditions, one realizes (after some algebra)
that the last relation in Theorem 1 reduces to the integral version of Nother the-
orem, namely

/Div‘{\;dxzo
b

on some arbitrary part b of 4.

Conversely, one can say that the presence of a principle of relative power is
hidden in Noéther theorem.

I have already introduced in earlier papers, namely [7, 21, 22], a version of
the relative power including constitutive issues and arising directly from Nother
theorem, at least formally. I have used it in the description of surfaces and lines
defects, without being conscious at that time of its generality in a full non-
conservative setting. The extension to such a setting (at least with reference to
bulk actions) is the main result here.

7.

Other comparisons with the existing descriptions of the origin and the nature of
configurational forces may clarify further the point of view discussed here.

The approach to configurational forces presented in [24, 25, 26] relies on con-
stitutive assumptions. They are called upon only partially in this paper: the sole
existence of the energy and the assumption e := e(x,t;¢) are invoked without
specifying the nature of the state ¢.
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The comparison with the approach proposed in [16, 14] (see also [15]) requires
a preliminary description. That approach is based on two steps: (1) The balance
of configurational forces is postulated first. Such a postulate can be expressed
trough the statement of an independent integral balance (like in [14]) or by re-
quiring the invariance of a certain power (a power which is different from the
one used here) with respect to the transformation w +— w* (like in [15]; see also
[33]). In [14] and [15], independently of its origin, the balance of configurational
forces involves a configurational stress, say [P, and external and internal configu-
rational bulk forces, say g and e respectively. They are assumed to perform work
only after a Galilean change in observer (i.e. w — w + ¢) at a first glance (see [15],
page 36). The point of view is then changed ([15], page 39) by saying that only g
does not perform power under time-dependent changes in the reference place.
Whether P, g and e can be expressed in terms of standard actions and energy is
not known at this stage. The identification of P, g and e is matter of the second
step. (2) It is essentially based on the exploitation of the second law of thermody-
namics written in terms of a mechanical dissipation inequality in which only the
power of the configurational traction Prn is added to the one of standard actions
(actually the power of g and e does not appear). The mechanical dissipation in-
equality 1s written with respect to control volumes with boundaries evolving in
time. Invariance with respect to the reparametrization of such boundaries (which
is the key ingredient in the procedure presented in [14]) leads to the identification
P .= el — F*P. Notice that in the mechanical dissipation inequality the energy is
introduced. It is assumed also that e is differentiable with respect to time. The
identification of € with —F*b follows directly from the insertion of the expression
el — F*P in the balance of configurational forces. The mechanical dissipation in-
equality has to be exploited to recognize that g coincides with —Ve + P : VF. The
additional specification of the constitutive structure of the energy shows how g
reduces finally to —dye (see [14], page 78).

Comparison of the results in [14] with the point of view in the previous
sections has to be done at the end of the identification procedure (so that after
step 2) because not only Theorem 1 collects the balance of configurational forces
but also it includes the results of the identification recalled above, at least in the
setting discussed here.

In the theorem above the configurational actions f and u are left unspecified.
However, if there is absence of effects due to dissipative stresses and rupture of
the material bonds, /' = 0 and @ = 0. The configurational couple ¢ remains still
unspecified. Moreover, if no rupture of the material bonds occur and the stress P
has a non-zero dissipative part P’ (so it is the sum of non-zero conservative and
dissipative components), the use of the configurational balance in the bulk im-
plies (after the explicit calculation of Div P) that f = —P" : VF, where the double
dots indicate that the third-rank tensor VF acts over P¥ by saturation of both its
two indices.

To obtain Theorem 1—1I stress once more—no use is made of the mechanical
dissipation inequality. No use is made of an additional requirement of invariance
of the power with respect to the reparametrization of db. Although the energy is
also introduced here, no assumption of differentiability in time is necessary.
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The state here is not specified: for example it can include F, the history of
deformation, a number of internal variables conjugated with affinities, their his-
tories and gradients. The sole restriction is that the state be compatible with the
relative power of actions. In fact, higher-order Cauchy bodies (like, e.g., second-
grade elastic bodies) or complex bodies require expressions of 2"/~ involving
hyperstresses or microstresses and self-actions respectively.

I do not claim that the treatment proposed here is better than the ones dis-
cussed in this section. My approach is just parallel in some sense and is also
rather concise. The reader interested in foundational issues can find by himself/
herself the right position of this thin note, written by using elementary mathe-
matics.
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