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Partial Differential Equations — Existence of hylomorphic solitary waves in Klein-
Gordon and in Klein-Gordon-Maxwell equations, by VIERT BENCI and DONATO
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ABSTRACT. — This paper is devoted to the study of solitary waves whose existence is related to the
ratio energy/charge. These solitary waves are called hylomorphic. This class includes the Q-balls,
which are spherically symmetric solutions of the nonlinear Klein-Gordon equation (NKG), as well
as solitary waves and vortices which occur, by the same mechanism, in the nonlinear Schroedinger
equation and in gauge theories. It is proved an abstract theorem which allows to show the exis-
tence of hylomorphic solitary waves and vortices in the (NKG) and in the nonlinear Klein-Gordon-
Maxwell equations (NKGM).
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1. INTRODUCTION

Roughly speaking a solitary wave is a solution of a field equation whose energy
travels as a localized packet and which preserves this localization in time. A
solitary wave which has a non-vanishing angular momentum is called vortex. A
soliton is a solitary wave which exhibits some strong form of stability so that it
has a particle-like behavior (see e.g. [3], [12], [29], [38]).

To day, we know (at least) three mechanisms which might produce solitary
waves, vortices and solitons:

e Complete integrability, (e.g. Kortewg-de Vries equation);
e Topological constraints, (e.g. Sine-Gordon equation);
e Ratio energy/charge: (e.g. the nonlinear Klein-Gordon equation).

Following [7], the third type of solitary waves or solitons will be called
hylomorphic. This class includes the Q-balls which are spherically symmetric
solutions of the nonlinear Klein-Gordon equation (NKG) (see [20], [27]) as well
as solitary waves and vortices which occur, by the same mechanism, in the non-
linear Schrodinger equation and in gauge theories ([11], [15]).

This paper is devoted to an abstract theorem which allows to prove the exis-
tence of hylomorphic solitary waves, solitons and vortices in the (NKG) and in
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the nonlinear Klein-Gordon-Maxwell equations (NKGM). In this case we prove
a multiplicity result in terms of different charges (see theorem 22).

2. HYLOMORPHIC SOLITONS

In this section we will sketch the main ideas relative to hylomorphic solitons.
They can be considered as particular states of a system modelled by a field
equation.

We assume that the state of the system is described by one or more fields
which mathematically are represented by a function

(1) ¥Y:RY -1V

where V' is a finite dimensional vector space with norm |- |, and it is called the
internal parameters space. We will denote by % the set of all the states.

A state Wy € 7 is called solitary wave if its evolution ¥'(¢) has the following
form:

Y(1) = h,Wo(g.:x)

where /1, and ¢, are transformations on ¥ and R” respectively and which depend
continuously on 7. A solitary wave Wy € Z is called soliton if it is orbitally stable
re. if Yo e I', where T is a finite dimensional manifold which is invariant and
stable (see e.g. [6]).

In this paper, we shall consider two cases:

— Equation (NKG) (see section 4.1) where

¥ = (),y,) € C*.
— Equation (NKGM) (see section 6.1) where

Y= (¢7¢[7¢>¢[7A7 Al) € C2 X R8'

The existence and the properties of hylomorphic solitons are guaranteed by the
interplay between energy E and another integral of motion which, in the general
case, is called hylenic charge and it will be denoted by H.

Thus, the most general equations for which it is possible to have hylomorphic
solitons need to have the following features:

® A-1. The equations are variational namely they are the Euler-Lagrange equa-
tions relative to a Lagrangian density £ [¥].

e A-2. The equations are invariant for time and space translations, namely & does
not depend explicitly on t and x.

e A-3. The equations are invariant for a S' action, namely ¥ does not depend
explicitly on the phase of the field Y which is supposed to be complex valued
(or at lest to have some complex valued component).
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More exactly, in (NKG), we have the following S! action
To¥ = Ty, %) = (e"y,e™y,), 0e R/(2nZ) =S
and in (NKGM) we have

T)¥ = Tﬁ(lpv lpm ¢7 ¢t7 A, Al) = (eielpa ei()wﬁ ¢7 ¢t7 A, At)

Solitary waves or solitons for equations satisfying A-1 and A-2 and having null
momentum are called stationary waves or stationary solitons.

By Noether theorem assumptions A-1 and A-2 guarantee the conservation of
the energy E(W¥) and of the momentum P(W¥) (see e.g. [12]), while A-1 and A-3
guarantee the conservation of another integral of motion which we call hylenic
charge H(WY) (see [7]).

The quantity

&) AY) = oo

which is an invariant of the motion having the dimension of energy, is called
hylomorphy ratio.

We now set
T E(\YP)
(3) m=lim b ]
where
4) Ze={¥Y e Z :Vx,|¥(x)|, <e}.

Now let () be the evolution of a state such that A(‘W(0)) = A < m; then,
A(W(r)) = A for all 7, and, by definition of m, we have that

liminf [¥(z)],, > 0.
— o0
Thus it it possible that W(z) tends to a nontrivial stable configuration.
Now let ¢ be a real number and ¥ be a state such that
(5) HY)=0¢ and E(¥Y)=min{E(v): H(v) =0}
and denote by I', the set of such minimizers ¥, namely
Iy ={¥: V¥ satisfies (5)}.

Observe that by A-2 the energy is a constant of the motion, then I, is an
invariant set.
Now we give the following definition
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DEFINITION 1. A stationary wave W is called hylomorphic wave if
(6) Yo eI, forsome o.
Moreover P is called hylomorphic soliton if it satisfies (6) and if T, is a manifold
with
dim(I'y) < oo and T, is stable

REMARK 2. In the examples considered in this paper, the Lagrangian £ [¥) is
invariant for an action of the Poincaré group. In particular, if the Lagrangian is
invariant for the action of a Lorentz boost, then the existence of stationary waves
and stationary solitons implies the existence of travelling (with velocity v, |v| < ¢)
waves and travelling solitons respectively (see e.g. [12]).

3. AN ABSTRACT THEOREM
In many situations the energy E and the charge H have the following form

(7) E(u,0) = J(u) + o’K(u),
(8) H(u,w) =2wK (u).

where w € R and J and K are as follows:
1
J(u) = §<L1u’ uy + Ni(u)

K(u) = %(Lou, uy + No(u)

where L; : X — X' (i =0, 1) are linear continuous operators and N; (i =0, 1) are
differentiable functionals defined on a Hilbert space X with a norm equivalent to
the following one

Jul* = <Ly, u).

