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Partial Di¤erential Equations — Surfaces minimizing nonlocal energies, by Luis

Caffarelli1.

Abstract. — In this lecture, we discuss what we understand by a non local di¤usion equation and

explain the particular case of surface evolution by non local mean curvature and the corresponding
minimal surfaces.
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1. What is a diffusion process?

A ‘‘di¤usion’’ equation quantifies the idea that the variable under consideration,
u, (a temperature, a probability density, the speed of a flow, a body in elastic
equilibrium) tries to revert to ‘‘an average of itself ’’ in a surrounding infinitesimal
neighborhood.

May be the simplest example, is that of a ‘‘minimal surface’’, the surface con-
figuration of soap film or elastic membrane attached to a wire.

For a smooth surface, being minimal implies ‘‘the surface has zero mean cur-
vature’’ (the Euler-Lagrange equation)

‘‘Laplacian in tangential coordinates’’ ¼
‘‘mean curvature’’ ¼ ‘‘sum of principal curvatures’’

1The author was partially supported by National Science Foundation grant DMS-0654267.



In other words, a point of the surface looks at how the surface bends around
itself and it accommodates in such a way that the tensions pulling it upwards
compensate with those pulling downwards.

Another example comes from viscous fluids

‘‘. . . a fluid flow with
velocity field~vvðx; tÞ . . .’’

Here again, if the particles surrounding x0 are going faster than x0, their drag it
along, if they are going slower they tend to brake it.

This is a smoothing e¤ect: If the particle at ðx0; t0Þ tries to ‘‘escape’’, the sur-
rounding particles will try to ‘‘break it’’.

How do you express that mathematically? In principle this viscosity e¤ect does
not have to be linear, it may be very di¤erent at low or high speeds but one (lin-
ear) possibility is to compare the ‘‘average velocity’’ in a tiny ball Be around x0,
with the actual velocity of the particle at x0, vðx0; t0Þ and take that quantity

j

Z
Beðx0Þ

vðx; t0Þ � vðx0; t0Þ dy

As a ‘‘measure’’ of how much the speed of the particle deviates from its sur-
rounding average and make it the acceleration (positive or negative) that the par-
ticle will su¤er

Dtv ¼ ðvt þ v‘vÞP 1

e2

j

Z
BeðxÞ

½vðy; tÞ � vðx0; tÞ�

þ other global or external factors

This is clearly a quadratic e¤ect, and as e goes to zero, the expression

1

e2

j

Z
Be

vðx; t0Þ � vðx0; t0Þ
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converges to the integral in the unit sphere of

1

2

Z
S

Dssvðx0; t0Þ ds ¼ 1

2
Dv

and we get the Navier-Stokes equation:

Dtv|{z}
acceleration

¼ Dv|{z}
viscosity

� ‘p|{z}
pressure e¤ect accelerates the flow
from higher to lower pressures due
to incompressibility of the flow

Similar considerations can be made for the heat equation where caloric energy
is supposed to flow from regions of higher temperature to lower proportionally to
�‘T .

The final result is that the temperature at a point x0 compares itself with its
surrounding ‘‘infinitesimal average’’ and heat will flow away proportionally to
the di¤erence.

Similar considerations apply to Brownian motion where the probability den-
sity uðx; tÞ of a particle being at the point x; at time t increases in time propor-
tionally to the probability of the particle jumping from somewhere else to x (the
surrounding ‘‘average’’) minus the probability of the particle jumping from x to
somewhere else, i.e., the gain and the loss of probability density.

2. Nonlocal diffusions as averaging process

2.1. Nonlocal di¤usions. By a non local di¤usion we mean a problem or evolu-
tion equation where the unknown function uðxÞ is not just reverting to its infini-
tesimal average, but instead, it is influenced by (it is ‘‘aware’’ of ) its values at
many scales. It is still a di¤usion, but trying to revert now to an integral ‘‘aver-
age’’ of its surrounding values.

• In probability, integral di¤usions appear when considering jump processes
(Levy processes) in optimal control, game theory and finance, where particles
jump from and to x0 discontinuously.

