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Mechanics — Stability-Instability criteria for nonautonomous systems, by
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ABSTRACT. — Nonautonomous binary systems of O.D.Es are considered. Apart from a critical
case, it is shown that a temporal uniform validity of the Hurwitz conditions appear to be a basic
condition to require for guaranteing the stability. Stability-instability criteria are obtained. Applica-
tions to the equation ¥ + p(7)x + ¢(¢)x = 0 and in particular to the Hill equation, are furnished. The
Hill equation associated to the (linear) stability of the nonautonomous Lotka-Volterra system is
considered.
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1. INTRODUCTION

As it is well known the equation governing the one dimensional motion of a
(punctiform) body about the rest state under the contemporary action of an
elastic force and a viscous drag, with time depending elasticity and viscosity
coefficients respectively, can be reduced to

(1) X+pt)x+q(t)x=0
and, in particular, disregarding the viscous drag, to the so called Hill equation
(2) X+q(t)x=0

By setting x = y, the stability of the rest state is reduced to the stability of the null
solution of the nonautonomous system

x=a(t)x+b(t)y
e U et
with
4) a=0, b=1, ¢c=—q, d=-p

Equation (1)—(3) have been studied by a large number of Authors [1]-[9]. In
particular in [2] R. Caccioppoli obtains that if ¢(), t € R", is an only continuous
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positive real function, then the null solution of (2) may be unstable. Precisely—by
means of an example—he obtains that (2) admits unbounded solutions. We refer
to [3]-[4] and the references therein for further details concerned with the un-
boundedness of solutions of (1)—(2) and for the foundations of the stability state
of art of the nonautonomous system (3). We confine ourselves to recalling that

i) the stability of the null solution of (3) has been deeply studied [1]-[9] under
various assumptions on the coefficients «, b, ¢, d and, in particular, when the
coefficients are periodic functions of ¢ of the same period {cfr. [1]-[9] and
specially chapter II of [3]};

ii) if ¢ is a positive continuous function of bounded variations, then all solutions
of (2) are bounded {[2] and pp. 80-90 of [3]}.

We remark that

1) Boundedness does not imply Liapunov stability.

2) For p # 0 the boundedness of the solutions of (1) and the stability of the null
solution of (3) are not guaranteed when the coefficients are only continuous func-
tions of bounded variations as the equation

2
(5) -k x=0, Vle[g,oo[

shows. In fact, denoting by ¢;, (i = 1,2) two constants, one easily verifies that
X =ci(sint —tcost) + ca(cost + tsint)

is the solution of (5) associated to the initial data

- x(n>—c +c )'c(ﬂ>—nc
0 — 27 P — C] 2, 2 - B 1y
and is unbounded for any nonzero values of the initial data.

3) When (3) is autonomous, the Hurwitz conditions guaranteing the stability of the
null solution are

(6) I=a+d<0, A=ad—bc>0
hence in the case of (5)—in view of {1(t) =2, 4 = 1}—(6), is disregarded at any
instant.
4) The coefficients of the equation [3]

2
(7) X+-x+x=0, I€|:E,OO|:

t 2
have the same properties of the coefficients of (5) but—in view of {I(t) = —%,
A= 1}, the Hurwitz conditions (6) are verified uniformly with respect to t accord-
ing to
(8) I"=supl <0, A*:iﬁfA>0.

R¥ «
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5) The null solution of (7) is asymptotically stable. In fact denoting by c;, (i = 1,2),
two constants, one easily verifies that

x=ct 'sint+ et cost

is the solution of (7) associated to the initial data

(G2 o(D)=2(ave).

6) The uniform Hurwitz conditions (8)—at least when {I = const. <0,
A = const. > 0}—are not sufficient to guarantee the stability of the null solution
of (3). In fact one easily verifies that

x=—ce?cost, y=ce’*sint

with ¢ = const., is an unbounded solution of [16]
. 3, 3.
X = (—1 +§ cos t)x+ (1 ~2 s1n2z>y

y= —(1 +% sin2t)x+<—1 +§ sin’ t)y
A

Ve e R, although {I = =}, A =1 Vie R"}.