Here {, ) denotes the duality between X and X”.
The existence of solitary waves for the field equations we are interested in lead
to study the following abstract eigenvalue problem:

) J' (1) = 0*K'(u).

where J' and K’ denote the differentials of J and K.

The most natural way to solve this problem consists in minimizing J(u) on
the manifold {u : K(u) = const.}. However the assumptions which allow such a
minima to exist are not adequate for the problems which we want to consider.
For this reason we adopt a different variational principle, which permits also to
get the existence of particular solitary waves, namely of hylomorphic waves (see
Definition 1).
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We set for ¢ > 0
M, ={(u,w) e X x R" : H(u,w) = 7}.
The variational principle is contained in the following simple result:
THEOREM 3. The critical points (u, ) of E on M, solve the problem (9).

PrROOF. Let (u,w) € M, be a critical point of E on M,. Then there exists A real
such that

OuE(u,w) = 20,H (u, ®)

OwE(u,w) = A0,H (u, m)

These equations can be written more explicitly

{J/(u) + @*K'(u) = oK' (u)
20K (u) = AK (u)

From the second equation we have 4 = 2w and substituting in the first one, we
get that (u, ) solves problem (9). O

The utility of Theorem 3 relies on the fact that the existence of critical points
of E on M, is guaranteed by an assumption (see assumption (11)), which in many
physical problems is the natural one. Moreover in some cases this assumption
guarantees the stability of the solutions.

We make the following assumptions:

e (HI) J >0 and J is coercive on M,, namely for any sequence (u,,w,) € M,
we have that (J(u,) bounded) = (u, bounded).

e (H2) The differentials Nj, N{ of Ny, N, satisty the following compactness
properties: Nj: X — X' is compact. Moreover, if u, converges weakly in X,
then

(10) N (tn) — N{ (), thy — thyy — 0 asn,m — oo
e (H3) K(u) >0 for all u and K(u) # 0 for some u € X.
We shall prove the following theorem:

THEOREM 4. Assume (H1,2,3) and that there is u, such that

J(it) 2
(11) 0< X <"
where
(12) m? — inf SELH2

- (Louyuy T
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Then there exists a non empty, open set ¥ < R such that, for any ¢ € ¥, E has a

minimizer (uy, o) on My with 0 < wé < m?.
As an immediate consequence of Theorem 3 and Theorem 4 we get

THEOREM 5. Under the assumptions of Theorem 4 there exists a non empty, open
set X < R such that, for any o € T problem (9) has a solution (u,w), such that

0 < w? < m?, H(u,w) = o and which is a minimizer of E on M,.

We set, for @ > 0 and K(u) > 0,
1

E(u,w) __(J(u) l+a))

K (u)

Alu, ) C Hu,o) 2

REMARK 6. In this paper we will apply theorem 5 in three cases. In these cases,
3

E and H will represent respectively the energy and the hylenic charge, A is the
hylomorphy ratio and m in (12) coincides with the constant defined by (3).

In order to prove Theorem 4, we need several lemmas.

LemMA 7. If J,K > 0, then the following assertions are equivalent:

e (a) there is i € X, such that
J (@) 2
1 — .
(13) 0< K@) <m
e (b) there existii € X, @ > 0 such that
(14) A(a, @) < m.
PRrROOE. (a) = (b) If we take @ = \/%, we have that
L@ 1\ [J(a)
Al# @) =3 (K(a) 570)= K@) °
(26 1 CT)) < m, then
2 -

LEMMA 8. Assume J,K >0 and let (u,,w,) be a sequence in M,, a > 0, with
A(uy, ®,) bounded. Then the sequences w, and J(u,) are bounded.

The proof is trivial.

We now set
¢= inf Au,w).

o>m,ueX
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LEMMA 9. Assume that J,K > 0 and let (uy,,®,) be a sequence in M,, g > 0, such
that A(uy, @,) — ¢ < ¢ Then (up to a subsequence).

w,; — wy < m.

ProOF. Let (u,,w,) be a sequence in M,, ¢ > 0, such that A(u,,®,) — ¢ < ¢.
Since A(uy,,w,) is bounded, by Lemma 8, w, is bounded and hence, up to a
subsequence, w, — wy. We have to prove that wy < m. We argue indirectly and
assume that w, = m; + J,, with J, — 0 and m; > m. Since w, and A(u,,w,) are

bounded, also 2((;;)) is bounded, then easy calculations give

1/ J(u, 1
A(u,,,ml—i-én): ( (u) —|—I’Vl1—|—5n)

2 K(u,) mi + 6,
-1

5 G (122 ) )

= A(up,my) + O(6,).
Then

c= ’}Lrlgo AUy, 0y) = ,}Ln}o A(uy,my +9,) = ’}erolo(A(un,ml) + 0(9,))
>l Ao) =&

contradicting our assumption. O

LemMA 10. Assume (H1,2,3). Then for any o > 0, A satisfies PS in M, under the
level ¢, namely, if (uy, w,) is a sequence in M, such that

(15) Ay, w,) — c < ¢

(16) dA|Mﬁ(una CO,,) -0,

then (uy,w,) has a converging subsequence.

PRrROOF. Let (u,,w,) be a sequence in M, satisfying (15) and (16). By Lemma 8
J(uy,) is bounded. Then, by the coercivity of J on M,, we deduce that u, weakly
converges (up to a subsequence) to uy € X. Using Lemma 9, up to a subsequence,
we get that

(17) W, — Wy < m.

Now we prove that u, converges strongly to u.
By (16) we have that there exists a sequence of real numbers 4, such that

OuE (uy, y) = 24,0, H (U, ) + &,
awE(una wn) = /lnawH(una wn) + 7,
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where ¢, — 0 in X’ and 77, — 0 in R. These equations can be written more explic-
itely as follows:

{J’(u,,) + 02K (uy) = I, K' () + &

18
(18) 200nK () = JnK () + 17,

By the second equation we get

’7}'! _ 277;10011 .