• In continuum mechanics, when considering ‘‘surface di¤usion’’ or surface dis-
continuities, that ‘‘perceive’’ long ranges from the interactions taking place on
both sides of the surface:
the quasigeostrophic equation for ocean atmosphere interaction, semiperme-
able membranes, planar crack propagation

• In fluid dynamics, in turbulent flow or particles ‘‘bouncing’’ through random
media (Bouchaud-Georges, Zaslavsky)
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The typical di¤usion equation becomes then:

utðx; tÞ ¼
Z

½uðxþ yÞ � uðxÞ�KðyÞ dy

where the postive kernel KðyÞ, ‘‘weights’’ the averaging process according to the
knowledge or importance that the process gives, at the point x, of what is going
on at xþ y.

An important family of examples concern surface di¤usion:

In that case, quantities that ‘‘live’’ on the surface: flow through a membrane, a
surface stress, a surface temperature flow, are a¤ected by long range interactions
through media A and B at both sides of S.

In fact, flux across a surface can be thought many times as a form of non local
di¤usion: the flow rate across the surface balances itself with the total flow
through boundary potentials.

In this lecture we would like to discuss the nonlocal version of movement
by mean curvature and the corresponding integral ‘‘minimal surfaces’’ resulting
from this approach.

Since our research follows in many ways the well established theory of move-
ment by mean curvature and the classical theory of minimal surfaces, we review
in a few lines the relevant ideas.

In the context of boundaries of sets of finite perimeter minimal surfaces S
are presented the following way: We consider sets W a Rn, and restrict our at-
tention to the part of W inside a fixed domain D. Let S be the boundary of W
inside D.
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‘‘Any local perturbation of the set inside D increases perimeter’’

Then qW has minimal perimeter restricted to D if any compact perturbation of
W inside D increases its perimeter. Of course, we only need to prescribe the trace
of W on qD, not what is outside D, since the mean curvature equation is ‘‘local’’.

For a smooth surface, being minimal implies ‘‘the surface has zero mean cur-
vature’’ (the Euler-Lagrange equation)

‘‘Laplacian in tangential coordinates’’ ¼
‘‘mean curvature’’ ¼ ‘‘sum of principal curvatures’’

We could also express the zero mean curvature condition as a higher order
density cancellation on W and CW in the ball Brðx0Þ

Indeed, if S ¼ qW is a smooth surface, for x0 a S, in general, the integral

IðrÞ ¼ j

Z
Brðx0Þ

wW � wCW POðrÞ

If the mean curvature is zero, instead, we have a higher order cancellation

IðrÞ ¼ j

Z
Brðx0Þ

wW � wCW P oðrÞ

In other words, the Laplacian of ðwW � wCWÞ along qW, is still not zero but it has a
higher order cancellation
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(If S is Lipschitz, all we can say is that)

IðrÞP 1:

We make this observation because of its connection with phase transitions and
the theory of movement by mean curvature.

Indeed, minimal surfaces appear in phase transitional theory as ‘‘stationary
interphases’’:

In some (simple) models, material interphases tend to evolve proportionally to
its curvature. (If their evolution is linked to ‘‘minus its curvature’’, i.e., curvature
tends to increase, that produces ‘‘fingering’’ or related phenomena.)

Movement by mean curvature is obtained for instance as limiting process of
‘‘phase field’’ theories for the evolution of interphasial surfaces. We have two
phases of a material (solid liquid, opposite magnetization . . .) that we try to
represent with an indicator function: u ¼ 1 in phase A, u ¼ �1 in phase B (or
u ¼ wA � wB).

How is the interphase organized?
We consider instead of u, a ‘‘singular perturbation ue’’, a smooth function

moving by steepest descent of the energy functional

EðueÞ ¼ e

Z
ð‘ueÞ2 þ

1

e

Z
FðueÞ

with F a ‘‘double well potential

FðuÞ ¼

(Landau-Ginzburg)
Observing the energy functional

EðueÞ ¼ e

Z
ð‘ueÞ2 þ

1

e

Z
FðueÞ
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we can see that since being di¤erent thane1 is allowed but heavily penalized, in
order to minimize energy, the function in ue tries to be very close to one or minus
one, reproducing the two phases A and B but with a narrow and steep transition
region of ‘‘phase change’’ in between. The organization of this region is dictated

by the residual term e

Z
ð‘ueÞ2.

In the limit, as e goes to zero, we will obtain, indeed

u0 ¼
1 in Wt

�1 in CWt

�

but as a result of the gradient term qWt is now organized to move proportionally
to its mean curvature (i.e., evolving towards a zero mean curvature stationary
state).

3. A discrete way of generating movement by mean curvature

(Merriman, Bence, Osher)

We seek now to build a surface St evolving by mean curvature through a discrete
sequence of surfaces Sk ¼ qWk.

