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Abstract. — This paper is devoted to the study of solitary waves whose existence is related to the

ratio energy/charge. These solitary waves are called hylomorphic. This class includes the Q-balls,
which are spherically symmetric solutions of the nonlinear Klein-Gordon equation (NKG), as well

as solitary waves and vortices which occur, by the same mechanism, in the nonlinear Schroedinger
equation and in gauge theories. It is proved an abstract theorem which allows to show the exis-

tence of hylomorphic solitary waves and vortices in the (NKG) and in the nonlinear Klein-Gordon-
Maxwell equations (NKGM).
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1. Introduction

Roughly speaking a solitary wave is a solution of a field equation whose energy
travels as a localized packet and which preserves this localization in time. A
solitary wave which has a non-vanishing angular momentum is called vortex. A
soliton is a solitary wave which exhibits some strong form of stability so that it
has a particle-like behavior (see e.g. [3], [12], [29], [38]).

To day, we know (at least) three mechanisms which might produce solitary
waves, vortices and solitons:

• Complete integrability, (e.g. Kortewg-de Vries equation);

• Topological constraints, (e.g. Sine-Gordon equation);

• Ratio energy/charge: (e.g. the nonlinear Klein-Gordon equation).

Following [7], the third type of solitary waves or solitons will be called
hylomorphic. This class includes the Q-balls which are spherically symmetric
solutions of the nonlinear Klein-Gordon equation (NKG) (see [20], [27]) as well
as solitary waves and vortices which occur, by the same mechanism, in the non-
linear Schrödinger equation and in gauge theories ([11], [15]).

This paper is devoted to an abstract theorem which allows to prove the exis-
tence of hylomorphic solitary waves, solitons and vortices in the (NKG) and in



the nonlinear Klein-Gordon-Maxwell equations (NKGM). In this case we prove
a multiplicity result in terms of di¤erent charges (see theorem 22).

2. Hylomorphic solitons

In this section we will sketch the main ideas relative to hylomorphic solitons.
They can be considered as particular states of a system modelled by a field
equation.

We assume that the state of the system is described by one or more fields
which mathematically are represented by a function

C : RN ! Vð1Þ

where V is a finite dimensional vector space with norm j � jV and it is called the
internal parameters space. We will denote by X the set of all the states.

A state C0 a X is called solitary wave if its evolution CðtÞ has the following
form:

CðtÞ ¼ htC0ðgtxÞ

where ht and gt are transformations on V and RN respectively and which depend
continuously on t. A solitary wave C0 a X is called soliton if it is orbitally stable
i.e. if C0 a G, where G is a finite dimensional manifold which is invariant and
stable (see e.g. [6]).

In this paper, we shall consider two cases:

– Equation (NKG) (see section 4.1) where

C ¼ ðc;ctÞ a C2:

– Equation (NKGM) (see section 6.1) where

C ¼ ðc;ct; f; ft;A;AtÞ a C2 � R8:

The existence and the properties of hylomorphic solitons are guaranteed by the
interplay between energy E and another integral of motion which, in the general
case, is called hylenic charge and it will be denoted by H.

Thus, the most general equations for which it is possible to have hylomorphic
solitons need to have the following features:

• A-1. The equations are variational namely they are the Euler-Lagrange equa-
tions relative to a Lagrangian density L½C�.

• A-2. The equations are invariant for time and space translations, namely L does
not depend explicitly on t and x.

• A-3. The equations are invariant for a S1 action, namely L does not depend
explicitly on the phase of the field C which is supposed to be complex valued
(or at lest to have some complex valued component).
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More exactly, in (NKG), we have the following S1 action

TyC ¼ Tyðc;ctÞ ¼ ðeiyc; eiyctÞ; y a R=ð2pZÞ ¼ S1

and in (NKGM) we have

TyC ¼ Tyðc;ct; f; ft;A;AtÞ ¼ ðeiyc; eiyct; f; ft;A;AtÞ:

Solitary waves or solitons for equations satisfying A-1 and A-2 and having null
momentum are called stationary waves or stationary solitons.

By Noether theorem assumptions A-1 and A-2 guarantee the conservation of
the energy EðCÞ and of the momentum PðCÞ (see e.g. [12]), while A-1 and A-3
guarantee the conservation of another integral of motion which we call hylenic
charge HðCÞ (see [7]).

The quantity

LðCÞ ¼ EðCÞ
jHðCÞj ;ð2Þ

which is an invariant of the motion having the dimension of energy, is called
hylomorphy ratio.

We now set

m ¼ lim
e!0

inf
CaXe

EðCÞ
jHðCÞjð3Þ

where

Xe ¼ fC a X : Ex; jCðxÞjV < eg:ð4Þ

Now let CðtÞ be the evolution of a state such that LðCð0ÞÞ ¼ l < m; then,
LðCðtÞÞ ¼ l for all t, and, by definition of m, we have that

lim inf
t!l

jCðtÞjV > 0:

Thus it it possible that CðtÞ tends to a nontrivial stable configuration.
Now let s be a real number and C be a state such that

HðCÞ ¼ s and EðCÞ ¼ minfEðvÞ : HðvÞ ¼ sgð5Þ

and denote by Gs the set of such minimizers C, namely

Gs ¼ fC : C satisfies ð5Þg:

Observe that by A-2 the energy is a constant of the motion, then Gs is an
invariant set.

Now we give the following definition
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Definition 1. A stationary wave C0 is called hylomorphic wave if

C0 a Gs for some s:ð6Þ

Moreover C0 is called hylomorphic soliton if it satisfies (6) and if Gs is a manifold
with

dimðGsÞ < l and Gs is stable

Remark 2. In the examples considered in this paper, the Lagrangian L½C� is
invariant for an action of the Poincaré group. In particular, if the Lagrangian is
invariant for the action of a Lorentz boost, then the existence of stationary waves
and stationary solitons implies the existence of travelling (with velocity v, jvj < c)
waves and travelling solitons respectively (see e.g. [12]).

3. An abstract theorem

In many situations the energy E and the charge H have the following form

Eðu;oÞ ¼ JðuÞ þ o2KðuÞ;ð7Þ
Hðu;oÞ ¼ 2oKðuÞ:ð8Þ

where o a R and J and K are as follows:

JðuÞ ¼ 1

2
3L1u; u4þN1ðuÞ

KðuÞ ¼ 1

2
3L0u; u4þN0ðuÞ

where Li : X ! X 0 ði ¼ 0; 1Þ are linear continuous operators and Ni ði ¼ 0; 1Þ are
di¤erentiable functionals defined on a Hilbert space X with a norm equivalent to
the following one

jjujj2 ¼ 3L1u; u4:

Here 3 ; 4 denotes the duality between X and X 0.
The existence of solitary waves for the field equations we are interested in lead

to study the following abstract eigenvalue problem:

J 0ðuÞ ¼ o2K 0ðuÞ:ð9Þ

where J 0 and K 0 denote the di¤erentials of J and K.
The most natural way to solve this problem consists in minimizing JðuÞ on

the manifold fu : KðuÞ ¼ const:g. However the assumptions which allow such a
minima to exist are not adequate for the problems which we want to consider.
For this reason we adopt a di¤erent variational principle, which permits also to
get the existence of particular solitary waves, namely of hylomorphic waves (see
Definition 1).
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We set for s > 0

Ms ¼ fðu;oÞ a X � Rþ : Hðu;oÞ ¼ sg:

The variational principle is contained in the following simple result:

Theorem 3. The critical points ðu;oÞ of E on Ms solve the problem (9).

Proof. Let ðu;oÞ a Ms be a critical point of E on Ms. Then there exists l real
such that

quEðu;oÞ ¼ lquHðu;oÞ
qoEðu;oÞ ¼ lqoHðu;oÞ

�

These equations can be written more explicitly

J 0ðuÞ þ o2K 0ðuÞ ¼ loK 0ðuÞ
2oKðuÞ ¼ lKðuÞ

�

From the second equation we have l ¼ 2o and substituting in the first one, we
get that ðu;oÞ solves problem (9). r

The utility of Theorem 3 relies on the fact that the existence of critical points
of E on Ms is guaranteed by an assumption (see assumption (11)), which in many
physical problems is the natural one. Moreover in some cases this assumption
guarantees the stability of the solutions.