= 2wy ;
K(u,) @ 1%

In = 2w, —
replacing /, in the first equation, we get
2 2
T () — 02K (1) = — 22 K1 (1) + .
g

This equation can be rewritten as follows
(19) Lty — @} Loty = —N/ (u,) + 02 N§(un) + 6,
where

2 2
Oy = —(a)g — a),f)Lou,, — MK’(u,,) + &,
o

Since u, is bounded, Lyu, and K'(u,) are bounded; then d, — 0.
Replacing in (19) n with m

(20) Ly (um) — w(%LO(“nz) = —N|(un) + wran(;(“m) + Om
and, subtracting (20) from (19), we get

(21) Li(uy — uy,) — wSLO(u,, — Uy,)
= Nll(um) - N{(“ﬂ) + a)rleé(un) - wanNé(unl) +0n — Om-

By (H2) and since u, is bounded, we easily get
(22) (N () — Ny (un) + wsN(;(”n) - w;N(;(”m)v Up — Upy — 0.
By (12) we have that

(23) L (ty — )y thy — Uy — G Lo (thy — Uy ), Uy — U )

2
@,
= <Ll(“n - “m)aun - um> - m_g<Ll(“n - “m)a“n - um>

2
1)
> (1 —m—g>||un - umHz.
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Thus, multiplying both sides of (21) by u, — u,, and using (22), (23), we get

2
(24) PRI (1 - ‘“—g) Jttn — t]> Where &, — 0.
) m

Since wy < m (see (17)), by (24) u, is a Cauchy sequence in X. O

LEMMA 11. If assertion (a) (or (b)) in lemma 7 holds, then

A~

c<m.

J ()

PrOOF. By (a) in lemma 7 we have, for a suitable iz € X, @ < m?. Then, by

definition of ¢,

R _ 1 J (@)
CSA(LI,WI)—E<W a+m)<m O
Now we set
(25) 2:{a>0: inf A(u,a))<é}.
(u,w)eM,

The following Lemma guarantees that the set X is not empty.
LemMA 12. If assertion (a) (or (b)) in lemma 7 holds, then

inf  A(u,w) < é.
(u,0)e X xR*

PROOF. By definition of ¢ there exists a sequence (u,,w,) in X x R" with
w, > m and such that

A(uy, w,) — €.

J (uy)
K(uy)

Clearly w, is bounded and consequently also
quence, we have

is bounded. So, up to a subse-

J (un)

w, —@o>m and a, —a, a,= .
K(u,)

Then

We claim that

(26) a<m?.
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In fact
R 2 S
(27) c—z(a5+w)
1/ m? r, , _1
=3(F+o) 30w -ag
Then, by Lemma 11 and (27), we get
1/ m? 1, , _1
(28) m>§(5+w)—§<m ~a)=.
On the other hand
1 /m>
then (28) and (29) imply that
1 2 _
) (m~—a)—=<0
So (26) is proved.
Now by (26) we can take & such that
m>o > \/a:,
and, since @ > m, we have
®> o> Va.
So it can be easily deduced that
1ra . a
§<T+a)) <—(—+w>
Then
lim A (i, &) —1<£+d)) <1(£+@) —¢
"2\ 2\@ -
So, for n large, we have A(u,,®) < ¢ and the conclusion follows. O

Now we are ready to prove Theorem 4.

PrOOF OF TH. 4. By Lemma 12 the set X defined in (25) is not empty. Let g € £
and (u,,w,) be a minimizing sequence for E on M,. By standard variational
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arguments (see e.g. [2], [37]) we can assume that (u,,®,) is also a P.S. sequence.
Since o € X, we have

¢ = lim A(uy, w,) = inf{A(u,®) : (u,w) € M,} <¢.

Then, by the lemma 10, (u,,®,) possess a strongly convergent subsequence and
hence E has a minimizer on M,. Let us finally show that X is open. Take g € X;
we have to prove that, for ¢ small, o + ¢ € Z. Let (19, wo) be a minimizer of E on
M, then, since o € X, we have

(30) A(uo,wo) <ec.

Since 2w K (1y) = o, by definition of M, .., we have

&
(31) (Mo,a)() + T(“O)) € M,,..
Then
) e
(32) (u,wl)rgwml\(u, W) < A(uo, wo + 72K(u0) )

By (30) and by (32) we easily deduce that for ¢ small we have

inf  A(u,w) < é. O

(u,0) €My,

4. Q-BALLS
4.1 The Nonlinear Klein-Gordon Equation

In this section we will apply the abstract Theorem 4 to the existence of hylomor-
phic solitons of the nonlinear Klein-Gordon equation (NKG):

(NKG) Oy + W'(y) =0
where [J= 0> - V2%, ¢y : RY — C (N =3) and W : C — R with
(33) W) = F(lyl)
for some smooth function F : R™ — R and
W) = F ()

In particular we are interested in the existence of Q-balls. Coleman called Q-balls
([20]) those solitary waves of (NKG) which are spherically symmetric and this
is the name generally used in Physics literature. From now on, we always will
assume that
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(34) wW(0) = w'(0) = 0.

Eq. (NKG) is the Euler-Lagrange equation of the action functional

(35) / (%IWIZ féww - W@p)) dx dt.

Sometimes it will be useful to write ¥ in polar form, namely
(36) (e, x) = u(t, )’

where u(z,x) € R* and S(z,x) € R/(2nZ); if we set u, = d,u,

(37) k(z,x) = VS(t,x)
and
(38) o(t,x) = —=0,5(¢, x),

the state W is uniquely defined by the quadruple (u,u,,w,k). Using these

variables, the action . = / & dx dt takes the form

(39) SL(u,u,w,k) = ;/[u,2 — |Vu)* + (0® — K>)u?] dx dt — / W (u)dxdt =0
and equation (NKG) becomes:

(40) O+ (kK2 — 0?)u+ W'(u) =0
(41) 0(wu?) +V - (ku?) = 0.

The energy and the charge take the following form:
1 1
) B9) = [ [3lel + 5 W0l + ()| d
(43) HY) = —Im/ b dx.

(the sign “minus” in front of the integral is a useful convention).
Using (36) we get:

(44)  E(u,u;,w,k) = /E(@,u)z +%\Vu|2 + % [0* + K u* + W (u)| dx

(45) H(u,w) = /a)u2 dx.
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A particular type of solutions of eq. (NKG) are the standing waves. A standing
wave is a finite energy solution of (NKG) having the following form

(46) Yo(t,x) =u(x)e ™, u>0,weR
Substituting (46) in eq. (NKG), we get
(47) —Au+W'(u) = 0*u, u=>0.

Let N = 3. Since the action functional (35) is invariant for the Lorentz group,
we can obtain other solutions y,(z, x) just making a Lorentz transformation on it.
Namely, if we take the velocity v = (v,0,0), |v| < 1, and set

/

=ypt—uvxy), x;p=yp(x1—vt), x}=x2, x;=x3 withy=

it turns out that
wv(ta X) = lp(t/ax/)

is a solution of (NKG).

More exactly, given a standing wave (z,x) = u(x)e ™, the function
W, (2, x) :=y(¢',x") is a solitary wave which travels with velocity v. Thus, if
u(x) = u(x1, x2,x3) is any solution of Eq. (47), then

(48) Y (1, X1, X2, X3) = u(p(x) — 1), x2, x3)e KeX=0)
is a solution of Eq. (NKG) provided that
(49) wy=yw and ky = yov.