In view of 2)-6), the following main questions arise

MAIN QUESTIONS. Are the uniform Hurwitz conditions (8) necessary for guaran-
teing the stability of the null solution of (3)? Which are the conditions that one has
to couple to (3) for guaranteing the stability?

In the present paper we assume derivable the coefficients a, b, ¢, d and intro-
duce the polynomials

P=QIA+ A)(x*+)?), 0= % [(c? + d*)x* + (a* 4+ b?)y* — 2(ac + bd)xy)].

Then, apart from the (critical) case
P(P+ Q) <0, on subsets of R",

we determine the conditions on the time derivatives appearing in P and Q, able to
guarantee—together with (8)—the stability of the null solution of (3).

In the framework of the Liapunov Direct Method for nonautonomous systems
{[8], pp.- 226227}, in Section 2 we introduce either the classic Liapunov function
E =1 (0)x* + (1) y?] (with g, u, functions to be chosen suitably) or a pecu-
liar Liapunov function V' linked in a simple direct way to the eigenvalues of the
coefficients matrix
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o )
c(t) d()
through 4 and 1.

Further we study some definiteness properties of £ and V' and obtain their
temporal derivatives along the solutions of (3). Section 3 is devoted to obtaining
estimates guaranteing that either £ or V are definite or semidefinite. The stability
criteria of the null solution of (3) are given in Section 4 while Section 5 is devoted
to the instability criteria. The stability-instability of the zero solution of (1) and in
particular of the Hill equation, are studied in Section 6. Section 7 is devoted to
the nonautonomous Lotka-Volterra system. The paper ends with some final re-
marks (Section 8).

2. A PECULIAR LIAPUNOV FUNCTION

We call peculiar (or eigenvalues depending) the Liapunov functions linked in a
simple direct way (together with their temporal derivative along the solutions)
to the eigenvalues of the coefficients matrix (9), through 4 and 7. Our aim now
is to introduce a such function for (3). We denote by 4,(¢), (i = 1,2), the eigenval-
ues of (9) and observe that the parameters I, 4 introduced in (6) can be written

(10) I(ty=h+hh=a+d, A(t)=7lly=ad—bc

I and A being the invariants of L. Here and in the sequel we assume that a, b, c, d
are derivable in RY and bounded there together with the derivatives a, b, ¢, d. Fur-
ther we introduce the function

(11) V:%[A( 240 4 (ay — ex) + (by — dv)7).

This function is the O.D.Es ““adaptation” of a peculiar Liapunov function intro-
duced by the author, in the context of L?-stability analysis for binary reaction-
diffusion systems of P.D.Es {cfr [10]-[14] and the appendix of [15]}

REMARK 1. For any function f : R — R, we set

fo=inf £, f*=supf

R+
LEMMA 1. By virtue of the assumptions on a, b, ¢, d it follows that:

i) at any instant t € R*, in any circle centered at (x = y = 0), exists a domain
that verifies the inequality V (7, x,y) > 0;

ii) under the condition
(12) A, >0,

V' is positive definite;
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iil) the temporal derivative of V' along the solutions of (3) is given by

3
(13) V: ZPI(I,X,)/)
i=1

N —

with

Py =P =214+ A)(x* + »?)

de* , da*> , _d(ac)
(14) Pr=rX gy "2
dd* , db* , _d(bd)

Bs=r¥ a1

PROOF. As concerns i) it is enough to remark that at each instant 7 € R™,
(15) V(t)=0

is the equation of a conic passing through O = (0,0), YA(7). Passing to ii), when
(12) holds, it immediately follows that

(16) V=A4.W(x,y)

with W = x? 4 y?, positive definite function independent of ¢. Hence V is posi-
tive definite [8] and, moreover, since a, b, ¢, d are bounded, in view of (11), it
follows that

V< M(x2+ y?),

17 1
(17) M2§|A|*+(a2+b2+cz+d2)*

and hence V' admits an upper bound which is infinitely small at the origin.
Finally, passing to iii), we recall that when (3) is autonomous, in [10]-[15] has
been shown that

(18) V= 142+ ),

Therefore, in the nonautonomous case, one obtains
(19) V:IA(x2+y2)+%A(x2+y2)

+ (ay — ex)(ay — éx) + (by — dx)(by — dx)
and hence (13) easily follows.