We make the following assumptions:

• (H1) Jb 0 and J is coercive on Ms, namely for any sequence ðun;onÞ a Ms

we have that (JðunÞ boundedÞ ) ðun boundedÞ.
• (H2) The di¤erentials N 0

0, N 0
1 of N0, N1 satisfy the following compactness

properties: N 0
0 : X ! X 0 is compact. Moreover, if un converges weakly in X ,

then

3N 0
1ðunÞ �N 0

1ðumÞ; un � um4 ! 0 as n;m ! lð10Þ

• (H3) KðuÞb 0 for all u and KðuÞA 0 for some u a X .

We shall prove the following theorem:

Theorem 4. Assume (H1,2,3) and that there is u, such that

0 <
JðuÞ
KðuÞ < m2ð11Þ

where

m2 ¼ inf
3L1u; u4

3L0u; u4
> 0:ð12Þ

247existence of hylomorphic solitary waves



Then there exists a non empty, open set SHR such that, for any s a S, E has a
minimizer ðu0;o0Þ on Ms with 0 < o2

0 < m2.

As an immediate consequence of Theorem 3 and Theorem 4 we get

Theorem 5. Under the assumptions of Theorem 4 there exists a non empty, open
set SHR such that, for any s a S problem (9) has a solution ðu;oÞ, such that
0 < o2 < m2, Hðu;oÞ ¼ s and which is a minimizer of E on Ms.

We set, for o > 0 and KðuÞ > 0,

Lðu;oÞ ¼ Eðu;oÞ
Hðu;oÞ ¼

1

2

� JðuÞ
KðuÞ �

1

o
þ o

�
:

Remark 6. In this paper we will apply theorem 5 in three cases. In these cases,
E and H will represent respectively the energy and the hylenic charge, L is the
hylomorphy ratio and m in (12) coincides with the constant defined by (3).

In order to prove Theorem 4, we need several lemmas.

Lemma 7. If J;Kb 0, then the following assertions are equivalent:

• (a) there is u a X, such that

0 <
JðuÞ
KðuÞ < m2:ð13Þ

• (b) there exist u a X, o > 0 such that

Lðu;oÞ < m:ð14Þ

Proof. (a) ) (b) If we take o ¼
ffiffiffiffiffiffiffi
JðuÞ
KðuÞ

q
, we have that

Lðu;oÞ ¼ 1

2

� JðuÞ
KðuÞ �

1

o
þ o

�
¼

ffiffiffiffiffiffiffiffiffiffi
JðuÞ
KðuÞ

s
< m:

(b) ) (a) If 1
2

� JðuÞ
KðuÞ � 1

o
þ o

�
< m, then

JðuÞ
KðuÞ < 2mo� o2

a max
ob0

ð2mo� o2Þ ¼ m2: r

Lemma 8. Assume J;Kb 0 and let ðun;onÞ be a sequence in Ms, s > 0, with
Lðun;onÞ bounded. Then the sequences on and JðunÞ are bounded.

The proof is trivial.
We now set

ĉc ¼ inf
obm;uaX

Lðu;oÞ:
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Lemma 9. Assume that J;Kb 0 and let ðun;onÞ be a sequence in Ms, s > 0, such
that Lðun;onÞ ! c < ĉc. Then (up to a subsequence).

on ! o0 < m:

Proof. Let ðun;onÞ be a sequence in Ms, s > 0, such that Lðun;onÞ ! c < ĉc.
Since Lðun;onÞ is bounded, by Lemma 8, on is bounded and hence, up to a
subsequence, on ! o0. We have to prove that o0 < m. We argue indirectly and
assume that on ¼ m1 þ dn with dn ! 0 and m1 bm. Since on and Lðun;onÞ are
bounded, also

JðunÞ
KðunÞ is bounded, then easy calculations give

Lðun;m1 þ dnÞ ¼
1

2

� JðunÞ
KðunÞ

� 1

m1 þ dn
þm1 þ dn

�

¼ 1

2

� JðunÞ
m1KðunÞ

�
1þ dn

m1

��1

þm1 þ dn

�
¼ Lðun;m1Þ þOðdnÞ:

Then

c ¼ lim
n!l

Lðun;onÞ ¼ lim
n!l

Lðun;m1 þ dnÞ ¼ lim
n!l

ðLðun;m1Þ þOðdnÞÞ

b inf
obm;uaX

Lðu;oÞ ¼ ĉc;

contradicting our assumption. r

Lemma 10. Assume (H1,2,3). Then for any s > 0, L satisfies PS in Ms under the
level ĉc, namely, if ðun;onÞ is a sequence in Ms such that

Lðun;onÞ ! c < ĉcð15Þ
dLjMs

ðun;onÞ ! 0;ð16Þ

then ðun;onÞ has a converging subsequence.

Proof. Let ðun;onÞ be a sequence in Ms satisfying (15) and (16). By Lemma 8
JðunÞ is bounded. Then, by the coercivity of J on Ms, we deduce that un weakly
converges (up to a subsequence) to u0 a X . Using Lemma 9, up to a subsequence,
we get that

on ! o0 < m:ð17Þ

Now we prove that un converges strongly to u0.
By (16) we have that there exists a sequence of real numbers ln such that

quEðun;onÞ ¼ lnquHðun;onÞ þ en

qoEðun;onÞ ¼ lnqoHðun;onÞ þ hn

�
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where en ! 0 in X 0 and hn ! 0 in R. These equations can be written more explic-
itely as follows:

J 0ðunÞ þ o2
nK

0ðunÞ ¼ lnonK
0ðunÞ þ en

2onKðunÞ ¼ lnKðunÞ þ hn

�
:ð18Þ

By the second equation we get

ln ¼ 2on �
hn

KðunÞ
¼ 2on �

2hnon

s
;

replacing ln in the first equation, we get

J 0ðunÞ � o2
nK

0ðunÞ ¼ � 2hno
2
n

s
K 0ðunÞ þ en:

This equation can be rewritten as follows

L1un � o2
0L0un ¼ �N 0

1ðunÞ þ o2
nN

0
0ðunÞ þ dnð19Þ

where

dn ¼ �ðo2
0 � o2

nÞL0un �
2hno

2
n

s
K 0ðunÞ þ en:

Since un is bounded, L0un and K 0ðunÞ are bounded; then dn ! 0.
Replacing in (19) n with m

L1ðumÞ � o2
0L0ðumÞ ¼ �N 0

1ðumÞ þ o2
mN

0
0ðumÞ þ dmð20Þ

and, subtracting (20) from (19), we get

L1ðun � umÞ � o2
0L0ðun � umÞð21Þ

¼ N 0
1ðumÞ �N 0

1ðunÞ þ o2
nN

0
0ðunÞ � o2

mN
0
0ðumÞ þ dn � dm:

By (H2) and since un is bounded, we easily get

3N 0
1ðumÞ �N 0

1ðunÞ þ o2
nN

0
0ðunÞ � o2

mN
0
0ðumÞ; un � um4 ! 0:ð22Þ

By (12) we have that

3L1ðun � umÞ; un � um4� o2
03L0ðun � umÞ; un � um4ð23Þ

b 3L1ðun � umÞ; un � um4� o2
0

m2
3L1ðun � umÞ; un � um4

b

�
1� o2

0

m2

�
jjun � umjj2:
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Thus, multiplying both sides of (21) by un � um and using (22), (23), we get

en; m b

�
1� o2

0

m2

�
jjun � umjj2 where en; m ! 0:ð24Þ

Since o0 < m (see (17)), by (24) un is a Cauchy sequence in X . r

Lemma 11. If assertion (a) (or (b)) in lemma 7 holds, then

ĉc < m:

Proof. By (a) in lemma 7 we have, for a suitable u a X ,
JðuÞ
KðuÞ < m2. Then, by

definition of ĉc,

ĉcaLðu;mÞ ¼ 1

2

� JðuÞ
KðuÞ �

1

m
þm

�
< m r

Now we set

S ¼ s > 0 : inf
ðu;oÞaMs

Lðu;oÞ < ĉc

� �
:ð25Þ

The following Lemma guarantees that the set S is not empty.