4.2 Existence Results for Q-balls

We write W as follows

(50) W (s) = m72s2 + N(s), s>0;

and we will identify W (s) with F(s). We make the following assumptions:

e (W-i) (Positivity) W (s) >0
(W i) (Nondegeneracy) W = W(s) (s = 0) is C? near the origin with W (0) =
W'(0) = 0; W"(0) =m? >0
® (W-iii) (Hylomorphy) 3sp : N(s9) <0
® (W-iiii) (Growth condition) Al least one of the following assumptions holds:
— (a) there are constants a,b > 0,2 < p < 2N /(N — 2) such that for any s > 0:

IN'(s)| < asP~! + bs>2/P.

— (b) ds; > 80 : N/(Sl) > 0.
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Here there are some comments on assumptions (W-i), (W-ii), (W-iii), (W-iiii).

(W-1) As we shall see (W-i) implies that the energy is positive; if this condition
does not hold, it is possible to have solitary waves, but not hylomorphic waves
(cf. Proposition 16).

(W-ii) In order to have solitary waves it is necessary to have W”(0) > 0. There
are some results also when W"(0) = 0 (null-mass case, see e.g. [17] and [4]), how-
ever the most interesting situation occurs when W"”(0) > 0.

(WH-iii) This is the crucial assumption which characterizes the potentials which
might produce hylomorphic solitons. As we will see, this assumption permits to
have states ¥ with hylomorphy ratio A('¥) < m.

(W-iiii)(a) This assumption contains the usual growth condition at infinity
which guarantees the C! regularity of the functional. Moreover it implies that
IN'(s)| = O(s*>%/?) for s small.

If we assume alternatively (W-iiii)(b), the growth condition (W-iiii)(a) can be
avoided by using standard tricks (see Appendix).

We have the following result:

THEOREM 13. If (W-i), (W-ii), (W-iii), (W-iiii) hold, then there exists an open set
Y such that for any ¢ € X, (NKG) has a hylomorphic soliton (see Definition 1) of
charge o and having the form (46).

Theorem 13, in the form given here, is a very recent result [6]. In fact in [6] it
has been proved the orbital stability of (46) with respect to the standard topology
of = H'(R",C) x L>(R",C) and for all the W's which satisfy (W-i), (W-ii),
(W-iii), (W-iiii). Nevertheless Theorem 13 has a very long history starting with
the pioneering paper of Rosen [30]. Coleman [19] and Strauss [34] gave the first
rigorous proofs of existence of solutions of the type (46) for (NKG) and for some
particular W's. Later very general existence conditions have been found by Bere-
stycki and Lions [17]. In particular, if W satisfies (W-i), (W-ii), (W-iii), (W-iiii),
from their paper we can deduce (see [12]) the existence of Q-balls of type (46)
for any w € (wy, m) where

. 1
wg = 1nf{i >0: W) < Eﬂhzuz for some u > 0}.

Notice that the hylomorphy condition (W-iii) guarantees that wy < m, and
hence that (wq, m) # 0.

The first orbital stability results are due to Shatah: in [33] a condition for or-
bital stability is given; however this condition is difficult to be verified in concrete
situations. More recently [6] a sufficient and (essentially) necessary condition for
the orbital stability has been proved. This condition is given directly on W and it
permits to deduce immediately Theorem 13.

Here we study the equation (47) with 0 < w? < m? by using theorem 4 and
prove a weaker version of Theorem 13, namely we do not prove the orbital sta-
bility but we confine ourselves to show the existence of hylomorphic waves (see
Definition 1) for (NKG).
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In this case we set:
X =H' = {ue H'(R") : uis radially symmetric},

(51) {Lyu,uy = /(|Vu|2 +m*u?)dx; Ni(u) = /N(u) dx,
(52) J(u) = %<L1u, uy + Ny (u)

= %/(|Vu|2 + mu?) dx+/N(u) dx,
(53) {Lou,uy = K(u) = %/ u?dx;  No(u) = 0.

First of all we observe that by (W-iiii)(a) the functional J is C'. Whereas, if
assumption (W-iiii)(b) holds, our problem can be transformed in an equivalent
one for which the functional J is C' (see Appendix). Now in order to use Theo-
rem 4, we need to prove that assumptions (H1,2,3) and (11) are satisfied.

LemMMA 14. The functionals J, N; (i = 0,1) and K defined in (51), (52) and (53)
satisfy the assumptions (H1,2,3).

PrOOF. Clearly (H3) holds. Let us now prove that (H1) holds. Let u, be a
sequence in X such that J(u,) is bounded. Then, since W > 0, we have that

(54) /W(un) and /|Vu,,|2 are bounded.

So in order to show that u, is bounded in X we need to prove that

(55) |t4n] ;> is bounded.
Let
2N
2 =—
N -2

denote, as usual, the critical Sobolev exponent.
By (54) we have that

(56) /|un|2 is bounded.

Let ¢ > 0 and set

Q,={xeRY: |ju,(x)] >¢} and Q°f=RM\Q,.
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By (54) and since W > 0, we have

(57) / W (u,) is bounded.
QI/;

By (W-ii) we can write

W(s) = %sz + o(sz).

Then, if ¢ is small enough, there is a constant ¢ > 0 such that

(58) W (uy) = c/ u?.
By (57) and (58) we get that

(59) / u? is bounded.
Q

¢
n

On the other hand

* (N*Z)/N
(60) / u? < (/ iy ) meas(Q,,)z/N.
Q, Q,

By (56) we have that
(61) meas(€2,) is bounded.

By (60), (61), (56) we get that
(62) / u? is bounded.
QH

So (55) follows from (59) and (62).
Let us finally prove that (H2) is satisfied.
Let {u,} = H!

u, —u weakly in H.

Now we distinguish two cases:

Assume first that (W-iiii)(a) holds.

Since H is compactly embedded into L?(RY), 2 < p < 2%, (see [17]), we have
that

(63) / luy — u|” dx — 0.
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Now
(64) ' / (N (1) — N (1))t — ) dix

1/p' 1/
N (1) )|de (=t ax)”, pr=—L—
p—1

The sequence u, is bounded in L?(R") and in L*(R"). So, by using (W-iiii)a,
we deduce that N'(u,) is bounded in L?'(R"). Then, by (63) and (64), we de-
duce that N’ satisfies (10).

Finally we assume that (W-iiii)(b) holds.

Clearly

(65) u, — u strongly in L”(Bg)
where R > 0 and
Br={xeR":|x| < R}.

