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Abstract. — Nonautonomous binary systems of O.D.Es are considered. Apart from a critical

case, it is shown that a temporal uniform validity of the Hurwitz conditions appear to be a basic
condition to require for guaranteing the stability. Stability-instability criteria are obtained. Applica-

tions to the equation €xxþ pðtÞ _xxþ qðtÞx ¼ 0 and in particular to the Hill equation, are furnished. The
Hill equation associated to the (linear) stability of the nonautonomous Lotka-Volterra system is

considered.
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1. Introduction

As it is well known the equation governing the one dimensional motion of a
(punctiform) body about the rest state under the contemporary action of an
elastic force and a viscous drag, with time depending elasticity and viscosity
coe‰cients respectively, can be reduced to

€xxþ pðtÞ _xxþ qðtÞx ¼ 0ð1Þ

and, in particular, disregarding the viscous drag, to the so called Hill equation

€xxþ qðtÞx ¼ 0ð2Þ

By setting _xx ¼ y, the stability of the rest state is reduced to the stability of the null
solution of the nonautonomous system

_xx ¼ aðtÞxþ bðtÞy
_yy ¼ cðtÞxþ dðtÞy

�
ð3Þ

with

aC 0; b ¼ 1; c ¼ �q; d ¼ �pð4Þ

Equation (1)–(3) have been studied by a large number of Authors [1]–[9]. In
particular in [2] R. Caccioppoli obtains that if qðtÞ, t a Rþ, is an only continuous



positive real function, then the null solution of (2) may be unstable. Precisely—by
means of an example—he obtains that (2) admits unbounded solutions. We refer
to [3]–[4] and the references therein for further details concerned with the un-
boundedness of solutions of (1)–(2) and for the foundations of the stability state
of art of the nonautonomous system (3). We confine ourselves to recalling that

i) the stability of the null solution of (3) has been deeply studied [1]–[9] under
various assumptions on the coe‰cients a, b, c, d and, in particular, when the
coe‰cients are periodic functions of t of the same period {cfr. [1]–[9] and
specially chapter II of [3]};

ii) if q is a positive continuous function of bounded variations, then all solutions
of (2) are bounded {[2] and pp. 80–90 of [3]}.

We remark that

1) Boundedness does not imply Liapunov stability.

2) For pA 0 the boundedness of the solutions of (1) and the stability of the null
solution of (3) are not guaranteed when the coe‰cients are only continuous func-
tions of bounded variations as the equation

€xx� 2

t
_xxþ x ¼ 0; Et a

p

2
;l

� �
ð5Þ

shows. In fact, denoting by ci, ði ¼ 1; 2Þ two constants, one easily verifies that

x ¼ c1ðsin t� t cos tÞ þ c2ðcos tþ t sin tÞ

is the solution of (5) associated to the initial data

t0 ¼
p

2
; x

� p

2

�
¼ c1 þ c2; _xx

� p

2

�
¼ p

2
c1;

and is unbounded for any nonzero values of the initial data.

3) When (3) is autonomous, the Hurwitz conditions guaranteing the stability of the
null solution are

I ¼ aþ d < 0; A ¼ ad � bc > 0ð6Þ
hence in the case of (5)—in view of

�
IðtÞ ¼ 2

t
;A ¼ 1

�
—ð6Þ1 is disregarded at any

instant.

4) The coe‰cients of the equation [3]

€xxþ 2

t
_xxþ x ¼ 0; t a

p

2
;l

� �
ð7Þ

have the same properties of the coe‰cients of (5) but—in view of
�
IðtÞ ¼ � 2

t
;

A ¼ 1
�
, the Hurwitz conditions (6) are verified uniformly with respect to t accord-

ing to

I � ¼ sup
Rþ

I < 0; A� ¼ inf
R�

A > 0:ð8Þ
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5) The null solution of (7) is asymptotically stable. In fact denoting by ci, ði ¼ 1; 2Þ,
two constants, one easily verifies that

x ¼ c1t
�1 sin tþ c2t

�1 cos t

is the solution of (7) associated to the initial data

x
� p

2

�
¼ 2

p
c1; _xx

� p

2

�
¼ � 2

p

� 2

p
c1 þ c2

�
:

6) The uniform Hurwitz conditions (8)—at least when fI ¼ const: < 0;
A ¼ const: > 0g—are not su‰cient to guarantee the stability of the null solution
of (3). In fact one easily verifies that

x ¼ �cet=2 cos t; y ¼ cet=2 sin t

with c ¼ const:, is an unbounded solution of [16]

_xx ¼
�
�1þ 3

2
cos2 t

�
xþ

�
1� 3

4
sin 2t

�
y

_yy ¼ �
�
1þ 3

4
sin 2t

�
xþ

�
�1þ 3

2
sin2 t

�
y

8>>><
>>>:

Ec a R, although
�
I ¼ � 1

2 ;A ¼ 1
2 ; Et a Rþ�.

In view of 2)–6), the following main questions arise

Main questions. Are the uniform Hurwitz conditions (8) necessary for guaran-
teing the stability of the null solution of (3)? Which are the conditions that one has
to couple to (3) for guaranteing the stability?

In the present paper we assume derivable the coe‰cients a, b, c, d and intro-
duce the polynomials

P ¼ ð2IAþ _AAÞðx2 þ y2Þ; Q ¼ q

qt
½ðc2 þ d 2Þx2 þ ða2 þ b2Þy2 � 2ðacþ bdÞxy�:

Then, apart from the (critical) case

PðPþQÞa 0; on subsets of Rþ;

we determine the conditions on the time derivatives appearing in P and Q, able to
guarantee—together with (8)—the stability of the null solution of (3).

In the framework of the Liapunov Direct Method for nonautonomous systems
{[8], pp. 226–227}, in Section 2 we introduce either the classic Liapunov function
E ¼ 1

2 ½m1ðtÞx2 þ m2ðtÞy2� (with m1, m2 functions to be chosen suitably) or a pecu-
liar Liapunov function V linked in a simple direct way to the eigenvalues of the
coe‰cients matrix
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L ¼ aðtÞ bðtÞ
cðtÞ dðtÞ

� �
;ð9Þ

through A and I .
Further we study some definiteness properties of E and V and obtain their

temporal derivatives along the solutions of (3). Section 3 is devoted to obtaining
estimates guaranteing that either _EE or _VV are definite or semidefinite. The stability
criteria of the null solution of (3) are given in Section 4 while Section 5 is devoted
to the instability criteria. The stability-instability of the zero solution of (1) and in
particular of the Hill equation, are studied in Section 6. Section 7 is devoted to
the nonautonomous Lotka-Volterra system. The paper ends with some final re-
marks (Section 8).

2. A peculiar Liapunov function

We call peculiar (or eigenvalues depending) the Liapunov functions linked in a
simple direct way (together with their temporal derivative along the solutions)
to the eigenvalues of the coe‰cients matrix (9), through A and I . Our aim now
is to introduce a such function for (3). We denote by liðtÞ, ði ¼ 1; 2Þ, the eigenval-
ues of (9) and observe that the parameters I , A introduced in (6) can be written

IðtÞ ¼ l1 þ l2 ¼ aþ d; AðtÞ ¼ l1l2 ¼ ad � bcð10Þ

I and A being the invariants of L. Here and in the sequel we assume that a, b, c, d
are derivable in Rþ and bounded there together with the derivatives _aa, _bb, _cc, _dd. Fur-
ther we introduce the function

V ¼ 1

2
½Aðx2 þ y2Þ þ ðay� cxÞ2 þ ðby� dxÞ2�:ð11Þ

This function is the O.D.Es ‘‘adaptation’’ of a peculiar Liapunov function intro-
duced by the author, in the context of L2-stability analysis for binary reaction-
di¤usion systems of P.D.Es {cfr [10]–[14] and the appendix of [15]}

Remark 1. For any function f : Rþ ! R, we set

f� ¼ inf
Rþ

f ; f � ¼ sup
Rþ

f

Lemma 1. By virtue of the assumptions on a, b, c, d it follows that:

i) at any instant t a Rþ, in any circle centered at ðx ¼ y ¼ 0Þ, exists a domain
that verifies the inequality Vðt; x; yÞ > 0;

ii) under the condition

A� > 0;ð12Þ

V is positive definite;
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iii) the temporal derivative of V along the solutions of (3) is given by