Although (11) will appear to be the more appropriate Liapunov function, also
the nonautonomous generalized “energy” [6]



352 S. RIONERO

(20) E =3 [m (05" + 1)y’

with z;, (i = 1,2), suitable positive derivable functions in R and bounded there
together with the derivatives z,, (,, allows to obtain stability (instability) criteria
of the zero solution of (3). Since, along the solutions of (3), it turns out that

A .
(21) E = 3 (i + 2ap)x> + (s + 2dpy) y* + 2(sb + o) xy),
setting
1. |
(22) my = E 1nf(ﬂl*7ﬂ2*)a m = 5 Sup(:ul*nuZ*)
it follows that
(23) E>mW, E<m'W

and hence E is positive definite for m, > 0 and admits an upper bound which is
infinitely small at the origin for m* > 0.

Finally—in connection with the instability properties—it can be useful to con-
sider the function (20) with one of the function g, negative in R*. In this case E is
indefinite but in any circle centered at the origin exists a domain in which E is
positive. Hence—if along the solutions of (3)—F is positive definite, then the
null solution of (3) is (Chetaev) unstable {cfr. [8], p. 227, theorem 7.4}.

3. PRELIMINARY LEMMAS

LEMMA 2. The quadratic polynomial P, + P; = Q is

1) positive semidefinite either for

(24)  ac+ bd = const., %(62 +d*) = ky, ﬁ(az +b%) >ky, VieR'

dt
or for
a b dc? dd?

2 -= Y == > — > R
(25) . const., J const., 7 > ks, 0l > ky, Vte
or for

a dc? db?
2 - = : = — > — R*
(26) - const., d =0, o > ks, o > ke, Vite
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or for

b da* dd?
2 = == > — > R
(27) c=0, 7 const., 2 k7, 2 kg, Vte
with k;, (i = 1,...,8) non negative constants;

il) positive definite if 1) holds and the constants k; appearing—either in (24) or (25)
or (26) or in (27)—are positive;

iil) negative semidefinite either for

(28)  ac+ bd = const., %(c2 +d?) < —ky, i(az + b)) < —ky, VieRT

dt
or for
a b dc? dd?

2 D const., Z=const, & < ky, T < R*
(29) . const., J const., s ks, 0 ky, Vite
or for

a dc? db?
— = . = — < - — < — R+

(30) . const., d =0, T ks, s ke, Vte
or for
(31) c=0 é—const da” < —k dd < —ks, VieR"

- ) d - 9 dt _— 77 dt —_— 87
with k;, (i = 1,...,8) non negative constants;

iv) negative definite if i) hold and the constants k; appearing—either in (28) or
(29) or (30) or in (31)—are positive.

PrOOF. In view of

d d d
_ 29,02 2 2 p2y :
(32) P, +P;=x dt(c +d°)+y dt(a +b7) 2xydl(ac+bd)

in the case ac + bd = const., 1)-iv) immediately follow. In the other cases i)—iv)
are implied by

d(ac) 2 da® dc? . 2
dai | " ar a4
2
(33) 4_ _ _dact 2
. const. =k = P, 7 (x —ky)
dc? da?
aEOZ>P2:EX2;CEOZ>P2:Ey2
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concerned with P, and by

d(bd)]* db*dd* . :
[ (dt )} ~ar ar = (bd = bdy’
~ 2 ~
(34) g =const. =k = P3 = % (x — ky)?
B dd* , dr*

b:0:>P3—Wx,d:O:>P3—Ey
concerned with P;.
LEMMA 3. Let
(35) A, >0, I, >0.