Since we can assume N'(s) linear for large s (see Appendix), we have

(66) N'(u,) — N'(u) in L*(Bg).
Now
(67) / IN"(u,) — N' ()| dx = / IN'(u,) (u))* dx
IN"(u,) — N'(u)]* dx
By,
and
(68) [N (un) —N’(u)lzdx—/ IN"(&) | — ul* dx
By, By,
where
B = RY — By

Ei(x) = tuy(x) + (1 — u(x), 0<r<l.

In the following ¢;, ¢», ¢z will denote positive constants. By a well known radial
lemma [17] and since |u,|, is bounded, we have that for |x| large

e + 1 &
(©) e < M+ (0l £ 0 R <
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Let ¢ > 0, since N” is continuous in 0 and N”(0) = 0, we have, by using (69),
that

(70) IN"(&,(x))]* <& for |x| > R, Rlarge.

So, by (68) and (70) and since |u,|,. is bounded, we get

(71) IN'(u,) — N'(w)|Pdx < & | |u, —ul* dx < ecs.
B B

Then by (67), (71) we have

(72) / IN () (u)|* dx < ecs +/ IN'(u) — N' ()| dx.
So by (66) and (72) we get
N'(u,) — N'(u) strongly in L*>(R").
Then N satisfies (10). O

LemMaA 15. Assumption (11) is satisfied.

PrROOF. Let R > 0 and consider the map ug defined as follows

o if |x] <R
(73) up(x) =40 if |x]>R+1
so(l+R—1x]) if R<|x]<R+1

where sy is a such that N(sp) < 0.
Clearly

J(ur) f\V“R| 2 JN(ur
Kw) ~ 3wz " 1w

Easy estimates show that for R large

(74) / |Vug|? < coRV!

1
(75) aRY < E/ui dx < e RY
(76) / N(ug)dr < N(so)RY + ¢3RN !

where ¢y, ..., c3 are positive constants.
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Then for R large, since N(sp) < 0, we have

J(MR) Co 1 ) N(So)RN C‘3RN71 )
< — — .
K(“R) “ R o C]RN * C2RN <m -

Assumption (W-i) is a necessary condition for the existence of hylomorphic
waves (Definition 1), in fact the following proposition holds:

PrOPOSITION 16. If (W-i) does not hold, then for any ¢ > 0, E(u) is not bounded
from below on M.

PROOF. Let ¢ > 0 and assume that there exists sy such that W (sy) < 0. We set
Wr = (ug, —iwgug) where ug is defined in (73) and

on——2
R T2 dx
Clearly
a
77 = ——— <RV
( ) WR fu,zzdx < ¢y

Then by (74), (75), (76) (where W replaces N) we have
1 2 L 2
E(Yr) = §|V“R| + W(ug) dx+ 50y [ ugdx

1 1
:/[§|Vu1g|2 + W(uR)] dx+§wRo

1
< icoRN’l + W(so)RY 4+ ¢3RN 1 4 esR7V.
Hence
lim E(Wg) = —o0 O
R— 0

REMARK 17. If (W-) is violated, it is still possible to have orbitally stable solitary
waves (see [33]) which are only local minimizers. They can be destroyed by a
perturbation which send them out of the basin of attraction and are not considered
solitons according to Def. 1.

REMARK 18. We observe that the constant m defined by (W-ii) coincides with the
constant m defined by (3) and the constant m defined by (12).
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5. VORTICES
5.1 Main Features

A (hylomorphic) vortex is a (hylomorphic) solitary wave with nonvanishing angu-
lar momentum. The angular momentum, by definition, is the quantity which is
preserved by virtue of the invariance under space rotations (with respect to the
origin) of the Lagrangian (see e.g. [25]). In this section we shall analyze elemen-
tary properties of the angular momentum for (NKG) in three space dimensions;
of course, making obvious changes, the analysis includes also the two dimen-
sional case.
The angular momentum for the solutions of (NKG) is given by

(78) M(¥) = Re / x x Vi (0,) dx.
Using the polar form (36), it can be written
(79) M(¥) = / (X x VS(8,Su*) +x x Vu(d,u)) dx.

where x denotes the wedge product.
It is immediate to check that standing waves (46) have M(¥) = 0. However, if
we consider:

(80) W(t,x) = Yo(x)e ™, ®>0

where 1, (x) is allowed to have complex values, it is possible to have M(%¥W) # 0.
Thus, we are led to make an ansaz of the following form:

(81) Y (t,x) = u(x)e" "7 u(x) 2 0, w € R, L€ Z {0}
and
0(x) = Imlog(x; +ix2) € R/27Z;  x = (x1,x2,X3).

Moreover, we assume that

(82) u(x) = u(r,xs), wherer=/x}+ x3.

By this ansaz, equation (NKG) (in the form (40), (41)) is equivalent to the
system

{—Au+£2|v0|2u+ W'(u) = w’u
uNO+2Vu - VO = 0.
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By the definition of § and (82) we have
, 1
AO=0, VO-Vu=0, |VO=—.
r

where the dot - denotes the euclidean scalar product.
So the above system reduces to

2 .
(83) —Au+ Ut W'(u) = o’u in R,

Direct computations show that the energy (42), the angular momentum (79) and
the hylenic charge (43) become

. 1 102
(84) E(u(x)e 0=y — /R [5 \Vu* + 3 (r_z + wz) u? + W(u)] dx

3

(85) M (u(x)e 0=y — —(0, 0, wﬁ/ u’ dx).
R3
(86) H (u(x)e'0)=00y = /a)u2 dx.

The existence of vortices is an interesting and old issue in many questions of
mathematical physics as superconductivity, classical and quantum field theory,
string and elementary particle theory (see the pioneering papers [1], [28] and e.g.
the more recent ones [26], [35], [36], [38], [21] with their references).

From mathematical viewpoint, the existence of vortices for (NKG) and for
(NKGM) has been studied in some recent papers ([16], [4], [5], [13], [14], [15],

(8], [9]).
5.2 Existence of Two Dimensional Vortices

In this paper we want to apply theorem 4 to the study of vortices; this is possible
for N = 2. We get the following theorem:

THEOREM 19. Let W :C — R satisfy (W-i), (W-ii), (W-iii), (W-iiil) and fix
e Z — {0}, then there exists an open set X such that for any ¢ € X, equation
NKG has a hylomorphic vortex of the form (81).