_VV ¼ 1

2

X3

i¼1

Piðt; x; yÞð13Þ

with

P1 ¼ P ¼ ð2IAþ _AAÞðx2 þ y2Þ

P2 ¼
dc2

dt
x2 þ da2

dt
y2 � 2

dðacÞ
dt

xy

P3 ¼
dd 2

dt
x2 þ db2

dt
y2 � 2

dðbdÞ
dt

xy:

8>>>>>><
>>>>>>:

ð14Þ

Proof. As concerns i) it is enough to remark that at each instant t a Rþ,

VðtÞ ¼ 0ð15Þ

is the equation of a conic passing through O ¼ ð0; 0Þ, EAðtÞ. Passing to ii), when
(12) holds, it immediately follows that

V bA�Wðx; yÞð16Þ

with W ¼ x2 þ y2, positive definite function independent of t. Hence V is posi-
tive definite [8] and, moreover, since a, b, c, d are bounded, in view of (11), it
follows that

V aMðx2 þ y2Þ;

Mb
1

2
jAj� þ ða2 þ b2 þ c2 þ d 2Þ�

8><
>:ð17Þ

and hence V admits an upper bound which is infinitely small at the origin.
Finally, passing to iii), we recall that when (3) is autonomous, in [10]–[15] has

been shown that

_VV ¼ IAðx2 þ y2Þ:ð18Þ

Therefore, in the nonautonomous case, one obtains

_VV ¼ IAðx2 þ y2Þ þ 1

2
_AAðx2 þ y2Þð19Þ

þ ðay� cxÞð _aay� _ccxÞ þ ðby� dxÞð _bby� _ddxÞ

and hence (13) easily follows.
Although (11) will appear to be the more appropriate Liapunov function, also

the nonautonomous generalized ‘‘energy’’ [6]
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E ¼ 1

2
m1ðtÞx2 þ m2ðtÞy2
	 


ð20Þ

with mi, ði ¼ 1; 2Þ, suitable positive derivable functions in Rþ and bounded there
together with the derivatives _mm1, _mm2, allows to obtain stability (instability) criteria
of the zero solution of (3). Since, along the solutions of (3), it turns out that

_EE ¼ 1

2
ð _mm1 þ 2am1Þx2 þ ð _mm2 þ 2dm2Þy2 þ 2ðm1bþ m2cÞxy
	 


;ð21Þ

setting

m� ¼
1

2
infðm1�; m2�Þ; m� ¼ 1

2
supðm1�; m2�Þð22Þ

it follows that

Ebm�W ; Eam�Wð23Þ

and hence E is positive definite for m� > 0 and admits an upper bound which is
infinitely small at the origin for m� > 0.

Finally—in connection with the instability properties—it can be useful to con-
sider the function (20) with one of the function mi, negative in Rþ. In this case E is
indefinite but in any circle centered at the origin exists a domain in which E is
positive. Hence—if along the solutions of (3)— _EE is positive definite, then the
null solution of (3) is (Chetaev) unstable {cfr. [8], p. 227, theorem 7.4}.

3. Preliminary Lemmas

Lemma 2. The quadratic polynomial P2 þ P3 ¼ Q is

i) positive semidefinite either for

acþ bd ¼ const:;
d

dt
ðc2 þ d 2Þb k1;

d

dt
ða2 þ b2Þb k2; Et a Rþð24Þ

or for

a

c
¼ const:;

b

d
¼ const:;

dc2

dt
b k3;

dd 2

dt
b k4; Et a Rþð25Þ

or for

a

c
¼ const:; d ¼ 0;

dc2

dt
b k5;

db2

dt
b k6; Et a Rþð26Þ
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or for

c ¼ 0;
b

d
¼ const:;

da2

dt
b k7;

dd 2

dt
b k8; Et a Rþð27Þ

with ki, ði ¼ 1; . . . ; 8Þ non negative constants;

ii) positive definite if i) holds and the constants ki appearing—either in (24) or (25)
or (26) or in (27)—are positive;

iii) negative semidefinite either for

acþ bd ¼ const:;
d

dt
ðc2 þ d 2Þa�k1;

d

dt
ða2 þ b2Þa�k2; Et a Rþð28Þ

or for

a

c
¼ const:;

b

d
¼ const:;

dc2

dt
a�k3;

dd 2

dt
a�k4; Et a Rþð29Þ

or for

a

c
¼ const:; d ¼ 0;

dc2

dt
a�k5;

db2

dt
a�k6; Et a Rþð30Þ

or for

c ¼ 0;
b

d
¼ const:;

da2

dt
a�k7;

dd 2

dt
a�k8; Et a Rþð31Þ

with ki, ði ¼ 1; . . . ; 8Þ non negative constants;

iv) negative definite if iii) hold and the constants ki appearing—either in (28) or
(29) or (30) or in (31)—are positive.