Lemma 12. If assertion (a) (or (b)) in lemma 7 holds, then

inf
ðu;oÞaX�Rþ

Lðu;oÞ < ĉc:

Proof. By definition of ĉc there exists a sequence ðun;onÞ in X � Rþ with
on bm and such that

Lðun;onÞ ! ĉc:

Clearly on is bounded and consequently also
JðunÞ
KðunÞ is bounded. So, up to a subse-

quence, we have

on ! obm and an ! a; an ¼
JðunÞ
KðunÞ

:

Then

ĉc ¼ 1

2

� a

o
þ o

�
:

We claim that

a < m2:ð26Þ
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In fact

ĉc ¼ 1

2

�
a
1

o
þ o

�
ð27Þ

¼ 1

2

�m2

o
þ o

�
� 1

2
ðm2 � aÞ 1

o
:

Then, by Lemma 11 and (27), we get

m >
1

2

�m2

o
þ o

�
� 1

2
ðm2 � aÞ 1

o
:ð28Þ

On the other hand

1

2

�m2

o
þ o

�
bm;ð29Þ

then (28) and (29) imply that

� 1

2
ðm2 � aÞ 1

o
< 0:

So (26) is proved.
Now by (26) we can take ôo such that

m > ôo >
ffiffiffi
a

p
;

and, since obm, we have

o > ôo >
ffiffiffi
a

p
:

So it can be easily deduced that

1

2

� a

ôo
þ ôo

�
<

1

2

� a

o
þ o

�
:

Then

limLðun; ôoÞ ¼
1

2

� a

ôo
þ ôo

�
<

1

2

� a

o
þ o

�
¼ ĉc:

So, for n large, we have Lðun; ôoÞ < ĉc and the conclusion follows. r

Now we are ready to prove Theorem 4.

Proof of Th. 4. By Lemma 12 the set S defined in (25) is not empty. Let s a S
and ðun;onÞ be a minimizing sequence for E on Ms. By standard variational
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arguments (see e.g. [2], [37]) we can assume that ðun;onÞ is also a P.S. sequence.
Since s a S, we have

c ¼ limLðun;onÞ ¼ inffLðu;oÞ : ðu;oÞ a Msg < ĉc:

Then, by the lemma 10, ðun;onÞ possess a strongly convergent subsequence and
hence E has a minimizer on Ms. Let us finally show that S is open. Take s a S;
we have to prove that, for e small, sþ e a S. Let ðu0;o0Þ be a minimizer of E on
Ms, then, since s a S, we have

Lðu0;o0Þ < ĉc:ð30Þ

Since 2o0Kðu0Þ ¼ s, by definition of Msþe, we have�
u0;o0 þ

e

2Kðu0Þ

�
a Msþe:ð31Þ

Then

inf
ðu;oÞaMsþe

Lðu;oÞaL
�
u0;o0 þ

e

2Kðu0Þ

�
:ð32Þ

By (30) and by (32) we easily deduce that for e small we have

inf
ðu;oÞaMsþe

Lðu;oÞ < ĉc: r

4. Q-balls

4.1 The Nonlinear Klein-Gordon Equation

In this section we will apply the abstract Theorem 4 to the existence of hylomor-
phic solitons of the nonlinear Klein-Gordon equation (NKG):

kcþW 0ðcÞ ¼ 0ðNKGÞ

wherek¼ q2t � ‘2, c : RN ! C ðNb 3Þ and W : C ! R with

WðcÞ ¼ FðjcjÞð33Þ

for some smooth function F : Rþ ! R and

W 0ðcÞ ¼ F 0ðjcjÞ c

jcj :

In particular we are interested in the existence of Q-balls. Coleman called Q-balls
([20]) those solitary waves of (NKG) which are spherically symmetric and this
is the name generally used in Physics literature. From now on, we always will
assume that
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W ð0Þ ¼ W 0ð0Þ ¼ 0:ð34Þ

Eq. (NKG) is the Euler-Lagrange equation of the action functionalZ � 1

2
jqtcj2 �

1

2
j‘cj2 �WðcÞ

�
dx dt:ð35Þ

Sometimes it will be useful to write c in polar form, namely

cðt; xÞ ¼ uðt; xÞeiSðt;xÞð36Þ

where uðt; xÞ a Rþ and Sðt; xÞ a R=ð2pZÞ; if we set ut ¼ qtu,

kðt; xÞ ¼ ‘Sðt; xÞð37Þ

and

oðt; xÞ ¼ �qtSðt; xÞ;ð38Þ

the state C is uniquely defined by the quadruple ðu; ut;o; kÞ. Using these

variables, the action S ¼
Z

L dx dt takes the form

Sðu; ut;o; kÞ ¼
1

2

Z
½u2t � j‘uj2 þ ðo2 � k2Þu2� dx dt�

Z
WðuÞ dx dt ¼ 0ð39Þ

and equation (NKG) becomes:

kuþ ðk2 � o2ÞuþW 0ðuÞ ¼ 0ð40Þ
qtðou2Þ þ ‘ � ðku2Þ ¼ 0:ð41Þ

The energy and the charge take the following form:

EðCÞ ¼
Z

1

2
jqtcj2 þ

1

2
j‘cj2 þWðcÞ

� 	
dxð42Þ

HðCÞ ¼ �Im

Z
qtcc dx:ð43Þ

(the sign ‘‘minus’’ in front of the integral is a useful convention).
Using (36) we get:

Eðu; ut;o; kÞ ¼
Z

1

2
ðqtuÞ2 þ

1

2
j‘uj2 þ 1

2
½o2 þ k2�u2 þWðuÞ

� 	
dxð44Þ

Hðu;oÞ ¼
Z

ou2 dx:ð45Þ
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A particular type of solutions of eq. (NKG) are the standing waves. A standing
wave is a finite energy solution of (NKG) having the following form

c0ðt; xÞ ¼ uðxÞe�iot; ub 0; o a Rð46Þ

Substituting (46) in eq. (NKG), we get

�DuþW 0ðuÞ ¼ o2u; ub 0:ð47Þ

Let N ¼ 3. Since the action functional (35) is invariant for the Lorentz group,
we can obtain other solutions cvðt; xÞ just making a Lorentz transformation on it.
Namely, if we take the velocity v ¼ ðv; 0; 0Þ, jvj < 1, and set

t 0 ¼ gðt� vx1Þ; x 0
1 ¼ gðx1 � vtÞ; x 0

2 ¼ x2; x 0
3 ¼ x3 with g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ;

it turns out that

cvðt; xÞ ¼ cðt 0; x 0Þ

is a solution of (NKG).
More exactly, given a standing wave cðt; xÞ ¼ uðxÞe�iot, the function

cvðt; xÞ :¼ cðt 0; x 0Þ is a solitary wave which travels with velocity v. Thus, if
uðxÞ ¼ uðx1; x2; x3Þ is any solution of Eq. (47), then

cvðt; x1; x2; x3Þ ¼ uðgðx1 � vtÞ; x2; x3Þeiðkv�x�ovtÞð48Þ

is a solution of Eq. (NKG) provided that

ov ¼ go and kv ¼ gov:ð49Þ

4.2 Existence Results for Q-balls

We write W as follows

WðsÞ ¼ m2

2
s2 þNðsÞ; sb 0;ð50Þ

and we will identify WðsÞ with FðsÞ. We make the following assumptions:

• (W-i) (Positivity) W ðsÞb 0

• (W-ii) (Nondegeneracy) W ¼ W ðsÞ ðsb 0Þ is C2 near the origin with Wð0Þ ¼
W 0ð0Þ ¼ 0; W 00ð0Þ ¼ m2 > 0

• (W-iii) (Hylomorphy) bs0 : Nðs0Þ < 0

• (W-iiii) (Growth condition) Al least one of the following assumptions holds:
– (a) there are constants a; b > 0, 2 < p < 2N=ðN � 2Þ such that for any s > 0:

jN 0ðsÞja asp�1 þ bs2�2=p:

– (b) bs1 > s0 : N
0ðs1Þb 0.
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Here there are some comments on assumptions (W-i), (W-ii), (W-iii), (W-iiii).
(W-i) As we shall see (W-i) implies that the energy is positive; if this condition

does not hold, it is possible to have solitary waves, but not hylomorphic waves
(cf. Proposition 16).