In this case we set:

<L1u,u>—/[|Vu|2+(f—§+m2>u2] dx; Nl(u)—/N(u)dx

X = {u e H'(R?): uis radially symmetric and {L,u,u) < oo}
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T(0) = 3 <Ly + M)

2
:%/{|Vu|2+(f—2+m2>u2} dx+/N(u)dx
{Lou,uy = K(u) :%/uz dx;  No(u) =0.

LemMma 20. Assumptions (H1), (H2), (H3) are satisfied.

PrOOF. Clearly assumption (H3) is satisfied. Let us prove that assumption (H1)
is satisfied.

Let u, be a sequence in X such that J(u,) is bounded. Then clearly also the
sequences

(57) [wul [4 [ w

are bounded. We have to show that u, is bounded in L2. Let us first show that
there exists M, such that for all n

(88) ual, < M.

In fact for u € C°(R*\0), u radially symmetric, we set u(x) = v(r) r = |x|, then

(89) %uz(x) = %U(V)z = /: v(r)v'(r) dr < (/OH U(r)zdr /OHO v'(r)zra’r)l/2

0 r

u? ) 1/2
SCI(/RZV_de/RZ |V dx)

Then, since the sequences (87) are bounded, by (89) we get (88).
Let ¢ > 0 and set

Q,={xeR*: |u,(x)| >¢} and Q°f =R)\Q,.
Then, by (88), we have

> o= ([ ) omeasteu)

< |tal} .. meas(Q,) < M? meas(Q,).

On the other hand, if ¢ is small enough we have (see (58) in the proof of Lemma
14)

(91) / W(un)ch/ 2.
Q;]‘ Ql‘l‘
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Since
/ W(u,,) < M,,

by (90) and (91) we deduce

(92) /u _/ un—l-/ u? < M} meas(Q,) + M

(&)

Then it remains to prove that

(93) meas(€),) is bounded.
Arguing by contradiction assume that, up to a subsequence
(94) meas(Q,) — 0.

By a Trudingher-Moser type inequality (see [32] and its references) on all R?, we
have for o < 4rn

(95) / e™n < 3 / Vat |

Then, taking « = 1 and since / |Vu,|* is bounded, we have

e’ meas /e" /e"<63/|Vu,,| < M;

which contradicts (94).
Finally, following the same arguments used in the proof of Lemma 14, it can
be proved that also assumption (H2) is satisfied. O

LEMMA 21. Assumption (11) is satisfied.

ProOF. Let R > 1 and consider the map ug defined as follows

0 if x| <R—1lor|x|>=2R+1
so(Jx] —R+1) if R>|x|>R—-1

ug(x) =
50 2R > |x| > R

so(1+2R—|x]) if 2R+1> x| >2R

where sj is a such that N(sy) < 0.
Clearly

Jug) [ |Vur]? [l LIV )

(96) K(uR)_ [uz o Juz Tfux
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Easy estimates show that for R large
/|VMR|2 < coR

0u? c

R 1

— << — + &)
r2 R

/N(uR) dr < c3N(s0)R* + c4R

C6R2 > /Ll}ze dx > 05R2

where ¢, ..., cg are positive constants.
Then for R large, since N(sy) < 0, we have
J(ur) 2
<m”. |
K(ug)

6. THE NONLINEAR KLEIN-GORDON-MAXWELL EQUATIONS
6.1 General Features of NKGM

The Nonlinear Klein-Gordon-Maxwell equations (NKGM) are (see e.g. [12],
[11])

(NKGM-1) (0 + igp)* — (V — igA)*y + W' () =0
(NKGM-2) V- (0,A + Vo) = gIm(6) + ¢*oly|*
(NKGM-3) V x (V x A) + 3,(3,A + V) = g Im(Vyh) — ¢*Aly|*

where ¢ is a parameter which, in some models, is interpreted as the electron
charge and W satisfies (33). They are the Euler-Lagrange equations of the action:

(97) y_/gdxdz, L =L+ B — W),
where
(98) %= 310+ ign)0 P ~ (v — igA) )

1 1
(99) % —§{|81A+V¢|2—§|VXA|2 .

In this case, the state of the system is given by

\P = (l/jv l//,, (pv ¢17A7AZ)~
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If we use the notation (36, 37, 38) and if we set

(100) E = —(6,A + Vp)
(101) H=VxA

(102) Q=—(0:S+qp) =0 —qp
(103) p = qQu’

(104) K=VS—gA=k—¢gA
(105) J = gKu?.

Equations (NKGM-1), (NKGM-2), (NKGM-3) can be written as follows (see
e.g. [12]):

(MATTER) Clu+ (K2 + Q% u+ W' (u) =0
(GAUSS) V-E=p

E
(AMPERE) VxH—aa—t:J

Moreover, by the positions (100) and (101), E and H satisfy also the equations

(FARADAY) VxE+ 66—}[[ =0

(NOMONOPOLE) V-H=0.

The equations (GAUSS), (AMPERE), (FARADAY), (NOMONOPOLE) are the Max-
well’s equations and equation (MATTER) represents a model of interaction of
matter with the elecromagnetic field (see for example [12], [24] ch. 3, [31] ch. 2
in Part 1, and [39] ch. 1).

The energy takes the following form (see [12]):

1 1 1 1
E(Y) = /[5“[2 +§|V“|2+§(K2+Qz)u2 + W (u) +§(E2+H2) dx

and the hylenic charge takes the form:
HY) = /Qu2 dx = /(co — qp)u*.

In some models, H (W), if positive, represents the number of particles contained
in the state P, otherwise, —H (W) represents the number of antiparticles. The
global electric charge is given by

O(¥) = gH(¥) = / (40 — o).
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Thus, if i is rescaled in such a way to have ¢ = 1, the hylenic charge H(¥) and
the electric charge Q(W) coincide.

6.2 Existence Results for the NKGM

In this paper we are interested to apply Theorem 4 to find electrostatic stand-
ing waves, namely solutions of (NKGM-1), (NKGM-2), (NKGM-3), having the
form

A R
1 — —iwt R+ R o
(106) v(t,x) =ux)e ™™, ueR", weR, se€ 577

(107) A=0, 0,p=0.

The existence of solitary waves for (NKGM) depends on the constant g; more
exactly we have the following theorem:

THEOREM 22. Assume that (W-1), (W-ii), (W-iii), (W-iiii) hold. Then there exists
a set yxoy < R? such that for any (o,q) € Enkem, the nonlinear Klein-Gordon-
Maxwell equations (NKGM) have an hylomorphic, electrostatic (see (106), (107))
wave of charge a. Moreover kg has the following form

Svkeu = {(0,q) e R*:6€%,0<q<q"}
where q* > 0 and X, is an open set which is not empty for 0 < q < g*.