Proof. In view of

P2 þ P3 ¼ x2 d

dt
ðc2 þ d 2Þ þ y2

d

dt
ða2 þ b2Þ � 2xy

d

dt
ðacþ bdÞð32Þ

in the case acþ bd ¼ const:, i)–iv) immediately follow. In the other cases i)–iv)
are implied by

dðacÞ
dt

� �2
� da2

dt

dc2

dt
¼ ð _aac� a _ccÞ2

a

c
¼ const: ¼ k ) P2 ¼

dc2

dt
ðx� kyÞ2

aC 0 ) P2 ¼
dc2

dt
x2; cC 0 ) P2 ¼

da2

dt
y2

8>>>>>>>><
>>>>>>>>:

ð33Þ
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concerned with P2 and by

dðbdÞ
dt

� �2
� db2

dt

dd 2

dt
¼ ð _bbd � b _ddÞ2

b

d
¼ const: ¼ ~kk ) P3 ¼

dd 2

dt
ðx� ~kkyÞ2

bC 0 ) P3 ¼
dd 2

dt
x2; dC 0 ) P3 ¼

db2

dt
y2

8>>>>>>>><
>>>>>>>>:

ð34Þ

concerned with P3.

Lemma 3. Let

A� > 0; I� > 0:ð35Þ

Then does not exist a positive constant h such that

P1 a�hðx2 þ y2Þ; Et a Rþð36Þ

and P1 is semidefinite positive for

AbA0e
�2I�t; A0 ¼ Að0Þð37Þ

and definite positive, according to

P1 bA�I�ðx2 þ y2Þ;ð38Þ

for

_AAb 0; Et a Rþð39Þ

Proof. Assume by contradiction that exists a positive constant h such that
along the solutions of (3), (36) holds. Since (36) is equivalent to

2IAþ _AAa�h; Et a Rþð40Þ

in view of (35), one obtains

2I�Aþ _AAa�hð41Þ

and hence

Aa A0 �
h

2I�
ðe2I�t � 1Þ

� �
e�2I�tð42Þ

But

t > t ¼ 1

2I�
log

�
1þ 2I�A0

h

�
) A0 <

h

2I�
ðe2I�t � 1Þð43Þ
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i.e. AðtÞ < 0, Et > t, which is not admissible for ð35Þ1. Passing to the semidefinite-
ness,

P1 b 0; Et a Rþ , 2IAþ _AAb 0ð44Þ

and hence, in view of (35), one obtains

2I�Aþ _AAb 0 ) P1 b 0 Et a Rþð45Þ

Obviously (39)—by virtue of (35)—implies (38).

Lemma 4. Let

A� > 0; A� < l; I � < 0:ð46Þ

Then does not exist a positive constant h such that

P1 b hðx2 þ y2Þð47Þ

and P1 is semidefinite negative for

AaA0e
�2I�tð48Þ

and negative definite, either according to

P1 a�A�jI�jðx2 þ y2Þð49Þ

for

_AAa 0ð50Þ

or according to

P1 a�2eA�jI�jðx2 þ y2Þ; 0 < e ¼ const: < 1ð51Þ

for

AaA0ð1� eÞe2jI�jt; Et > 0:ð52Þ

Proof. Assume by contradiction that exists a positive h such that (47) holds, i.e.

2IAþ _AAb hð53Þ

Then—in view of ð46Þ3—one obtains

�2jI �jAþ _AAb hð54Þ

and hence

Ab

�
A0 þ

h

2jI �j

�
e2jI

�jt � h

2jI �jð55Þ
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which implies

lim
t!l

A ¼ þlð56Þ

in contradiction with ð46Þ2.
Since

P1 a 0; Et a Rþ , 2IAþ _AAa 0; Et a Rþð57Þ

and—in view of ð46Þ3—one obtains that (57) is implied by

2I �Aþ _AAa 0; Et a Rþð58Þ

and hence by (48).
Finally (49) is immediately implied by (46) and (50). Observing that, in view of

(46), one obtains

�2jI �jAþ _AA < �h ) 2IAþ _AA < �h;ð59Þ

integrating (59), with h ¼ 2eA0jI �j, one obtains (49) under the condition (52).