Then does not exist a positive constant h such that

(36) Py < —h(x*+ %), VteR'
and P\ is semidefinite positive for

(37) A > Age . Ap = A(0)

and definite positive, according to

(38) Py > AL (x* + y?),
for
(39) A>0, VieR"

PrROOF. Assume by contradiction that exists a positive constant /2 such that
along the solutions of (3), (36) holds. Since (36) is equivalent to

(40) 204+ A < —h, VieR'

in view of (35), one obtains

(41) QLA+ A< —h
and hence
h o 2Lt

< _ Wt A
(42) A< {AO o0 (e 1)|e
But
4 = 1 1 A — (e — 1
(43) t>1 o7 og( + 7 ):> o<21*(e )
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i.e. A(t) <0, Vt > t, which is not admissible for (35),. Passing to the semidefinite-
ness,

(44) P>0, VieR"<2[4+A4>0
and hence, in view of (35), one obtains

(45) 2LA+A>0=P >0 VieR"
Obviously (39)—Dby virtue of (35)—implies (38).

LEMMA 4. Let

(46) A4.,>0, A" <o, I"<O.
Then does not exist a positive constant h such that

(47) Py > h(x*+ y?)

and Py is semidefinite negative for

(48) A < Age !

and negative definite, either according to

(49) Pi < —AJL|(¥* +)?)
for
(50) A4<0

or according to

(51) Py < —2eA.|L|(x* + y?), 0<e=const. <1
Sfor
(52) A < Ag(1 =)l vr > 0.

PROOF. Assume by contradiction that exists a positive / such that (47) holds, i.e.
(53) 24+ A>h

Then—in view of (46),—one obtains

(54) 24+ A>h
and hence
. h
A>(4 2 _
(55) = ( °+2|1*|)e 20
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which implies

(56) lim 4 = 40

[—0

in contradiction with (46),.
Since

(57) P <0, VieR" 2[4+ A4<0, VieR*'
and—in view of (46),—one obtains that (57) is implied by
(58) 2*A+A<0, VieR"
and hence by (48).
Finally (49) is immediately implied by (46) and (50). Observing that, in view of
(46), one obtains
(59) 2" A+ A< —h= 204+ A4 < —h,
integrating (59), with i = 2e4|I*|, one obtains (49) under the condition (52).
LEMMA 5. Let
(60) A" <0, I"<0, |A]" < .

Then does not exist a positive constant h such that (36) holds. Further Py is semi-
definite positive for

(61) A > Age
and positive definite according to

(62) Pr> AL+ 32,
when (39) holds.

PRrROOF. Assume by contradiction that exists a positive constant / such that (36)
holds. In view of (60),, one obtains

(63) 2114 +%|A| > h.

Then—by virtue of Lemma 4 with |4| at the place of A-—one obtains
lim |4| = oo in contradiction with (60),. On the other hand in view of

[— 0

(64) 2'A4+A>0 VieR' =P >0 VieR"

either the positive semidefiniteness or the positive definiteness immediately follow
by virtue either of (48) or (50).
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4. STABILITY CRITERIA

The main stability theorems of the Direct Method for nonautonomous systems
{cfr [8], p. 226} guarantee that the existence of a positive definite function implies

1) stability if the temporal derivative along the solutions is semidefinite negative;
ii) asymptotic stability if admits an upper bound which is infinitely small at the
origin and its temporal derivative along the solutions is negative definite.

Then by means of Lemmas 1-5, the following stability criteria immediately
follow.

THEOREM 1. Let (46) and (48) hold together with the conditions guaranteing that
i) of Lemma 2 hold. Then the null solution of (3) is stable.

PRrOOF. Then in fact, ¥V is positive definite and V' semidefinite negative.

THEOREM 2. Let (46) and either (50) or (52) hold together with the conditions
guaranteing that iii) of Lemma 2 hold. Then the null solution of (3) is asymptoti-
cally stable.

PROOF. Then in fact, V is positive definite while ¥ is definite negative. Precisely,
either by virtue of (50) or by virtue of (52), it turns out that

(65) V< —m(x*+ %)

with

(66) _[AL] in the case (50)
| 2e4.,|I], in the case (52)

THEOREM 3. Let
(67) A, >0, I=0 VieR",

hold together with the conditions guaranteing that iii) of Lemma 2 hold. Then the
null solution of (3) is stable for

(68) A<0, VieR'
and asymptotically stable for
(69) (A)* = —k, k= const. > 0.