REMARK 23. The existence of electrostatic standing waves has been first analyzed
when W (s) = s> — s (s > 0, p > 2) ([10], [18], [22], [23]). More recently also cases
in which W > 0 have been considered ([11], [15]). However, the proof in [11] con-
tains a gap, even if the result is correct. In fact, the main result can also be deduced
by th. 22.

If (106) and (107) hold, equation (NKGM-3) is identically satisfied, while
(NKGM-1) and (NKGM-2) become

(108) —Au+ W'(u) = (0 — qp)*u
(109) —Ap = g(w — gp)’

We set
(110) Zo =¥ = (u(x), —iwu(x), ¢(x),0,0,0),

ue H'(RY),p e 2"*(R*),w € R}.

Clearly Z) is a subset of the phase space which contains the electro-static stand-
ing waves. To any state ¥ € %, we can associate a triple

(u, p,0) € H'(R®) x 212(R) x R;

the corresponding energy and charge take the following form:
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1 2 1 2 1 2.2
M) Eweo)= [ |3V 45 Vol +30% + ()| dx

Hy(u,p,0) = /Qu2 dx

where, according to (102),
Q=w-—qp.

Now we would like to apply theorem 4. Unfortunately, we cannot do it di-
rectly, since E, and H, do not satisfy the required properties, namely they do
not have the form (7) and (8). However, we can transform this problem in such
a way that Theorem 4 can be used. To do this, we introduce a smaller space
Zy = 2y which contains the states which satisfy equation (109), namely

(112) Zo={¥ € Xy : —Ap = q(w — qp)u*}.

We remark that for u € H'(R*) and @ € R given, equation (109) has a unique
solution ¢, € Z'2(R?) (see [10]); then

Zo =~ H'(R?) x R.

Now we want to find a nice and useful way to write E,, H, and A, restricted
to Zy. First, we divide the energy in two parts:

(113) Eq(“>¢aw) :J(u)+Fq<ua¢>w)
where

(114) J(u) = / B|VM|2+ W(u)} dx
(115) Fywp,0) = [ Vol + Q%) dx

Now let u € H'(R?) and consider the solution ¢, of (109).
Multiplying both sides of equation (109) by ¢, and integrating, we get

/ Vo, |* dx = / 49, Qu>.
Then
1
Fy(u, 9,y 0) = 5 / g, Qu® + Q*u’] dx

:;wz/(l —qi);’)uzdx.
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So we have

Ly Pu, 2
(116) Fq(u,(/)u,a))—ico /(1—q5)u dx.

For u € H'(R?), let ® = @, be the solution of the equation

(117) —AD, + ¢, = qu.
Clearly
(118) 9, = o®,

solves eq. (109) and we have that
1
(119)  Fy(u,0,,0) = F;(u,0®,, w) = 5602 /(1 — q®,)u* dx = 0’ K,(u),

where

(120) K, (u) == ;/(1 — q®,)u’ dx.

By (113) and (119) the energy on the states contained in Z, (see (112)) can be
written as a functional of the two variables w and u and having the form (7):

(121) Ey(u, ) = Ey(ut, 9,,0) = J (1) + 0 K, (u).

Analogously, also the hylenic charge can be expressed via the variables u and w
and having the form (8):

I:Iq(u, w) = Hy(u,p,,0) = Hy(u, o®,, )

= w/(l — q®,)u? dx
= 2wk, (u).

Notice that, for ¢ = 0, all these functionals reduce to the analogous ones for
the equation (NKG).

By the following proposition the study of the equations (108) and (109) is
reduced to an eigevalue problem of the type (9).

PROPOSITION 24. Let ¢ > 0 and (u, ) € H'(R*) x R be a solution of the eigen-
value problem

(122) J' (1) = 0*K!(u).
Then u, ¢, @ solve (108) and (109).
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PRrOOF. First observe that u, ¢, w solve (108), (109) if and only if (u, ¢) is a crit-
ical point of the functional

(123) Iw(uv(p) :J(u) _Fq(u7¢>w)
namely if
aIw(uu (ﬂ) 6160(”7 W)
124 — = ——=0.
(124) P 0, 20 0

Now let (u, w) be a solution of the eigenvalue problem (122). Then clearly u is
a critical point of the functional u — J(u) — w?K,(u) or equivalently, by (119)
and (123), a critical point of the functional

(125) u—I,(u,0,) =J(u) — Fy)(u,p,,0).
This means that

(126) alw(”? (pu) + alw(uv (pu) (p/

=0.
ou op "
Since ¢, solves (109), we have
aICU (u> % )

127 — T =0.

(127) -
Then from (126) and (127) we get

0L (u, 9,,) L (1, 9,,)

128 — =0, —=0.
(128) ou ’ op
So by (128) we have that u, ¢, solve (124). O

We shall show that if ¢ is small enough the eigenvalue problem (122) satisfies
all the assumptions of the abstract theorem 4. More precisely in this case we shall
set

X = {u e H'(R®): uis radially symmetric},
{Lyuyuy = /(|Vu|2 +mu*)dx; Ni(u) = /N(u) dx,

J(u) :%<L1u,u>+N1(u)
_%/(|Vu|2+m2u2) dx—|—/N(u) dx,
{Lou,uy = /u2 dx,

1
Kl](u) = §<L0u7 u> +]\70(1’l)7 NO(”) = —g/(l)uuz dx.
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LemMA 25. Assumptions (H1), (H2), (H3) are satisfied.

PROOF. Arguing as in the proof of Lemma 14 it can be proved that assumption
(H1) is satisfied and that N| satisfies (10).

Then, in order to complete the proof of (H2), we need to show that N is
compact. First of all we look for a suitable expression for N;.

Observe that

(129) K (u) = u+ Ny(u).
On the other hand by (116) and (120)
Ky(u) = Fy(u, @y, 1).

Then

OF,(u, @y, 1) n OF,(u, @y, 1)

(130) Ky() = == 5

).
Since @, solves (117) and taking into account the definition (115) of F,, we

have

0F,(u,®,,1)
0p

0F,(u,®,,1)

=9 ou

(131) = (1 — q®,)%u.

So, comparing (130), (131), we have

(132) K)(u) = (1 — q®,) u.

By (129), (132) we get the following expression for N (u)

Nj(u) = (1 — q®,)*u — u = ¢*®>u — 2q®,u.
Then in order to show that N is compact it is enough to prove that the maps
(133) u— ®u and u— O2u

are compact from X to X”.
Let

u, — up weakly in X.