(W-ii) In order to have solitary waves it is necessary to haveW 00ð0Þb 0. There
are some results also when W 00ð0Þ ¼ 0 (null-mass case, see e.g. [17] and [4]), how-
ever the most interesting situation occurs when W 00ð0Þ > 0.

(W-iii) This is the crucial assumption which characterizes the potentials which
might produce hylomorphic solitons. As we will see, this assumption permits to
have states C with hylomorphy ratio LðCÞ < m.

(W-iiii)(a) This assumption contains the usual growth condition at infinity
which guarantees the C1 regularity of the functional. Moreover it implies that
jN 0ðsÞj ¼ Oðs2�2=pÞ for s small.

If we assume alternatively (W-iiii)(b), the growth condition (W-iiii)(a) can be
avoided by using standard tricks (see Appendix).

We have the following result:

Theorem 13. If (W-i), (W-ii), (W-iii), (W-iiii) hold, then there exists an open set
S such that for any s a S, (NKG) has a hylomorphic soliton (see Definition 1) of
charge s and having the form (46).

Theorem 13, in the form given here, is a very recent result [6]. In fact in [6] it
has been proved the orbital stability of (46) with respect to the standard topology
of X ¼ H 1ðRN ;CÞ � L2ðRN ;CÞ and for all the W 0s which satisfy (W-i), (W-ii),
(W-iii), (W-iiii). Nevertheless Theorem 13 has a very long history starting with
the pioneering paper of Rosen [30]. Coleman [19] and Strauss [34] gave the first
rigorous proofs of existence of solutions of the type (46) for (NKG) and for some
particular W 0s. Later very general existence conditions have been found by Bere-
stycki and Lions [17]. In particular, if W satisfies (W-i), (W-ii), (W-iii), (W-iiii),
from their paper we can deduce (see [12]) the existence of Q-balls of type (46)
for any o a ðo0;mÞ where

o0 :¼ inf l > 0 : W ðuÞ < 1

2
l2u2 for some u > 0

� �
:

Notice that the hylomorphy condition (W-iii) guarantees that o0 < m, and
hence that ðo0;mÞA j.

The first orbital stability results are due to Shatah: in [33] a condition for or-
bital stability is given; however this condition is di‰cult to be verified in concrete
situations. More recently [6] a su‰cient and (essentially) necessary condition for
the orbital stability has been proved. This condition is given directly on W and it
permits to deduce immediately Theorem 13.

Here we study the equation (47) with 0 < o2 < m2 by using theorem 4 and
prove a weaker version of Theorem 13, namely we do not prove the orbital sta-
bility but we confine ourselves to show the existence of hylomorphic waves (see
Definition 1) for (NKG).
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In this case we set:

X ¼ H 1
r ¼ fu a H 1ðRNÞ : u is radially symmetricg;

3L1u; u4 ¼
Z

ðj‘uj2 þm2u2Þ dx; N1ðuÞ ¼
Z

NðuÞ dx;ð51Þ

JðuÞ ¼ 1

2
3L1u; u4þN1ðuÞð52Þ

¼ 1

2

Z
ðj‘uj2 þm2u2Þ dxþ

Z
NðuÞ dx;

3L0u; u4 ¼ KðuÞ ¼ 1

2

Z
u2 dx; N0ðuÞ ¼ 0:ð53Þ

First of all we observe that by (W-iiii)(a) the functional J is C1. Whereas, if
assumption (W-iiii)(b) holds, our problem can be transformed in an equivalent
one for which the functional J is C1 (see Appendix). Now in order to use Theo-
rem 4, we need to prove that assumptions (H1,2,3) and (11) are satisfied.

Lemma 14. The functionals J, Ni ði ¼ 0; 1Þ and K defined in (51), (52) and (53)
satisfy the assumptions (H1,2,3).

Proof. Clearly (H3) holds. Let us now prove that (H1) holds. Let un be a
sequence in X such that JðunÞ is bounded. Then, since W b 0, we have that

Z
WðunÞ and

Z
j‘unj2 are bounded:ð54Þ

So in order to show that un is bounded in X we need to prove that

jjunjjL2 is bounded:ð55Þ

Let

2� ¼ 2N

N � 2

denote, as usual, the critical Sobolev exponent.
By (54) we have that Z

junj2
�
is bounded:ð56Þ

Let e > 0 and set

Wn ¼ fx a RN : junðxÞj > eg and Wc
n ¼ RNnWn:
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By (54) and since W b 0, we haveZ
W c

n

W ðunÞ is bounded:ð57Þ

By (W-ii) we can write

WðsÞ ¼ m

2
s2 þ �ðs2Þ:

Then, if e is small enough, there is a constant c > 0 such thatZ
W c

n

WðunÞb c

Z
W c

n

u2n :ð58Þ

By (57) and (58) we get that Z
W c

n

u2n is bounded:ð59Þ

On the other hand Z
Wn

u2n a
�Z

Wn

junj2
�
�ðN�2Þ=N

measðWnÞ2=N :ð60Þ

By (56) we have that

measðWnÞ is bounded:ð61Þ

By (60), (61), (56) we get that Z
Wn

u2n is bounded:ð62Þ

So (55) follows from (59) and (62).
Let us finally prove that (H2) is satisfied.
Let fungHH 1

r

un * u weakly in H 1
r :

Now we distinguish two cases:
Assume first that (W-iiii)(a) holds.
Since H 1

r is compactly embedded into LpðRNÞ, 2 < p < 2�, (see [17]), we have
that Z

jun � ujp dx ! 0:ð63Þ
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Now Z
ðN 0ðunÞ �N 0ðuÞÞðun � uÞ dx










ð64Þ

a

�Z
jN 0ðunÞ �N 0ðuÞjp

0
dx

�1=p 0�Z
jun � ujp dx

�1=p
; p 0 ¼ p

p� 1

The sequence un is bounded in LpðRNÞ and in L2ðRNÞ. So, by using (W-iiii)a,
we deduce that N 0ðunÞ is bounded in Lp 0 ðRNÞ. Then, by (63) and (64), we de-
duce that N 0 satisfies (10).

Finally we assume that (W-iiii)(b) holds.
Clearly

un ! u strongly in LpðBRÞð65Þ

where R > 0 and

BR ¼ fx a RN : jxj < Rg:

Since we can assume N 0ðsÞ linear for large s (see Appendix), we have

N 0ðunÞ ! N 0ðuÞ in L2ðBRÞ:ð66Þ

Now Z
jN 0ðunÞ �N 0ðuÞj2 dx ¼

Z
BR

jN 0ðunÞ �N 0ðuÞj2 dxð67Þ

þ
Z
Bc
R

jN 0ðunÞ �N 0ðuÞj2 dx

and Z
Bc
R

jN 0ðunÞ �N 0ðuÞj2 dx ¼
Z
Bc
R

jN 00ðxnÞj2jun � uj2 dxð68Þ

where

Bc
R ¼ RN � BR

xnðxÞ ¼ tunðxÞ þ ð1� tÞuðxÞ; 0a ta 1:

In the following c1, c2, c3 will denote positive constants. By a well known radial
lemma [17] and since jjunjjX is bounded, we have that for jxj large

jxnðxÞja juðxÞj þ junðxÞja c1
jjujjX þ jjunjjX
jxjðN�1Þ=2 a

c2

jxjðN�1Þ=2 :ð69Þ
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Let e > 0, since N 00 is continuous in 0 and N 00ð0Þ ¼ 0, we have, by using (69),
that

jN 00ðxnðxÞÞj2 < e for jxj > R; R large:ð70Þ

So, by (68) and (70) and since jjunjjL2 is bounded, we get

Z
Bc
R

jN 0ðunÞ �N 0ðuÞj2 dx < e

Z
Bc
R

jun � uj2 dxa ec3:ð71Þ

Then by (67), (71) we haveZ
jN 0ðunÞ �N 0ðuÞj2 dxa ec3 þ

Z
BR

jN 0ðunÞ �N 0ðuÞj2 dx:ð72Þ

So by (66) and (72) we get

N 0ðunÞ ! N 0ðuÞ strongly in L2ðRNÞ:

Then N satisfies (10). r

Lemma 15. Assumption (11) is satisfied.