Let Sk be Sk ¼ qWk and uk ¼ wWk
� wCWk

• For epsilon small, we compute

wkðxÞ ¼ j

Z
BeðxÞ

uk

As discussed above, the function wk expresses the imbalance of W and CW
from covering exactly half of Be, that, infinitesimally is realized by surfaces of
zero mean curvature.

Indeed, if the surface Sk is for instance concave towards W at x0, wk will be
negative at x0 and we will have to shift x0 to x 0, inwards of W, to have exact vol-
ume cancellation, i.e., wðx 0Þ ¼ 0.
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In other words, we define the new surface

Skþ1 ¼ qfwk > 0g ¼ qWkþ1

If we choose the time interval by Skþ1 ¼ SðtkÞ and tkþ1 � tk ¼ Dt�P e2 we obtain
this way a discrete approximation to movement by mean curvature.

In fact, we may replace BeðxÞ (or more precisely, the probability density
1

jBej wBe
) by any rapidly decaying, radially symmetric probability kernel, Ke, prop-

erly scaled, and proceed the same way.
For instance, we could choose a very concentrated Gaussian: ge2 ¼ 1

en
e�x2=e2 ,

and ‘‘split it’’ along Sk

This can be viewed as

• Solving the heat equation with initial data wWk
� wCWk

and after an interval of
time e2, look for the zero level surface of the solution. In other words, particles
are allowed to di¤use into each other for a small time, and then, forced to seg-
regate again according which one has higher density.

In this lecture, we are interested in those cases in which the kernel Ke has slow
decay.

In phase transition models this corresponds to processes with large scale cor-
relation (like solidification) where information far away from the interphase has a
direct influence in it.

In that case, the ‘‘free energy’’ functional that sets the interphase dynamics
(F a double well) has the non local form

EeðuÞ ¼ e

ZZ
½uðxÞ � uðyÞ�2Kðx; yÞ dx dyþ 1

e

Z
F ðuÞ

instead of

Z
ð‘uÞ2 dxþ

Z
F ðuÞ
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Note that for Kðx; yÞ > 0 the term

jjujj2 ¼
ZZ

½uðxÞ � uðyÞ�2Kðx; yÞ dx dy

defines a Hilbert space if we factor out constants.
(Many authors worked on non local phase transitions. See Fife, Lebowitz, or

Presutti.)
For instance, if ð0 < s < 1Þ, an admissible kernel is

Kðx; yÞ ¼ ð1� sÞjx� yj�ðnþ2sÞ

Then, the corresponding Hilbert space is H s (s-fractional derivative in L2)

jjujj2H s ¼ ð1� sÞ
ZZ ½uðxÞ � uðyÞ�2

jx� yjnþ2a
þ jjujj2L2

and the elliptic operator, the s-fractional Laplacian

DsuðxÞ ¼ ð1� sÞ
Z ½uðxþ yÞ � uðxÞ�

jx� yjnþ2s
dy

3.1. The two questions we would like to consider, are:

1. What is the continuous surface evolution process induced by convolution with
kernels Ke with slow decay: ðs ¼ 2sÞ

K1 P
1

ð1þ jxj2ÞðnþsÞ=2 0 < s < 2

2. What are the geometric properties of the corresponding stationary (minimal)
surfaces?

A relatively simple heuristic calculation suggests the following answer:

• For sb 1, convolution with Ke ¼ 1
en
K x

e

� �
still induces movement by mean cur-

vature, for time scaling Dt ¼ es (e log e for s ¼ 1)

• For s < 1, instead, the normal velocity of the surface s is proportional, with
Dt ¼ es, to

LðSÞðx0Þ ¼ ð1� sÞ
Z
Rn

½wWðyÞ � wCWðyÞ� � jx0 � yj�ðnþsÞ
dyð*Þ

for x0 in S.
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We note that for sb 1, i.e., as long as the kernel K has finite first moment
(and the critical case) as e goes to zero, LðsÞ still converges to kðx0Þ, the mean
curvature of S at x0.

In other words, the averaging process becomes infinitesimal.
Instead, for s < 1, the properly scaled average of wW � wCW in an ‘‘infinitesimal

ball’’, i.e., mean curvature, is replaced by a long range weighted average.
Geometrically, in

Case 1). For kernels with decay faster than jyj�ðnþ1Þ, under ‘‘infinitesimal’’ re-
scaling the tail of the kernel disappears

Case 2). For kernel decay slower than jyj�ðnþ1Þ, the tail of the kernel is what re-
mains

Theorem [C-Souganidis—Arxiv.org, to appear in ARMA].