PRrOOF. In fact then V is positive definite and

. 1 .
(70) V< 5A(x2 + 7).
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REMARK 2. By virtue of Lemmas 3-5 and Theorems 1-3, apart from the case
1A = 0, the conditions (8) or the equivalent

(71) A, >0, (AI)" <0,

appear to be basic conditions to require for guaranteing the stability of the null
solution of (3) {cfir also theorems 6—11}. This is also supported by the following
two theorems.

THEOREM 4. Let (71) hold by virtue of

(72) {(bc)*<07 a* < —hy,d* <—hy VieR"

inf(|6],.]cl.) > 0

hi, (i = 1,2), being positive constants. Then

(73) |b| < |bole*!!
|C| < |Co|€2hzt
guarantee the stability of the null solution of (3) while
(74) |b| < |b0|€2(hl—s)t
|C| < |CO|ez(hz—a)t

with 0 < ¢ = const. < inf(hy, hy) guarantee the exponential asymptotic stability.

PRrROOF. We give the proof in the case {b, > 0,c¢* < 0}.
Choosing

(75) = lel, = 1b]
it turns out that
(76) Wb+ e =—bc+bc=0 VieR"

and (21) reduces to

(77) E =5 [(i + 2ap)%* + (i + 2dp) y*].

N —

On the other hand (73) guarantee that

1+ 2ap; <0
(78) {ﬂl +2apy <
12%) + 2d/,(2 < 0
while (74) guarantee
(79) {ﬂ1 + 2ap; < eapy < —ehylcl,
Ly +2du, < edpy, < —ehslb|,.
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Therefore E < 0 in the case (73) and E is negative definite in the case (74). In
view of

1.
(80) E> Sinf(Bl.,[el) (¥ + )

E is positive definite. Further—Dby virtue of (79), in the case (74) exists a positive
constant m such that

(81) E < —-mE & E < Ege™.

THEOREM 5. Let (71) hold together with

) {wd*>0¢ﬁs—%hd*s—m

inf([p],,[c[.) >0

hi, (i = 1,2) being positive constants. Then

(83) ] < [bole™",  e| < |eole”™

guarantee the stability of the null solution of (3) while

(84) [b] < [bole™ "7, Je| < [egle” 2

with 0 < & = const. < inf(hy, hy), guarantee the asymptotic exponential stability.
PrOOF. We begin by observing that (71)—in view of (82),—imply

(85) a<0, d<0, bc<ad—A., VieR".

In view of (75) one obtains

(86) E =5 [(f + 2ap,)x° + (s + 2dptp) y* + 2belxy|].

N —

By virtue of
(87) 2bexy < 2/ Vad|xy| < pylalx® + pld|y?,
E reduces to

1

(88) E=3

[(ﬂl + ap) X + (i + dﬂz)yz]-
Hence (83) guarantee

y <0
(89) {M tau =

ty +dpy <0
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and (84) guarantee
(90) 4y + apy < eapy; < —ehyinfpe|c|
Idz + d,uz S Sdﬂz g —8h2 lnfR+|b|

Since (88)—(90) are completely analogous to (77)—(79), the proof can be com-
pleted by following—step by step—the proof of theorem 4.

REMARK 3. Also in the case {a =0,b=1,(IA)" <0} can be convenient to
introduce a suitable Liapunov function of type (20). This choice will be done in
Section 6.

REMARK 4. Obviously (3) cannot admit periodic solutions when the conditions
guaranteing the asymptotic stability of the null solution hold.