Lemma 5. Let

A� < 0; I � < 0; jAj� < l:ð60Þ

Then does not exist a positive constant h such that (36) holds. Further P1 is semi-
definite positive for

AbA0e
�2I �tð61Þ

and positive definite according to

P1 bA�I�ðx2 þ y2Þ;ð62Þ

when (39) holds.

Proof. Assume by contradiction that exists a positive constant h such that (36)
holds. In view of ð60Þ1, one obtains

2I jAj þ d

dt
jAjb h:ð63Þ

Then—by virtue of Lemma 4 with jAj at the place of A—one obtains
lim
t!l

jAj ¼ l in contradiction with ð60Þ3. On the other hand in view of

2I �Aþ _AAb 0 Et a Rþ ) P1 b 0 Et a Rþð64Þ

either the positive semidefiniteness or the positive definiteness immediately follow
by virtue either of (48) or (50).
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4. Stability criteria

The main stability theorems of the Direct Method for nonautonomous systems
{cfr [8], p. 226} guarantee that the existence of a positive definite function implies

i) stability if the temporal derivative along the solutions is semidefinite negative;
ii) asymptotic stability if admits an upper bound which is infinitely small at the

origin and its temporal derivative along the solutions is negative definite.

Then by means of Lemmas 1–5, the following stability criteria immediately
follow.

Theorem 1. Let (46) and (48) hold together with the conditions guaranteing that
iii) of Lemma 2 hold. Then the null solution of (3) is stable.

Proof. Then in fact, V is positive definite and _VV semidefinite negative.

Theorem 2. Let (46) and either (50) or (52) hold together with the conditions
guaranteing that iii) of Lemma 2 hold. Then the null solution of (3) is asymptoti-
cally stable.

Proof. Then in fact, V is positive definite while _VV is definite negative. Precisely,
either by virtue of (50) or by virtue of (52), it turns out that

_VV a�mðx2 þ y2Þð65Þ

with

m ¼ A�jI�j in the case (50)

2eA�jI j� in the case (52)

�
ð66Þ

Theorem 3. Let

A� > 0; I ¼ 0; Et a Rþ;ð67Þ

hold together with the conditions guaranteing that iii) of Lemma 2 hold. Then the
null solution of (3) is stable for

_AAa 0; Et a Rþð68Þ

and asymptotically stable for

ð _AAÞ� ¼ �~kk; ~kk ¼ const: > 0:ð69Þ

Proof. In fact then V is positive definite and

_VV a
1

2
_AAðx2 þ y2Þ:ð70Þ
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Remark 2. By virtue of Lemmas 3–5 and Theorems 1–3, apart from the case
IAC 0, the conditions (8) or the equivalent

A� > 0; ðAIÞ� < 0;ð71Þ

appear to be basic conditions to require for guaranteing the stability of the null
solution of (3) {cfr also theorems 6–11}. This is also supported by the following
two theorems.

Theorem 4. Let (71) hold by virtue of

ðbcÞ� < 0; a� a�h1; d
� a�h2 Et a Rþ

infðjbj�; jcj�Þ > 0

�
ð72Þ

hi, ði ¼ 1; 2Þ, being positive constants. Then

jbja jb0je2h1t
jcja jc0je2h2t

(
ð73Þ

guarantee the stability of the null solution of (3) while

jbja jb0je2ðh1�eÞt

jcja jc0je2ðh2�eÞt

(
ð74Þ

with 0 < e ¼ const: < infðh1; h2Þ guarantee the exponential asymptotic stability.