We shall prove first that @, is bounded in 2"%(R?) and that, up to a subse-
quence,

(134) ®, — @, weakly in 7"3(R?).

n 0

Since ®,, solves

(135) —-AD, + qzu,f(Dun = qu2

n’



EXISTENCE OF HYLOMORPHIC SOLITARY WAVES 273

we have

(136) L/W®M”Hf/®bé=q/®md

On the other hand

2
relltnl s

(137) [ vui <jo,

Since u, is bounded in X, it is also bounded in L'?/°, then by (137) we have
(138) [ @ui <alo,l,e

From (136), (138) we easily get

”q)un %@‘2 < C2”(Dun|

g2y
from which we have that, up to a subsequence,
®, — @y weakly in 213 (RY).
In order to prove (134) we have to show that &y = ®,, i.e. we show that @,

solves (117) with u = uy.
Let v € C§° then, testing (135) on v and passing to the limit, we easily get

—AD) + ¢*ui Dy = quj.

Then (134) is proved.
Now we prove that

(139) u, ®,, — u®,, in L.
Let ¢, R > 0 and set

Br={xeR’:|x| <R}, B;=R’— B
Clearly we have

(140) / 0212 < (/
B¢ B

R

wl’) ([ 00)"

¢
R R

Now we have (see [17])

(141) |, (X)| < €1 "”ﬂﬂ‘ in B,
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From (140) and (141) we get

2/3 2/3
142 q)Z 2<( M (/ n2 q)u
(142) J, @ s (at ) () e

¢
R

2
LS

So, since u, is bounded in H' and @, is bounded in 2'(R?) and hence in
L®, if we choose R large enough, we get

(143) / D) uy <e.
B

¢
R

Analogously, for R large enough, we have

(144) /B D, ug <e

¢
R

and therefore

(145) / D, 1, — Dyyi0]” < 2.
B(

R

On the other hand

Dt~ Dol = [ (@, 1) + 10(0,, — 0,
Bp

Br
<2 [ OF (- w) + (@, - 0,)°
Br
2 2
(146) <2|®,, L5(Bg) lun — 1o ||L3(BR)
2 2
(147) + 2uol 2o (g [ Pu, — Loy I123(5,)-

The sequence u, weakly converges to uy in H', then it strongly converges to g in
L3(Bg). So, since @, is bounded in L°, we have

(148) |,

LG(BR)””n - u0||L3(BR) — 0.

3
c< Lloc’

On the other hand ®,, — ®,, weakly in 2" = H|!

ioc then we have

(149) [Py, — Dy, ||L3(BR) — 0.
By (146), (148) and (149) we get

(150) | D, 1, — Dy, 10> — 0.
Br

Finally by (145) and (150) we get (139).
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Following analogous arguments it can be shown that also the map u — (Dﬁu is

compact from X to X.
Finally we prove that assumption (H3) is satisfied i.e. we prove that

/(1 — q®,)u’dx > 0.

Arguing by contradiction assume that there is a region Q where ¢®, > 1 and
q®, =1 on 0Q. Clearly by (117)

—A((Du - é) + gl (cbu - é) — _AD, + PP D, — qu = 0.

Then v = ®, — é solves the Dirichlet problem
A+ P Pv=0 inQ, v=0 on dQ.

Multiplying by v and integrating in Q we get
/(|VU| + ) dx = 0.

Then v = ®, — é = 0 in Q contradicting ¢®, > 1 in Q.
Finally observe that, if we take u # 0 in all R®, then

/(1 — q®,)u’ dx > 0.

In fact / (1 — g®,)u* dx = 0 would imply that ®, =1 g a-e. in R, contradicting
®, € 7"2(RY). O
LEMMA 26. Assumption (11) is satisfied for q sufficiently small.

PrOOF. Let R > 0 and consider the map ug defined in (73). As shown in the
proof of Lemma 15, we can choose R be so large that

(151) <m3.

J(ur)
1fu
Now consider

J(ug) J(ug)

(152) = .
Ky(ur) 5 [ug =% [ ®uiz

So, by (152), we get that assumption (11) is satisfied if we show that
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(153) q/cDuRu;—»o for ¢ — 0.

Since @, depends on ¢ a little work is needed to prove (153).
Since ®,, solves (117) with u = ug, we have

(154) |Duel2 12 + ¢ / up®. =q / uz®,,

< qurl7 s [P |
and then

H(DMR %}1'2
| Dl 6

2
< q||uR|\le/5.

Then, since 2" is continuously embedded into L, we easily get
(155) [ @012 < eqlurlzies,

where c¢ is a positive constant. Then, using again (154), we get

2 4
¢ / 2Dy < glutrl2ins [Pyl < cq?lur® .

From which we get (153). O

Finally we are ready to conclude the proof of Theorem 22.

Proof of Theorem 22.

By Lemma 25 the assumptions (H1), (H2), (H3) of the Theorem 4 are satis-
fied. Moreover by Lemma 26 there exists ¢* > 0 such that for 0 < ¢ < ¢g* also
assumption (11) is satisfied. Then we can use Theorem 5 and we get that there
exists ¢* > 0 such that for 0 < g < ¢* there exists a non empty, open subset
2, < R such that for any o€ X, problem (122) has a solution (u,) with
charge H,(u,w) = . Moreover such a solution minimizes the energy E,(u,)
on the states (1, ) having charge H,(u,®) = ¢. Then, by Proposition 24, u, w,
¢, = o, solve (108), (109). O

7. APPENDIX

Let assumption Wiii) (b) be satisfied i.e. we assume that there exists s; > sy such
that N'(s;) > 0.
Set

N(s) for s < s
N'(s))s+c¢; fors>s

(156) N(s) = {
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where
c1 = N(s1) — N'(s1)s1
Set
- m2 .
(157) W(s) = —s> + N(s)

2
By the following proposition we can replace in (47) W' (s) with W’ (s)
PROPOSITION 27. Let m?> > w>. Then for any solution u € H' of the equation
(158) —Au+ W' (u) = o’u

we have

u<s]
PROOF. Letu € H' be a solution of (158) and set
u=.s +v.
We want to show that v < 0. Arguing by contradiction, assume that
Q={x:v(x)>0}#0.

Then, multiplying both members of (158) by v and integrating on Q, we have
/Q Vo2 + W' (51 + v)v — w*(s1 + v)v = 0.
So, using (157), we have
/Q Vo2 + N'(s1 + v)v + (m> — ) (s + 0)o =0
which, by (156), becomes
(159) /QVU|2+N’(S1)U+(m2—a)2)(s1 +v)o = 0.

Since
N'(s1) >0 and m*> ?
expression (159) gives
v=0 1inQ,

contradicting the definition of Q. O
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