Proof. Let R > 0 and consider the map uR defined as follows

uRðxÞ ¼
s0 if jxj < R

0 if jxj > Rþ 1

s0ð1þ R� jxjÞ if Ra jxjaRþ 1

8<
:ð73Þ

where s0 is a such that Nðs0Þ < 0.
Clearly

JðuRÞ
KðuRÞ

¼
R
j‘uRj2
1
2

R
u2R

þm2 þ
R
NðuRÞ
1
2

R
u2R

:

Easy estimates show that for R largeZ
j‘uRj2 a c0R

N�1ð74Þ

c2R
N
a

1

2

Z
u2R dxa c1R

Nð75Þ
Z

NðuRÞ draNðs0ÞRN þ c3R
N�1ð76Þ

where c0; . . . ; c3 are positive constants.

260 v. benci and d. fortunato



Then for R large, since Nðs0Þ < 0, we have

JðuRÞ
KðuRÞ

a
c0

c2

1

R
þm2 þNðs0ÞRN

c1RN
þ c3R

N�1

c2RN
< m2: r

Assumption (W-i) is a necessary condition for the existence of hylomorphic
waves (Definition 1), in fact the following proposition holds:

Proposition 16. If (W-i) does not hold, then for any s > 0, EðuÞ is not bounded
from below on Ms.

Proof. Let s > 0 and assume that there exists s0 such that Wðs0Þ < 0. We set
CR ¼ ðuR;�ioRuRÞ where uR is defined in (73) and

oR ¼ sR
u2R dx

:

Clearly

oR ¼ sR
u2R dx

a c4R
�N :ð77Þ

Then by (74), (75), (76) (where W replaces N) we have

EðCRÞ ¼
Z

1

2
j‘uRj2 þW ðuRÞ

� 	
dxþ 1

2
o2

R

Z
u2R dx

¼
Z

1

2
j‘uRj2 þW ðuRÞ

� 	
dxþ 1

2
oRs

a
1

2
c0R

N�1 þW ðs0ÞRN þ c3R
N�1 þ c5R

�N :

Hence

lim
R!l

EðCRÞ ¼ �l r

Remark 17. If (W-i) is violated, it is still possible to have orbitally stable solitary
waves (see [33]) which are only local minimizers. They can be destroyed by a
perturbation which send them out of the basin of attraction and are not considered
solitons according to Def. 1.

Remark 18. We observe that the constant m defined by (W-ii) coincides with the
constant m defined by (3) and the constant m defined by (12).
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5. Vortices

5.1 Main Features

A (hylomorphic) vortex is a (hylomorphic) solitary wave with nonvanishing angu-
lar momentum. The angular momentum, by definition, is the quantity which is
preserved by virtue of the invariance under space rotations (with respect to the
origin) of the Lagrangian (see e.g. [25]). In this section we shall analyze elemen-
tary properties of the angular momentum for (NKG) in three space dimensions;
of course, making obvious changes, the analysis includes also the two dimen-
sional case.

The angular momentum for the solutions of (NKG) is given by

MðCÞ ¼ Re

Z
x� ‘cðqtcÞ dx:ð78Þ

Using the polar form (36), it can be written

MðCÞ ¼
Z

ðx� ‘SðqtSu2Þ þ x� ‘uðqtuÞÞ dx:ð79Þ

where� denotes the wedge product.
It is immediate to check that standing waves (46) have MðCÞ ¼ 0. However, if

we consider:

cðt; xÞ ¼ c0ðxÞe�iot; o > 0ð80Þ

where c0ðxÞ is allowed to have complex values, it is possible to have MðCÞA 0.
Thus, we are led to make an ansaz of the following form:

cðt; xÞ ¼ uðxÞeið‘yðxÞ�otÞ; uðxÞb 0; o a R; ‘ a Z� f0gð81Þ

and

yðxÞ ¼ Im logðx1 þ ix2Þ a R=2pZ; x ¼ ðx1; x2; x3Þ:

Moreover, we assume that

uðxÞ ¼ uðr; x3Þ; where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ x2

2

q
:ð82Þ

By this ansaz, equation (NKG) (in the form (40), (41)) is equivalent to the
system

�suþ ‘2j‘yj2uþW 0ðuÞ ¼ o2u

usyþ 2‘u � ‘y ¼ 0:

�
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By the definition of y and (82) we have

sy ¼ 0; ‘y � ‘u ¼ 0; j‘yj2 ¼ 1

r2
:

where the dot � denotes the euclidean scalar product.
So the above system reduces to

�suþ ‘2

r2
uþW 0ðuÞ ¼ o2u in R3:ð83Þ

Direct computations show that the energy (42), the angular momentum (79) and
the hylenic charge (43) become

EðuðxÞeið‘yðxÞ�otÞÞ ¼
Z
R3

1

2
j‘uj2 þ 1

2

� ‘2

r2
þ o2

�
u2 þWðuÞ

� 	
dxð84Þ

MðuðxÞeið‘yðxÞ�otÞÞ ¼ �
�
0; 0;o‘

Z
R3

u2 dx
�
:ð85Þ

HðuðxÞeið‘yðxÞ�otÞÞ ¼
Z

ou2 dx:ð86Þ

The existence of vortices is an interesting and old issue in many questions of
mathematical physics as superconductivity, classical and quantum field theory,
string and elementary particle theory (see the pioneering papers [1], [28] and e.g.
the more recent ones [26], [35], [36], [38], [21] with their references).

From mathematical viewpoint, the existence of vortices for (NKG) and for
(NKGM) has been studied in some recent papers ([16], [4], [5], [13], [14], [15],
[8], [9]).

5.2 Existence of Two Dimensional Vortices

In this paper we want to apply theorem 4 to the study of vortices; this is possible
for N ¼ 2. We get the following theorem:

Theorem 19. Let W : C ! R satisfy (W-i), (W-ii), (W-iii), (W-iiii) and fix
‘ a Z� f0g; then there exists an open set S such that for any s a S, equation
NKG has a hylomorphic vortex of the form (81).

In this case we set:

3L1u; u4 ¼
Z

j‘uj2 þ
� ‘2

r2
þm2

�
u2

� 	
dx; N1ðuÞ ¼

Z
NðuÞ dx

X ¼ fu a H 1ðR2Þ: u is radially symmetric and 3L1u; u4 < lg
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JðuÞ ¼ 1

2
3L1u; u4þN1ðuÞ

¼ 1

2

Z
j‘uj2 þ

� ‘2

r2
þm2

�
u2

� 	
dxþ

Z
NðuÞ dx

3L0u; u4 ¼ KðuÞ ¼ 1

2

Z
u2 dx; N0ðuÞ ¼ 0:

Lemma 20. Assumptions (H1), (H2), (H3) are satisfied.

Proof. Clearly assumption (H3) is satisfied. Let us prove that assumption (H1)
is satisfied.