Proof. We give the proof in the case fb� > 0; c� < 0g:
Choosing

m1 ¼ jcj; m2 ¼ jbjð75Þ

it turns out that

m1bþ m2c ¼ �bcþ bc ¼ 0 Et a Rþð76Þ

and (21) reduces to

_EE ¼ 1

2
ð _mm1 þ 2am1Þx2 þ ð _mm2 þ 2dm2Þy2
	 


:ð77Þ

On the other hand (73) guarantee that

_mm1 þ 2am1 a 0

_mm2 þ 2dm2 a 0

�
ð78Þ

while (74) guarantee

_mm1 þ 2am1 a eam1 a�eh1jcj�
_mm2 þ 2dm2 a edm2 a�eh2jbj�:

�
ð79Þ
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Therefore _EEa 0 in the case (73) and _EE is negative definite in the case (74). In
view of

Eb
1

2
inf jbj�; jcj�ð Þðx2 þ y2Þð80Þ

E is positive definite. Further—by virtue of (79), in the case (74) exists a positive
constant m such that

_EEa�mE , EaE0e
�mt:ð81Þ

Theorem 5. Let (71) hold together with

ðbcÞ� > 0; a� a�h1; d
� a�h2

infðjbj�; jcj�Þ > 0

�
ð82Þ

hi, ði ¼ 1; 2Þ being positive constants. Then

jbja jb0jeh1t; jcja jc0jeh2tð83Þ

guarantee the stability of the null solution of (3) while

jbja jb0je�ðh1�eÞt; jcja jc0je�ðh2�eÞtð84Þ

with 0 < e ¼ const: < infðh1; h2Þ, guarantee the asymptotic exponential stability.

Proof. We begin by observing that (71)—in view of ð82Þ1—imply

a < 0; d < 0; bc < ad � A�; Et a Rþ:ð85Þ

In view of (75) one obtains

_EE ¼ 1

2
½ð _mm1 þ 2am1Þx2 þ ð _mm2 þ 2dm2Þy2 þ 2bcjxyj�:ð86Þ

By virtue of

2bcxya 2
ffiffiffiffiffiffiffiffiffiffi
m1m2

p ffiffiffiffiffiffi
ad

p
jxyja m1jajx2 þ m2jdjy2;ð87Þ

_EE reduces to

_EE ¼ 1

2
ð _mm1 þ am1Þx2 þ ð _mm2 þ dm2Þy2
	 


:ð88Þ

Hence (83) guarantee

_mm1 þ am1 a 0

_mm2 þ dm2 a 0

�
ð89Þ
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and (84) guarantee

_mm1 þ am1 a eam1 a�eh1 infRþjcj
_mm2 þ dm2 a edm2 a�eh2 infRþjbj:

�
ð90Þ

Since (88)–(90) are completely analogous to (77)–(79), the proof can be com-
pleted by following—step by step—the proof of theorem 4.

Remark 3. Also in the case fa ¼ 0; b ¼ 1; ðIAÞ� < 0g can be convenient to
introduce a suitable Liapunov function of type (20). This choice will be done in
Section 6.

Remark 4. Obviously (3) cannot admit periodic solutions when the conditions
guaranteing the asymptotic stability of the null solution hold.

5. Instability criteria

The main instability theorems of the Direct Method for nonautonomous system
{cfr [8], pp. 226–227, theorems 7.3–7.4} are

i) (Liapunov instability theorem). If exists a function V such that it has an infi-
nitely small upper limit and its derivative _VV along the solutions is definite and
also if for tb t0 with arbitrarily large to the function V can have the same
sign as _VV in a neighborhood of x1 ¼ x2 ¼ 0, then the null solution is unstable.

ii) (Chetaiev instability theorem). If exists a function V taking positive values in
any circle centered at ðx ¼ y ¼ 0Þ and if for all tb t0, in which V is bounded
and its derivative _VV along the solutions is positive definite, then the null solution
is unstable.

Then by means of the Lemmas 1–5 and the assumptions made on the coe‰cients
a, b, c, d, the following instability criteria can be immediately obtained.

Theorem 6. Let (35) and (39) hold together with the conditions guaranteing that
i) of Lemma 2 hold. Then the null solution of (3) is unstable.

Proof. V—in view of ð35Þ1—is positive definite. By virtue of (19), (39) and i) of
Lemma 2 it follows that

_VV b
1

2
A�I�ðx2 þ y2Þð91Þ

and—in view of (12)—

_VV bmV , V bV0e
mtð92Þ

with m ¼ positive const. In view of (16) and the Liapunov instability theorem, the
instability immediately follows.
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Theorem 7. Let (60) and (39) hold together with the conditions guaranteing that
i) of Lemma 2 hold. Then the null solution of (3) is unstable.