• The above is correct in the viscosity sense, although:

• ‘‘Fattening’’ may occur, i.e., qW may become a thick region between u ¼ 1 and
u ¼ �1

(More precisely, if the lim sup and the lim inf coincide the ‘‘equation’’ for the
limit holds.)
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Remark. As with the heat kernel above, this (discrete) process corresponds to
‘‘solving the fractional heat equation’’ (i.e., mixing both phases)

ut ¼ Ds=2u

with initial data wWk
� wCWk

and after a short time, es, defining Skþ1 to be the zero
level surface of the solution (segregating the two phases by higher density).

4. Properties of stationary solutions to the integral equation and

‘‘integral minimal surfaces’’ (work with J. M. Roquejoffre and O. Savin)

The same way that minimal surfaces are the stationary interphases for the classi-
cal infinitesimal case, we want to study the properties of stationary surfaces for
nonlocal interactions The stationary equation for ð*Þ is obviously

LðSÞðxÞ ¼ 0 ¼
Z

½wWðyÞ � wCWðyÞ�jx� yj�ðnþsÞ
dy

In other words the fractional Laplacian of wW � wCW must be zero at the inter-
phase between W and CW. (Compare with the discussion on zero mean curvature
above.)

In polar coordinates around x0 this condition reads

0 ¼
Z

1

rð1þsÞ

Z
½wWðrsÞ � wCWðrsÞ� ds

The spherical integral inside

I0 ¼
Z
s AS 1

wWðrsÞ � wCWðrsÞ ds

is bounded and measures the average deviation of W in the sphere of radius r
from covering ‘‘in measure’’ exactly half of the sphere:

I0ðrÞ ¼
jWBSrj � jCWBSrj

jSrj

being in that sense an ‘‘integral’’ measure of mean curvature.
The exterior integral

I1 ¼
Z

dr

rð1þsÞ I0ðrÞ dr

converges at infinity, but in principle diverges near zero, forcing some cancella-
tion in the spherical average deviation.

For instance, if S is a C2 surface at x0, I0ðrÞPOðrÞ, and I1 converges.
In fact, I0ðrÞ ¼ Crkð0Þ þ oðrÞ (the mean curvature of S at zero).
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5. Stationary surfaces as minimizers of a non local area integral

5.1. The variational character of LðsÞ. The equation LðSÞ ¼ Ds=2ðwW � wCWÞ ¼ 0,
is formally the Euler-Lagrange equation of the ‘‘variational integral:
ðu ¼ wW � wCWÞ

EðsÞ ¼
ZZ ½uðxÞ � uðyÞ�2

jx� yjnþs ;

in the Hilbert space of functions with ‘‘s=2 derivatives in L2, denoted by Hs=2.
(The same way that ‘‘mean curvature’’ is the Euler-Lagrange equation of an

area minimizing surface)
In general, indicator functions of sets (functions with jump discontinuities) are

not in Hs for sb 1=2 (the case H1=2 is the classical case of ‘‘boundary traces of
functions in H1’’). But precisely for s ¼ s=2 < 1=2, functions with jump disconti-
nuities across smooth surfaces do have finite Hs norm.

It is curious that this allows for a ‘‘Hilbert space’’ theory of integral minimal
surfaces, instead of having to define sets of finite perimeter and BV functions.

5.2. The ‘‘Dirichlet minimal surface problem’’. We may then pose the ‘‘Dirichlet
minimal surface problem’’ in the bounded domain D: As before, given the set W0

among all sets W with WBCD ¼ W0BCD, find the one that minimizes integral
area.

That is, for s < 1, for u ¼ wW � wCW, minimize:

EðWÞ ¼
ZZ ½uðxÞ � uðyÞ�2

jx� yjnþs dx dy

Since u ¼e1, we can rewrite the energy as

EðWÞ ¼
ZZ

wWðxÞwCWðyÞ dx dy
jx� yjnþs

Note that in this energy formula any point in W interacts with any point in CW,
contributing to the total energy but the interaction strengthens as x and y get
closer and this is the reason why we should expect some ‘‘alignment’’ of W and
CW along their common boundary S, to have the ‘‘least number’’ of x’s and y’s
close to each other. This is the e¤ect that we hope will force S to be smooth.