5. INSTABILITY CRITERIA

The main instability theorems of the Direct Method for nonautonomous system
{cfr [8], pp. 226227, theorems 7.3-7.4} are

i) (Liapunov instability theorem). If exists a function V such that it has an infi-
nitely small upper limit and its derivative V along the solutions is definite and
also if for t >ty with arbitrarily large to the function V can have the same
sign as V' in a neighborhood of x| = x, = 0, then the null solution is unstable.

i) (Chetaiev instability theorem). If exists a function V taking positive values in
any circle centered at (x = y = 0) and if for all t > ty, in which V' is bounded
and its derivative V along the solutions is positive definite, then the null solution
is unstable.

Then by means of the Lemmas 1-5 and the assumptions made on the coefficients
a, b, ¢, d, the following instability criteria can be immediately obtained.

THEOREM 6. Let (35) and (39) hold together with the conditions guaranteing that
1) of Lemma 2 hold. Then the null solution of (3) is unstable.

PROOF. V—in view of (35),—is positive definite. By virtue of (19), (39) and i) of
Lemma 2 it follows that

. 1
o1 V2 S AL+ %)

and—in view of (12)—
(92) V>mV e V= Ve

with m = positive const. In view of (16) and the Liapunov instability theorem, the
instability immediately follows.
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THEOREM 7. Let (60) and (39) hold together with the conditions guaranteing that
1) of Lemma 2 hold. Then the null solution of (3) is unstable.

PROOF. V in this case is not positive definite but i) of Lemma 1 holds. Further
(62), 1) of Lemma 2 and (39) imply that V" is positive definite. Hence—in view
of (17),—the null solution of (3) is unstable by virtue of the Chetaiev instability
theorem.

THEOREM 8. Let
(93) I=0, VieR"

hold together with the conditions guaranteing that i) of Lemma 2 hold. Then the
null solution of (3) is unstable if

(94) (A), > k

with k = positive constant.

PROOF. In fact—Dby virtue of i) of Lemma 2, (13) implies
(95) V > k(x> + %)

i.e. V is positive definite. Then—in view of i) of Lemma 1 and the Chetaiev insta-
bility theorem—the null solution of (3) is unstable.

THEOREM 9. Let

(96) A=0 VieR*

hold together with ii) of Lemma 2. Then the null solution of (3) is unstable.
PROOF. By virtue of (96) ¥ and ¥ reduce respectively to

V = l(ay - ex)’ + (by — dx)’]
(97)

V ==(Py+ P3) > k(x* + »?)

= N =

with k positive constant. By virtue of i) of Lemma 1 and (17),, the proof imme-
diately follows by virtue of the Chetaiev instability theorem.

THEOREM 10. Ler (60) hold by virtue of

(98) hi <a<hy, by, >0,c, >0,d* < —h3y, hy <hy; VteR"
inf(b.,c.) >0
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with h;, (i = 1,2, 3), positive constants. Then

) 0 o

with 0 < & = const < inf(hy, h3), guarantee the instability of the null solution of (3).
PrOOF. Choosing

(100) mo=c¢ Mp=-=b

(20)—(21) reduce respectively to

(101) E:%(cxz—byz)
and
(102) E= % [(¢ + 2ca)x® — (b + 2bd) y?].

Since (99),-(99), guarantee respectively

(103) {é+26a>23c>28c*>0

b+ 2bd < —2eb < —2¢b, < 0,
all the conditions of the Chetaiev instability theorem are verified.
THEOREM 11. Let (35) hold by virtue of

h v by >0, ¢ <0, h d,
(104) {1<a >0, ¢* < ) <

b, >0, c" <0
with h;, (i = 1,2), positive constants. Then

b > b()efz(hlfg)f

hy—e)t

(105) {

¢ < cpe?l
with 0 < & = const < inf (hy, hy), guarantee the instability of the null solution of (3).
ProOOEF. Choosing

(106) w=—c y=b

(20)—(21) reduce respectively to

(107) E =~ (by* — ex?)

N —
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and

(108) E = [~ (¢ + 2ca)x* + (b + 2bd) y?].

N —

Since (104)—(105) guarantee

(109) {é+2ca<2£c<2£c*<0

b+ 2bd > 2eb > 2¢bh, > 0

E and E are both positive definite and all the conditions of the Liapunov instabil-
ity theorem are verified.