Let un be a sequence in X such that JðunÞ is bounded. Then clearly also the
sequences Z

j‘unj2;
Z

u2n
r2

;

Z
WðunÞð87Þ

are bounded. We have to show that un is bounded in L2. Let us first show that
there exists M1 such that for all n

jjunjjLl aM1:ð88Þ

In fact for u a Cl
0 ðR2n0Þ, u radially symmetric, we set uðxÞ ¼ vðrÞ r ¼ jxj, then

1

2
u2ðxÞ ¼ 1

2
vðrÞ2 ¼

Z r

þl
vðrÞv 0ðrÞ dra

�Z þl

0

vðrÞ2

r
dr

Z þl

0

v 0ðrÞ2r dr
�1=2

ð89Þ

a c1

�Z
R2

u2

r2
dx

Z
R2

j‘uj2 dx
�1=2

Then, since the sequences (87) are bounded, by (89) we get (88).
Let e > 0 and set

Wn ¼ fx a R2 : junðxÞj > eg and Wc
n ¼ R2nWn:

Then, by (88), we haveZ
Wn

u2n a
�Z

Wn

u6n

�1=3
ðmeasðWnÞÞ2=3ð90Þ

a jjunjj2Ll measðWnÞaM 2
1 measðWnÞ:

On the other hand, if e is small enough we have (see (58) in the proof of Lemma
14) Z

W c
n

W ðunÞb c2

Z
W c

n

u2n :ð91Þ
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Since Z
W ðunÞaM2;

by (90) and (91) we deduceZ
u2n ¼

Z
Wn

u2n þ
Z
W c

n

u2n aM 2
1 measðWnÞ þ

M2

c2
:ð92Þ

Then it remains to prove that

measðWnÞ is bounded:ð93Þ

Arguing by contradiction assume that, up to a subsequence

measðWnÞ ! l:ð94Þ

By a Trudingher-Moser type inequality (see [32] and its references) on all R2, we
have for a < 4p Z

eau
2
n a c3

Z
j‘unj2:ð95Þ

Then, taking a ¼ 1 and since

Z
j‘unj2 is bounded, we have

ee
2

measðWnÞa
Z
Wn

eu
2
n a

Z
eu

2
n a c3

Z
j‘unj2 aM3

which contradicts (94).
Finally, following the same arguments used in the proof of Lemma 14, it can

be proved that also assumption (H2) is satisfied. r

Lemma 21. Assumption (11) is satisfied.

Proof. Let R > 1 and consider the map uR defined as follows

uRðxÞ ¼

0 if jxjaR� 1 or jxjb 2Rþ 1

s0ðjxj � Rþ 1Þ if Rb jxj > R� 1

s0 2Rb jxj > R

s0ð1þ 2R� jxjÞ if 2Rþ 1b jxj > 2R

8>>><
>>>:

where s0 is a such that Nðs0Þ < 0.
Clearly

JðuRÞ
KðuRÞ

¼
R
j‘uRj2R
u2R

þm2 þ
R ‘2u2

R

r2R
u2R

þ
R
NðuRÞ
1
2

R
u2R

:ð96Þ
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Easy estimates show that for R largeZ
j‘uRj2 a c0R

Z
‘2u2R
r2

a
c1

R
þ c2

Z
NðuRÞ dra c3Nðs0ÞR2 þ c4R

c6R
2
b

Z
u2R dxb c5R

2

where c0; . . . ; c6 are positive constants.
Then for R large, since Nðs0Þ < 0, we have

JðuRÞ
KðuRÞ

< m2: r

6. The Nonlinear Klein-Gordon-Maxwell equations

6.1 General Features of NKGM

The Nonlinear Klein-Gordon-Maxwell equations (NKGM) are (see e.g. [12],
[11])

ðqt þ iqjÞ2c� ð‘� iqAÞ2cþW 0ðcÞ ¼ 0ðNKGM-1Þ
‘ � ðqtAþ ‘jÞ ¼ q ImðqtccÞ þ q2jjcj2ðNKGM-2Þ

‘� ð‘� AÞ þ qtðqtAþ ‘jÞ ¼ q Imð‘ccÞ � q2Ajcj2ðNKGM-3Þ

where q is a parameter which, in some models, is interpreted as the electron
charge and W satisfies (33). They are the Euler-Lagrange equations of the action:

S ¼
Z

L dx dt; L ¼ L0 þL1 �WðcÞ;ð97Þ

where

L0 ¼
1

2
½jðqt þ iqjÞcj2 � jð‘� iqAÞcj2�ð98Þ

L1 ¼
1

2
jqtAþ ‘jj2 � 1

2
j‘� Aj2

� 	
:ð99Þ

In this case, the state of the system is given by

C ¼ ðc;ct; j; jt;A;AtÞ:

266 v. benci and d. fortunato



If we use the notation (36, 37, 38) and if we set

E ¼ �ðqtAþ ‘jÞð100Þ
H ¼ ‘� Að101Þ

W ¼ �ðqtS þ qjÞ ¼ o� qjð102Þ
r ¼ qWu2ð103Þ

K ¼ ‘S � qA ¼ k� qAð104Þ
J ¼ qKu2:ð105Þ

Equations (NKGM-1), (NKGM-2), (NKGM-3) can be written as follows (see
e.g. [12]):

kuþ ðK2 þW2ÞuþW 0ðuÞ ¼ 0ðmatterÞ
‘ � E ¼ rðgaussÞ

‘�H� qE

qt
¼ JðampereÞ

Moreover, by the positions (100) and (101), E and H satisfy also the equations

‘� Eþ qH

qt
¼ 0ðfaradayÞ

‘ �H ¼ 0:ðnomonopoleÞ

The equations (gauss), (ampere), (faraday), (nomonopole) are the Max-
well’s equations and equation (matter) represents a model of interaction of
matter with the elecromagnetic field (see for example [12], [24] ch. 3, [31] ch. 2
in Part 1, and [39] ch. 1).

The energy takes the following form (see [12]):

EðCÞ ¼
Z

1

2
u2t þ

1

2
j‘uj2 þ 1

2
ðK2 þW2Þu2 þWðuÞ þ 1

2
ðE2 þH2Þ

� 	
dx

and the hylenic charge takes the form:

HðCÞ ¼
Z

Wu2 dx ¼
Z

ðo� qjÞu2:

In some models, HðCÞ, if positive, represents the number of particles contained
in the state C, otherwise, �HðCÞ represents the number of antiparticles. The
global electric charge is given by

QðCÞ ¼ qHðCÞ ¼
Z

ðqo� q2jÞu2:
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Thus, if c is rescaled in such a way to have q ¼ 1, the hylenic charge HðCÞ and
the electric charge QðCÞ coincide.

6.2 Existence Results for the NKGM

In this paper we are interested to apply Theorem 4 to find electrostatic stand-
ing waves, namely solutions of (NKGM-1), (NKGM-2), (NKGM-3), having the
form

cðt; xÞ ¼ uðxÞe�iot; u a Rþ; o a R; s a
R

2pZ
ð106Þ

A ¼ 0; qtj ¼ 0:ð107Þ

The existence of solitary waves for (NKGM) depends on the constant q; more
exactly we have the following theorem:

Theorem 22. Assume that (W-i), (W-ii), (W-iii), (W-iiii) hold. Then there exists
a set SNKGM HR2 such that for any ðs; qÞ a SNKGM, the nonlinear Klein-Gordon-
Maxwell equations (NKGM ) have an hylomorphic, electrostatic (see (106), (107))
wave of charge s. Moreover SNKGM has the following form

SNKGM ¼ fðs; qÞ a R2 : s a Sq; 0 < q < q�g

where q� > 0 and Sq is an open set which is not empty for 0 < q < q�.

Remark 23. The existence of electrostatic standing waves has been first analyzed
when WðsÞ ¼ s2 � sp ðs > 0; p > 2Þ ([10], [18], [22], [23]). More recently also cases
in which W b 0 have been considered ([11], [15]). However, the proof in [11] con-
tains a gap, even if the result is correct. In fact, the main result can also be deduced
by th. 22.