Another interesting remark is that, at least formally, by the divergence theo-
rem

EðWÞ ¼
Z
qW

Z
qW

nðxÞnðyÞ
jx� yjn�2þs

dAðxÞ dAðyÞ

where n is the exterior normal to qW, and dA is the di¤erential of area on qW.
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We note that as s goes to one, properly scaled EðWÞ converges to the BV norm
of qW (the perimeter of W).

6. The Dirichlet problem

We have then here the same picture as for minimal surfaces:
We seek a set W whose indicator function wW � wCW minimizes Hs norm

among possible local perturbations (inside D) of W0

But now, all values of W0 outside D enter into the minimization process, not just
its trace on qD.

6.1. Regularity theory of Hs-minimal surfaces.

Theorem ([C-Roquejo¤re-Savin]). Hs-minimal surfaces are smooth ðC1;bÞ, ex-
cept on a closed singular set S � of Hausdor¤ dimensions Hn�2.

Main steps.

a) Minimal surfaces have no cusps in measure: If x0 a S ¼ qW

x0

Br(x0)

jBrBWj
jBrj

and
jBrBCWj

jBrj
b m0 > 0

This property transforms L1 convergence of the sets W into uniform conver-
gence of the ‘‘minimal surfaces’’, S ¼ qW, providing very strong compactness.
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b) Minimizers satisfy the expected Euler Lagrange equations in the viscosity
sense:

The first variation of the energy integral under a small perturbation of W to
WAA is

0a

ZZ
wAðxÞ½wCðWAAÞðyÞ � wWðyÞ�jx� yj�ðnþsÞ

dy dx

We may then define the concept of Viscosity super (sub) solution

Z
½wCWðyÞ � wWðyÞ�jx0 � yj�ðnþsÞ

dyb 0;

ðaÞ if we have a tangent smooth surface by below (above) at x0.
Notice that if we have a tangent smooth surface by below at x0, the positive

part of the ‘‘area excess’’ spherical integral must converge, but the supersolution
condition implies that the negative contribution is controlled by the positive one,
rendering the radial integral absolutely convergent.

Existence of tangent cones and monotonicity of energy average. For classical min-
imal surfaces we have the monotonicity formula

JðrÞ ¼ AreaðSBBrÞ
rn�1

is increasing in r
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This quotient is invariant under dilations and an important consequence of this
monotonicity that ‘‘blow ups’’ (limits by sequences of dilations) are minimal
cones.

For the non local case, we have a similar formula, where the ‘‘energy’’ or
‘‘area’’ A� has to do with an ‘‘extension theorem’’ for the Hs=2 Hilbert space
([C-Silvestre, Arxiv.org]):

u is extended to u�ðx; yÞ, in one extra variable, satisfying the equation

1

yð1�sÞ div yð1�sÞ‘u� ¼ 0

This is valid for any 0 < s < 2.

The proof of the monotonicity formula follows the classical idea:
We perturb u� by

u�
e ¼

u�ðð1þ eÞx; ð1þ eÞyÞ for ðx; yÞ in Br=ð1þeÞðx0; 0Þ
u�ðx; yÞ outside Brðx0; 0Þ
constant on rays in between

8<
:

Going back to the statement c1) ‘‘JðrÞ ¼
A�ðBrBWÞ

rn�s
is monotone,’’ where A�

r is
now the ‘‘local energy’’ of the extension:

A�
r ¼

ZZ
B�
r ðx0;0Þ

yð1�sÞð‘u�Þ2 dx dy

We still have the important conclusion: The quotient

A�
r =r

n�s

is constant if and only if wW is a cone with center at x0. In particular, infinite di-
lations of a minimal surface are still cones as in the classical theory.
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d) ‘‘Flat minimal surfaces are smooth’’: Next we prove that

If the tangent cone is a plane, i.e., if S can be trapped in a flat enough cylinder,
then S is a C1;a graph in a neighborhood of the point.

The main steps of the proof are based on an ‘‘improvement of flatness’’
theorem, suggested by the fact that the ‘‘linearization’’ of our ‘‘minimal surface’’
are formally solutions of a fractional Laplace equation, above the critical 1=2
exponent.