Proof. V in this case is not positive definite but i) of Lemma 1 holds. Further
(62), i) of Lemma 2 and (39) imply that _VV is positive definite. Hence—in view
of ð17Þ1—the null solution of (3) is unstable by virtue of the Chetaiev instability
theorem.

Theorem 8. Let

I ¼ 0; Et a Rþð93Þ

hold together with the conditions guaranteing that i) of Lemma 2 hold. Then the
null solution of (3) is unstable if

ð _AAÞ� b ~kkð94Þ

with ~kk ¼ positive constant.

Proof. In fact—by virtue of i) of Lemma 2, (13) implies

_VV b ~kkðx2 þ y2Þð95Þ

i.e. _VV is positive definite. Then—in view of i) of Lemma 1 and the Chetaiev insta-
bility theorem—the null solution of (3) is unstable.

Theorem 9. Let

A ¼ 0 Et a Rþð96Þ

hold together with ii) of Lemma 2. Then the null solution of (3) is unstable.

Proof. By virtue of (96) V and _VV reduce respectively to

V ¼ 1

2
½ðay� cxÞ2 þ ðby� dxÞ2�

_VV ¼ 1

2
ðP2 þ P3Þ > ~kkðx2 þ y2Þ

8>>><
>>>:

ð97Þ

with ~kk positive constant. By virtue of i) of Lemma 1 and ð17Þ1, the proof imme-
diately follows by virtue of the Chetaiev instability theorem.

Theorem 10. Let (60) hold by virtue of

h1 < a < h2; b� > 0; c� > 0; d � < �h3; h2 < h3; Et a Rþ

infðb�; c�Þ > 0

�
ð98Þ
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with hi, ði ¼ 1; 2; 3Þ, positive constants. Then

c > c0e
�2ðh1�eÞt

b < b0e
2ðh3�eÞt

�
ð99Þ

with 0 < e ¼ const < infðh1; h3Þ, guarantee the instability of the null solution of (3).

Proof. Choosing

m1 ¼ c; m2 ¼ �bð100Þ

(20)–(21) reduce respectively to

E ¼ 1

2
ðcx2 � by2Þð101Þ

and

_EE ¼ 1

2
½ð _ccþ 2caÞx2 � ð _bbþ 2bdÞy2�:ð102Þ

Since ð99Þ1–ð99Þ2 guarantee respectively

_ccþ 2ca > 2ec > 2ec� > 0
_bbþ 2bd < �2eb < �2eb� < 0;

�
ð103Þ

all the conditions of the Chetaiev instability theorem are verified.

Theorem 11. Let (35) hold by virtue of

h1 < a�; b� > 0; c� < 0; h2 < d�
b� > 0; c� < 0

�
ð104Þ

with hi, ði ¼ 1; 2Þ, positive constants. Then

b > b0e
�2ðh1�eÞt

c < c0e
2ðh2�eÞt

�
ð105Þ

with 0 < e ¼ const < infðh1; h2Þ, guarantee the instability of the null solution of (3).

Proof. Choosing

m1 ¼ �c; m2 ¼ bð106Þ

(20)–(21) reduce respectively to

E ¼ 1

2
ðby2 � cx2Þð107Þ
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and

_EE ¼ 1

2
½�ð _ccþ 2caÞx2 þ ð _bbþ 2bdÞy2�:ð108Þ

Since (104)–(105) guarantee

_ccþ 2ca < 2ec < 2ec� < 0
_bbþ 2bd > 2eb > 2eb� > 0;

�
ð109Þ

E and _EE are both positive definite and all the conditions of the Liapunov instabil-
ity theorem are verified.

Remark 5. Obviously (3) cannot admit periodic solutions when conditions guar-
anteing either

lim
t!l

E ¼ lð110Þ

or

lim
t!l

V ¼ lð111Þ

hold. For instance, when the assumption of theorem 10 hold, E is positive definite
and exists a positive number m such that, along the solution, it turns out that

_EEbmE:ð112Þ

Hence EbE0e
mt and (3) cannot admit periodic solutions.