REMARK 5. Obviously (3) cannot admit periodic solutions when conditions guar-
anteing either

(110) lim E = oo
1— 0

or

(111) tlim V =00

hold. For instance, when the assumption of theorem 10 hold, E is positive definite
and exists a positive number m such that, along the solution, it turns out that

(112) E > mE.

Hence E > Eye™ and (3) cannot admit periodic solutions.

6. STABILITY-INSTABILITY OF THE NULL SOLUTION OF (1)

In view of (4), equation (1) is equivalent to

(113) {x—y

y=—qx—py
It follows that
(114) I:_pa I*:_p*a I*:_p*v AZCI

Choosing {u; = ¢, 1, = 1}, (20)—(21) reduce respectively to

(115) E=>(¢x"+)%)

N —
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and

(116) E =3 (03— 207,
The following theorems hold

THEOREM 12. Let

(117) q. >0,

then the null solution of (1) is stable for

(118) (¢)"<0, p.>0
and asymptotically stable for

(119) (¢)" <0, p.>0.

PrOOF. In fact, when (117) holds, E is definite positive. E is negative semide-
finite when (118) holds and negative definite when (119) holds.

THEOREM 13. Let
(120) (4), >0, p*<0.
Then the null solution of (1) is unstable.

PRrOOF. In fact E takes positive values for (x =0, y # 0) and E—by virtue of
(120)—is positive definite. Hence (x = y = 0) is (Chetaiev) unstable.

REMARK 6. The Hill equation (p = 0) belongs to the case (I =0). The stability-
instability conditions for the zero solution can be easily obtained via the Liapunov
Sfunction (11). In fact—in the case of the Hill equation—one easily obtain that (11)
and (13) reduce respectively to

(121) V=304 + )
and
(122) V:%q[(l +2¢)x* + »?].

In view of (121)-(122) it follows that
i) the stability is guaranteed by

(123) 4. >0, ()" <0
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while the asymptotic stability is guaranteed by

(124) 4. >0, (¢)" <0;

1) the instability is guaranteed by

(125) (). > 0.

7. STABILITY-INSTABILITY CRITERIA FOR THE NONAUTONOMOUS
LoTKA-VOLTERRA SYSTEM

The nonautonomous Lotka-Volterra system can be written

x =o(t)x — p(t)xy
126 .
126 U= St it
with o, B, y, & positive function of 7 € R*. The system (126) admits the solution
) o)
127 X="=, =——.
27 SONI 0
Setting
(128) x=%X+<¢ y=y+7

one obtains

ac B

a —57”7—55’7
(129) PR

E:B“eréf’%

The (linear) stability of (129) is then governed by & + ayé = 0 i.e. by
¢

(130) j’
an _
dticé
with
(131) b:—gy, c:%a, I=0, A=nyu

i.e. by & 4 op¢é = 0. Then the (linear) stability-instability of (¥, ) can be studied
by means of theorem 3, 8 and remark 6.
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We end by observing that, in the case at hand, one can also use the function of
type (20)

(132) E =3 (c& —by’)

N =

either for the linear or for the nonlinear stability.

8. FINAL REMARKS

1) By means of the functions (11) and (20) criteria guaranteing either the stabil-
ity or the instability of the null solution of the general nonautonomous system
(3) have been obtained. As far as we know these criteria appear to be new in
the existing literature.

i) Apart from the case /4 = 0, the uniform Hurwitz conditions (8)—by virtue
of the Lemmas 3-5 and Theorems 1-2, 4-5—appear to be the basic neces-
sary conditions that one has to require for obtaining the “best” stability
conditions.

iii) In the autonomous case, the Hurwitz conditions are, without any other con-
dition, also sufficient for the stability of the null solution of (3). Apart from
the case /4 = 0, in the nonautonomous case the problem of showing if exists
a general class of binary differential system for which (8)—by alone—are not
only necessary but also sufficient for guaranteing the stability, arises.

iv) More general stability-instability criteria can be obtained by requiring that
Py + P, + Pj is either negative or positive definite respectively. This will be
done in a forthcoming paper.
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