Step 1: Non homogeneous blow up

Step 2: þ partial Harnack like inequality (as the surface gets flatter, goes through
a partial ‘‘geometric regularization’’ by which oscillatin decays for a larger and
larger number of steps.
Step 3: As a consequence of this ‘‘partial Harnack’’, the sequence of sets con-
verges to a Hölder graph with control at infinity

Step 4: . . . but the Euler equation for the surfaces implies that this graph is a vis-
cosity solution of D1=2þsu ¼ 0. (The same way that minimal surfaces linearize to
the Laplacian, fractional minimal surfaces linearize to the fractional Laplacian.)

In particular, u is C1;a, and near the origin, u becomes ‘‘flatter’’
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Valid at any point near x0, this implies that the approximating surfaces, qWk

are a ‘‘C1;a graph’’.
Notice that, as a consequence of the flatness theorem there is a gap between

cones and planes: cones cannot be ‘‘too flat’’ neither have energy too close to
that of a plane.

e) To complete the theorem we prove: The singular set has dimension n� 2.

This is just an application of Federer’s ‘‘dimension reduction’’ argument, plus
the existence of tangent cones with a ‘‘flatness gap’’, plus the fact that in 2 dimen-
sions, minimal cones have finitely many rays.

We recall Federers reduction argument for n ¼ 3: Given a minimal cone, G,
in R3,

On the surface qB1, G looks like a 2-d minimal cone, that is a finite number of
rays, hence singular sets in R3 consist of, at most, one dimensional rays.

Since 2-d minimal cones have isolated singularities, 3-d minimal cones have
isolated ray’s (Hausdor¤ dimension one).

Some applications of this work are to plane like phase transitions for large
scale correlations, and to image reconstruction.

Some related works

[ABS] G. Alberti - G. Bouchitté - P. Seppecher, Phase transition with line tension

e¤ect, Arch. Rational Mech. Anal. 144 (1998), 1–46.

[CC] L. Caffarelli - A. Cordoba, An elementary theory of minimal surfaces, Di¤er-
ential Integral Equations 1 (1993), 1–13.

[C-dL-1] L. Caffarelli - R. de la Llave, Rafael, Planelike minimizers in periodic

media, Comm. Pure Appl. Math. 54 (2001), no. 12, 1403–1441.

[C-dL] L. Caffarelli - R. de la Llave, Interfaces of ground states in Ising models with

periodic coe‰cients, J. Stat. Phys. 118 (2005), no. 3-4, 687–719.

[CKN] L. Caffarelli - R. Kohn - L. Nirenberg, Partial regularity of suitable weak

solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no.
6, 771–831.

297surfaces minimizing nonlocal energies



[CSi1] L. Caffarelli - L. Silvestre, An extension problem related to the fractional

Laplacian, Comm. Partial Di¤erential Equations 32 (2007), no. 7-9, 1245–1260.

[CSi2] L. Caffarelli - L. Silvestre, Regularity theory for fully nonlinear integro-

di¤erential equations, preprint, arXiv:0709.4681.

[CSo] L. Caffarelli - P. Souganidis, A rate of convergence for monotone finite di¤er-

ence approximations to fully nonlinear, uniformly elliptic PDEs, Comm. Pure Appl.
Math. 61 (2008), no. 1, 1–17.

[CV] L. Caffarelli - A. Vasseur, Drift di¤usion equations with fractional di¤usion

and the quasi-geostrophic equation, Annals of Math., to appear.

[Chae] D. Chae, On the regularity conditions for the dissipative quasi-geostrophic equa-

tions, SIAM J. Math. Anal. 37(5) (2006), 1649–1656 (electronic).

[CL] D. Chae - J. Lee, Global well-posedness in the super-crtical dissipative quasi-

geostrophic equations, Comm. Math. Phys. 233(2) (2003), 297–311.

[CSYT] C.-C. Chen - R. M. Strain - H.-T. Yau - T.-P. Tsai, Lower bound on the

blow-up rate of the axissymmetric Navier-Stokes equations, Int. Math. Res. Not.
IMRN 9 (2008) 31 pp.

[C] P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in
‘‘Mathematical foundation of turbulent viscous flows,’’ Lecture Notes in Math.
1871, pp. 1–43, Springer, Berlin, 2006.

[DeG] E. De Giorgi, Sulla di¤erenziabilità e l’analiticità delle estremaili degli integrali

multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Math. Nat. 3 (1957),
25–43.

[DL] G. Duvaut - J.-L. Lions, Les inéquations en mécanique et en physique, Dunod,
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