6. Stability-instability of the null solution of (1)

In view of (4), equation (1) is equivalent to

_xx ¼ y

_yy ¼ �qx� py

�
ð113Þ

It follows that

I ¼ �p; I� ¼ �p�; I � ¼ �p�; A ¼ qð114Þ

Choosing fm1 ¼ q; m2 ¼ 1g, (20)–(21) reduce respectively to

E ¼ 1

2
ðqx2 þ y2Þð115Þ
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and

_EE ¼ 1

2
ð _qqx2 � 2py2Þ:ð116Þ

The following theorems hold

Theorem 12. Let

q� > 0;ð117Þ

then the null solution of (1) is stable for

ð _qqÞ� a 0; p� b 0ð118Þ

and asymptotically stable for

ð _qqÞ� < 0; p� > 0:ð119Þ

Proof. In fact, when (117) holds, E is definite positive. _EE is negative semide-
finite when (118) holds and negative definite when (119) holds.

Theorem 13. Let

ð _qqÞ� > 0; p� < 0:ð120Þ

Then the null solution of (1) is unstable.

Proof. In fact E takes positive values for ðx ¼ 0; yA 0Þ and _EE—by virtue of
(120)—is positive definite. Hence ðx ¼ y ¼ 0Þ is (Chetaiev) unstable.

Remark 6. The Hill equation ðpC 0Þ belongs to the case ðI C 0Þ. The stability-
instability conditions for the zero solution can be easily obtained via the Liapunov
function (11). In fact—in the case of the Hill equation—one easily obtain that (11)
and (13) reduce respectively to

V ¼ 1

2
ð1þ qÞðqx2 þ y2Þð121Þ

and

_VV ¼ 1

2
_qq ð1þ 2qÞx2 þ y2
	 


:ð122Þ

In view of (121)–(122) it follows that

i) the stability is guaranteed by

q� > 0; ð _qqÞ� a 0ð123Þ
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while the asymptotic stability is guaranteed by

q� > 0; ð _qqÞ� < 0;ð124Þ

ii) the instability is guaranteed by

ð _qqÞ� > 0:ð125Þ

7. Stability-instability criteria for the nonautonomous

Lotka-Volterra system

The nonautonomous Lotka-Volterra system can be written

_xx ¼ aðtÞx� bðtÞxy
_yy ¼ �gðtÞyþ dðtÞxy

�
ð126Þ

with a, b, g, d positive function of t a Rþ. The system (126) admits the solution

x ¼ gðtÞ
dðtÞ ; y ¼ aðtÞ

bðtÞ :ð127Þ

Setting

x ¼ xþ x; y ¼ yþ hð128Þ

one obtains

dx

dt
¼ � b

d
gh� bxh

dh

dt
¼ d

b
axþ dxh:

8>>><
>>>:

ð129Þ

The (linear) stability of (129) is then governed by €xxþ agx ¼ 0 i.e. by

dx

dt
¼ bh

dh

dt
¼ cx

8>>><
>>>:

ð130Þ

with

b ¼ � b

d
g; c ¼ d

b
a; I ¼ 0; A ¼ gað131Þ

i.e. by €xxþ agx ¼ 0. Then the (linear) stability-instability of ðx; yÞ can be studied
by means of theorem 3, 8 and remark 6.
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We end by observing that, in the case at hand, one can also use the function of
type (20)

E ¼ 1

2
ðcx2 � bh2Þð132Þ

either for the linear or for the nonlinear stability.

8. Final remarks

i) By means of the functions (11) and (20) criteria guaranteing either the stabil-
ity or the instability of the null solution of the general nonautonomous system
(3) have been obtained. As far as we know these criteria appear to be new in
the existing literature.

ii) Apart from the case IAC 0, the uniform Hurwitz conditions (8)—by virtue
of the Lemmas 3–5 and Theorems 1–2, 4–5—appear to be the basic neces-
sary conditions that one has to require for obtaining the ‘‘best’’ stability
conditions.

iii) In the autonomous case, the Hurwitz conditions are, without any other con-
dition, also su‰cient for the stability of the null solution of (3). Apart from
the case IAC 0, in the nonautonomous case the problem of showing if exists
a general class of binary di¤erential system for which (8)—by alone—are not
only necessary but also su‰cient for guaranteing the stability, arises.

iv) More general stability-instability criteria can be obtained by requiring that
P1 þ P2 þ P3 is either negative or positive definite respectively. This will be
done in a forthcoming paper.
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