If (106) and (107) hold, equation (NKGM-3) is identically satisfied, while
(NKGM-1) and (NKGM-2) become

�DuþW 0ðuÞ ¼ ðo� qjÞ2uð108Þ
�Dj ¼ qðo� qjÞu2:ð109Þ

We set

X0 ¼ fC ¼ ðuðxÞ;�iouðxÞ; jðxÞ; 0; 0; 0Þ;ð110Þ
u a H 1ðRNÞ; j a D1;2ðR3Þ;o a Rg:

Clearly X0 is a subset of the phase space which contains the electro-static stand-
ing waves. To any state C a X0, we can associate a triple

ðu; j;oÞ a H 1ðR3Þ �D1;2ðR3Þ � R;

the corresponding energy and charge take the following form:
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Eqðu; j;oÞ ¼
Z

1

2
j‘uj2 þ 1

2
j‘jj2 þ 1

2
W2u2 þW ðuÞ

� 	
dxð111Þ

Hqðu; j;oÞ ¼
Z

Wu2 dx

where, according to (102),

W ¼ o� qj:

Now we would like to apply theorem 4. Unfortunately, we cannot do it di-
rectly, since Eq and Hq do not satisfy the required properties, namely they do
not have the form (7) and (8). However, we can transform this problem in such
a way that Theorem 4 can be used. To do this, we introduce a smaller space
Z0 HX0 which contains the states which satisfy equation (109), namely

Z0 ¼ fC a X0 : �Dj ¼ qðo� qjÞu2g:ð112Þ

We remark that for u a H 1ðR3Þ and o a R given, equation (109) has a unique
solution ju a D1;2ðR3Þ (see [10]); then

Z0 GH 1ðR3Þ � R:

Now we want to find a nice and useful way to write Eq, Hq and Lq restricted
to Z0. First, we divide the energy in two parts:

Eqðu; j;oÞ ¼ JðuÞ þ Fqðu; j;oÞð113Þ

where

JðuÞ ¼
Z

1

2
j‘uj2 þW ðuÞ

� 	
dxð114Þ

Fqðu; j;oÞ ¼
1

2

Z
½j‘jj2 þW2u2� dxð115Þ

Now let u a H 1ðR3Þ and consider the solution ju of (109).
Multiplying both sides of equation (109) by ju and integrating, we getZ

j‘juj
2
dx ¼

Z
qjuWu2:

Then

Fqðu; ju;oÞ ¼
1

2

Z
½qjuWu2 þW2u2� dx

¼ 1

2
o2

Z �
1� q

ju
o

�
u2 dx:
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So we have

Fqðu; ju;oÞ ¼
1

2
o2

Z �
1� q

ju
o

�
u2 dx:ð116Þ

For u a H 1ðR3Þ, let F ¼ Fu be the solution of the equation

�DFu þ q2u2Fu ¼ qu2:ð117Þ

Clearly

ju ¼ oFuð118Þ

solves eq. (109) and we have that

Fqðu; ju;oÞ ¼ Fqðu;oFu;oÞ ¼
1

2
o2

Z
ð1� qFuÞu2 dx ¼ o2KqðuÞ;ð119Þ

where

KqðuÞ :¼
1

2

Z
ð1� qFuÞu2 dx:ð120Þ

By (113) and (119) the energy on the states contained in Z0 (see (112)) can be
written as a functional of the two variables o and u and having the form (7):

~EEqðu;oÞ ¼ Eqðu; ju;oÞ ¼ JðuÞ þ o2KqðuÞ:ð121Þ

Analogously, also the hylenic charge can be expressed via the variables u and o
and having the form (8):

~HHqðu;oÞ ¼ Hqðu; ju;oÞ ¼ Hqðu;oFu;oÞ

¼ o

Z
ð1� qFuÞu2 dx

¼ 2oKqðuÞ:

Notice that, for q ¼ 0, all these functionals reduce to the analogous ones for
the equation (NKG).

By the following proposition the study of the equations (108) and (109) is
reduced to an eigevalue problem of the type (9).

Proposition 24. Let q > 0 and ðu;oÞ a H 1ðR3Þ � R be a solution of the eigen-
value problem

J 0ðuÞ ¼ o2K 0
qðuÞ:ð122Þ

Then u, ju, o solve (108) and (109).
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Proof. First observe that u, j, o solve (108), (109) if and only if ðu; jÞ is a crit-
ical point of the functional

Ioðu; jÞ ¼ JðuÞ � Fqðu; j;oÞð123Þ

namely if

qIoðu; jÞ
qu

¼ 0;
qIoðu; jÞ

qj
¼ 0:ð124Þ

Now let ðu;oÞ be a solution of the eigenvalue problem (122). Then clearly u is
a critical point of the functional u ! JðuÞ � o2KqðuÞ or equivalently, by (119)
and (123), a critical point of the functional

u ! Ioðu; juÞ ¼ JðuÞ � Fqðu; ju;oÞ:ð125Þ

This means that

qIoðu; juÞ
qu

þ qIoðu; juÞ
qj

j 0
u ¼ 0:ð126Þ

Since ju solves (109), we have

qIoðu; juÞ
qj

¼ 0:ð127Þ

Then from (126) and (127) we get

qIoðu; juÞ
qu

¼ 0;
qIoðu; juÞ

qj
¼ 0:ð128Þ

So by (128) we have that u, ju solve (124). r

We shall show that if q is small enough the eigenvalue problem (122) satisfies
all the assumptions of the abstract theorem 4. More precisely in this case we shall
set

X ¼ fu a H 1ðR3Þ: u is radially symmetricg;

3L1u; u4 ¼
Z

ðj‘uj2 þm2u2Þ dx; N1ðuÞ ¼
Z

NðuÞ dx;

JðuÞ ¼ 1

2
3L1u; u4þN1ðuÞ

¼ 1

2

Z
ðj‘uj2 þm2u2Þ dxþ

Z
NðuÞ dx;

3L0u; u4 ¼
Z

u2 dx;

KqðuÞ ¼
1

2
3L0u; u4þN0ðuÞ; N0ðuÞ ¼ � q

2

Z
Fuu

2 dx:
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Lemma 25. Assumptions (H1), (H2), (H3) are satisfied.

Proof. Arguing as in the proof of Lemma 14 it can be proved that assumption
(H1) is satisfied and that N 0

1 satisfies (10).
Then, in order to complete the proof of (H2), we need to show that N 0

0 is
compact. First of all we look for a suitable expression for N 0

0.
Observe that

K 0
qðuÞ ¼ uþN 0

0ðuÞ:ð129Þ

On the other hand by (116) and (120)

KqðuÞ ¼ Fqðu;Fu; 1Þ:

Then

K 0
qðuÞ ¼

qFqðu;Fu; 1Þ
qu

þ qFqðu;Fu; 1Þ
qj

F 0
u:ð130Þ

Since Fu solves (117) and taking into account the definition (115) of Fq, we
have

qFqðu;Fu; 1Þ
qj

¼ 0;
qFqðu;Fu; 1Þ

qu
¼ ð1� qFuÞ2u:ð131Þ

So, comparing (130), (131), we have

K 0
qðuÞ ¼ ð1� qFuÞ2u:ð132Þ

By (129), (132) we get the following expression for N 0
0ðuÞ

N 0
0ðuÞ ¼ ð1� qFuÞ2u� u ¼ q2F2

uu� 2qFuu:

Then in order to show that N 0
0 is compact it is enough to prove that the maps

u ! Fuu and u ! F2
uuð133Þ

are compact from X to X 0.
Let

un * u0 weakly in X :

We shall prove first that Fun is bounded in D1;2ðR3Þ and that, up to a subse-
quence,

Fun * Fu0 weakly in D1;2ðR3Þ:ð134Þ

Since Fun solves

�DFun þ q2u2nFun ¼ qu2n ;ð135Þ
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we have Z
j‘Fun j

2 þ q2
Z

F2
un
u2n ¼ q

Z
Funu

2
n :ð136Þ

On the other hand Z
Funu

2
n a jjFun jjL6 jjunjj2L12=5 :ð137Þ

Since un is bounded in X , it is also bounded in L12=5, then by (137) we haveZ
Funu

2
n a c1jjFun jjL6 :ð138Þ

From (136), (138) we easily get

jjFun jj
2
D1; 2 a c2jjFun jjD1; 2 ;

from which we have that, up to a subsequence,

Fun * F0 weakly in D1;2ðR3Þ:

In order to prove (134) we have to show that F0 ¼ Fu0 i.e. we show that F0

solves (117) with u ¼ u0.
Let v a Cl

0 then, testing (135) on v and passing to the limit, we easily get

�DF0 þ q2u20F0 ¼ qu20 :

Then (134) is proved.
Now we prove that

unFun ! u0Fu0 in L2:ð139Þ

Let e;R > 0 and set

BR ¼ fx a R3 : jxj < Rg; Bc
R ¼ R3 � BR:

Clearly we have Z
Bc
R

F2
un
u2n a

�Z
Bc
R

junj3
�2=3�Z

Bc
R

F6
un

�1=3
:ð140Þ

Now we have (see [17])

junðxÞja c1
jjunjjH 1

jxj in Bc
R:ð141Þ
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From (140) and (141) we getZ
Bc
R

F2
un
u2n a

�
c1
jjunjjH 1

R

�2=3�Z
Bc
R

junj2
�2=3

jjFun jj
2
L6 :ð142Þ

So, since un is bounded in H 1 and Fun is bounded in D1;2ðR3Þ and hence in
L6, if we choose R large enough, we getZ

Bc
R

F2
un
u2n < e:ð143Þ

Analogously, for R large enough, we haveZ
Bc
R

F2
u0
u20 < eð144Þ

and therefore Z
Bc
R

jFunun �Fu0u0j
2 < 2e:ð145Þ

On the other handZ
BR

jFunun �Fu0u0j
2 ¼

Z
BR

ðFunðun � u0Þ þ u0ðFun �Fu0ÞÞ
2

a 2

Z
BR

F2
un
ðun � u0Þ2 þ u20ðFun �Fu0Þ

2

a 2jjFun jj
2
L6ðBRÞjjun � u0jj2L3ðBRÞð146Þ

þ 2jju0jj2L6ðBRÞjjFun �Fu0 jj
2
L3ðBRÞ:ð147Þ

The sequence un weakly converges to u0 in H 1, then it strongly converges to u0 in
L3ðBRÞ. So, since Fun is bounded in L6, we have

jjFun jjL6ðBRÞjjun � u0jjL3ðBRÞ ! 0:ð148Þ

On the other hand Fun * Fu0 weakly in D1;2 HH 1
locHHL3

loc, then we have

jjFun �Fu0 jjL3ðBRÞ ! 0:ð149Þ

By (146), (148) and (149) we getZ
BR

jFunun �Fu0u0j
2 ! 0:ð150Þ

Finally by (145) and (150) we get (139).
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Following analogous arguments it can be shown that also the map u ! F2
uu is

compact from X to X 0.
Finally we prove that assumption (H3) is satisfied i.e. we prove thatZ

ð1� qFuÞu2 dxb 0:

Arguing by contradiction assume that there is a region W where qFu > 1 and
qFu ¼ 1 on qW. Clearly by (117)

�D
�
Fu �

1

q

�
þ q2u2

�
Fu �

1

q

�
¼ �DFu þ q2u2Fu � qu2 ¼ 0:

Then v ¼ Fu � 1
q
solves the Dirichlet problem

�Dvþ q2u2v ¼ 0 in W; v ¼ 0 on qW:

Multiplying by v and integrating in W we getZ
W

ðj‘vj2 þ q2u2v2Þ dx ¼ 0:

Then v ¼ Fu � 1
q
¼ 0 in W contradicting qFu > 1 in W.

Finally observe that, if we take uA 0 in all R3, thenZ
ð1� qFuÞu2 dx > 0:

In fact

Z
ð1� qFuÞu2 dx ¼ 0 would imply that Fu ¼ 1

q
a.e. in R3, contradicting

Fu a D1;2ðR3Þ. r

Lemma 26. Assumption (11) is satisfied for q su‰ciently small.

Proof. Let R > 0 and consider the map uR defined in (73). As shown in the
proof of Lemma 15, we can choose R be so large that

JðuRÞ
1
2

R
u2R

< m2
0 :ð151Þ

Now consider

JðuRÞ
KqðuRÞ

¼ JðuRÞ
1
2

R
u2R � q

2

R
FuRu

2
R

:ð152Þ

So, by (152), we get that assumption (11) is satisfied if we show that
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q

Z
FuRu

2
R ! 0 for q ! 0:ð153Þ

Since FuR depends on q a little work is needed to prove (153).
Since FuR solves (117) with u ¼ uR, we have

jjFuR jj
2
D1; 2 þ q2

Z
u2RF

2
uR

¼ q

Z
u2RFuRð154Þ

a qjjuRjj2L12=5 jjFuR jjL6

and then

jjFuR jj
2
D1; 2

jjFuR jjL6

a qjjuRjj2L12=5 :

Then, since D1;2 is continuously embedded into L6, we easily get

jjFuR jjD1; 2 a cqjjuRjj2L12=5 ;ð155Þ

where c is a positive constant. Then, using again (154), we get

q

Z
u2RFuR a qjjuRjj2L12=5 jjFuR jjL6 a cq2jjuRjj4L12=5 :

From which we get (153). r

Finally we are ready to conclude the proof of Theorem 22.
Proof of Theorem 22.
By Lemma 25 the assumptions (H1), (H2), (H3) of the Theorem 4 are satis-

fied. Moreover by Lemma 26 there exists q� > 0 such that for 0 < q < q� also
assumption (11) is satisfied. Then we can use Theorem 5 and we get that there
exists q� > 0 such that for 0 < q < q� there exists a non empty, open subset
Sq HR such that for any s a Sq problem (122) has a solution ðu;oÞ with
charge Hqðu;oÞ ¼ s. Moreover such a solution minimizes the energy ~EEqðu;oÞ
on the states ðu;oÞ having charge Hqðu;oÞ ¼ s. Then, by Proposition 24, u, o,
ju ¼ oFu solve (108), (109). r

7. Appendix

Let assumption Wiii) (b) be satisfied i.e. we assume that there exists s1 > s0 such
that N 0ðs1Þb 0.

Set

~NNðsÞ ¼ NðsÞ for sa s1

N 0ðs1Þsþ c1 for sb s1

�
ð156Þ
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where

c1 ¼ Nðs1Þ �N 0ðs1Þs1
Set

~WWðsÞ ¼ m2

2
s2 þ ~NNðsÞð157Þ

By the following proposition we can replace in (47) W 0ðsÞ with ~WW 0ðsÞ

Proposition 27. Let m2 bo2. Then for any solution u a H 1 of the equation

�Duþ ~WW 0ðuÞ ¼ o2uð158Þ

we have

ua s1

Proof. Let u a H 1 be a solution of (158) and set

u ¼ s1 þ v:

We want to show that va 0. Arguing by contradiction, assume that

W ¼ fx : vðxÞ > 0gA j:

Then, multiplying both members of (158) by v and integrating on W, we haveZ
W

j‘vj2 þ ~WW 0ðs1 þ vÞv� o2ðs1 þ vÞv ¼ 0:

So, using (157), we haveZ
W

j‘vj2 þ ~NN 0ðs1 þ vÞvþ ðm2 � o2Þðs1 þ vÞv ¼ 0

which, by (156), becomesZ
W

j‘vj2 þN 0ðs1Þvþ ðm2 � o2Þðs1 þ vÞv ¼ 0:ð159Þ

Since

N 0ðs1Þb 0 and m2
bo2;

expression (159) gives

v ¼ 0 in W;

contradicting the definition of W. r
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Università di Bari and INFN sezione di Bari

Via Orabona 4

70125 Bari (Italy)

e-mail: fortunat@dm.uniba.it

279existence of hylomorphic solitary waves




	mk1
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk2
	mk20
	mk21
	mk22
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk23
	mk24
	mk25
	mk26
	mk27
	mk28
	mk29
	mk30
	mk31
	mk32
	mk33
	mk34
	mk35
	mk36
	mk37
	mk38
	mk39
	mkEnd-page

