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Functional Analysis — Recognizing the Farey-Stern-Brocot AF algebra, by
Daniele Mundici.

Dedicated to the memory of Renato Caccioppoli

Abstract. — In his 2008 paper published in the Canadian Journal of Mathematics, F. Boca in-

vestigates an AF algebra A, whose Bratteli diagram arises from the Farey-Stern-Brocot sequence. It

turns out that A coincides with the AF algebra M1 introduced in 1988 by the present author in a
paper published in Advances in Mathematics. We give a procedure to recognize A among all finitely

presented AF algebras whose Murray-von Neumann order of projections is a lattice. Further: (i) A
is a *-subalgebra of Glimm universal algebra; (ii) tracial states of A correspond to Borel probability

measures on the unit real interval; (iii) all primitive ideals of A are essential; (iv) the automorphism
group of A has exactly two connected components.
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1. Introduction

For each m ¼ 1; 2; . . . let FðmÞ ¼ 1þ 2m�1. The sequence M1;M2; . . . of f0; 1g-
matrices with Fðmþ 1Þ rows and FðmÞ columns is defined by:
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where for each j ¼ 1; . . . ; 2m�1 the 2jth row of Mm has a 1 in positions j, j þ 1,
the ð2j � 1Þth row has a 1 in position j, and the last row has all 0 except a final
1. The map x a ZFðmÞ 7! Mmx a ZFðmþ1Þ is a positive one-one homomorphism
of the simplicial group ZFðmÞ into ZFðmþ1Þ (see [15], [9, p. 15] for this termi-

nology). Equipping ZFð1Þ with the order unit u1 ¼ ð1; 1Þ it follows that the ele-
ment ut ¼ MtMt�1 � � �M1u is an order unit in ZFðtÞ, t ¼ 1; 2; . . . . (Note that [2]
writes ‘‘unité forte’’ for ‘‘order unit’’). Thus the limit of the direct system
fððZFðmÞ; umÞ;MmÞ; jm ¼ 1; 2; . . .g of unital simplicial groups is a unital dimen-
sion group [9], [15]. From the unital positive homomorphisms Mm one obtains
the Bratteli diagram D of a unital AF algebra by the following familiar construc-
tion, [9, Chapter 2], [14]: (i) the number of vertices of D at depth d ¼ 0; 1; 2; . . .
equals the number of columns in Mdþ1; (ii) the ith vertex of D at depth d þ 1 is
connected to the jth vertex at depth d i¤ the entry of Md in row j and column i
is 1; (iii) the two top vertices have multiplicity 1, and the multiplicity of every ver-
tex v at depth d ¼ 1; 2; . . . is the sum of the multiplicities of the vertices at depth
d � 1 connected to v.

We refer to [2] and [12] for background on ‘-groups (where ‘‘‘’’ is short for
‘‘lattice-ordered abelian’’). For n ¼ 1; 2; . . . we let M n be the unital ‘-group of
all continuous functions f : ½0; 1�n ! R with the following property: there are
(a‰ne) linear polynomials p1; . . . ; pm with integer coe‰cients, such that for all
x a ½0; 1�n there is i a f1; . . . ;mg with f ðxÞ ¼ piðxÞ. M n is equipped with the
pointwise operations þ, �,b,4 of R, and with the constant function 1 as the
distinguished order unit.

The universal property of M n is given by the following characterization:

Lemma 1.1 ([22, 4.16]). The unital ‘-group M n is generated by the coordinate
functions xi : ½0; 1�n ! ½0; 1� together with the order unit given by the constant func-
tion 1. For every unital ‘-group ðG; uÞ and elements g1; . . . ; gn in the unit interval
½0; u� of G, if g1; . . . ; gn, u generate G, then there is a unique unital ‘-homomorphism
c of M n onto G such that cðxiÞ ¼ gi for each i ¼ 1; . . . ; n.

We refer to [14] and [9] for K0 of AF algebras and Elliott classification. In [24]
the present author introduced the unital AF algebra M1 by the stipulation

ðK0ðM1Þ; ½1M1
�Þ ¼ ðM 1; 1Þ;ð1Þ

and proved ([24, 3.3]) that limððZFðmÞ; umÞ;MmÞ ¼ ðM 1; 1Þ, Therefore, D is the
Bratteli diagram of M1.

� � �

In [5, p. 977], F. Boca defines the unital AF algebra A by the following Bratteli
diagram:
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The two depth 0 vertices a and b have a label 1, LðaÞ ¼ LðbÞ ¼ 1. The label LðvÞ
of any vertex v at depth d ¼ 1; 2; . . . is the sum of the labels of the vertices at
depth d � 1 connected to v by an edge. Replacing each vertex v by the matrix
algebra MLðvÞ, the unital finite-dimensional C �-algebra Ad is defined as the direct
sum of the matrix algebras lying at depth d, for each d ¼ 0; 1; 2; . . . . As explained
in [9, Chapter 2] and [14, §17], the edges of the above diagram now determine a
unital *-homomorphism fd : Ad ! Adþ1. Finally, the unital AF algebra A is de-
fined by A ¼ limðAd ; fdÞ. Direct inspection shows that D coincides with the
above diagram of A, whence

A ¼ M1;ð2Þ

because Bratteli diagrams completely characterize their associated AF algebras.
By (1), A is an AF‘ algebra, i.e., an AF algebra whose Murray-von Neumann

order of projections is a lattice. These algebras are a generalization of AF alge-
bras with comparability of projections in the sense of Murray-von Neumann,
[10]. Concrete examples of AF‘ algebras include the E¤ros-Shen algebras Fy [9,
p. 65], Blackadar’s simple AF algebra B of [3, p. 504], various (Behnke-Leptin)
C �-algebras with finite primitive ideal spaces, including the unital AF algebras
Ak;n of [1], ðn ¼ 1; 2; . . . ; k ¼ 0; . . . ; n� 1Þ, the liminary C �-algebras considered
in [8], and the C �-algebras of [28]. All primitive ideals I of A, as well as all prim-
itive quotients A=I are further examples of AF‘ algebras.

2. Recognizing A among finitely presented AF‘ algebras

We refer to [21] for all unexplained notions involving algorithms and e¤ective de-
cidability. On page 55 of his book [4], Blackadar writes:

one major problem restricts the usefulness of the study of AF C �-algebras by
diagrams: many quite di¤erent diagrams yield isomorphic algebras, and there
is no known reasonable algorithm for determining when two diagrams give iso-
morphic algebras.
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If we give ‘‘reasonable algorithm’’ its usual mathematical meaning of ‘‘Turing
computable function’’, this remark necessarily deals with AF algebras having Tu-
ring computable Bratteli diagrams. Then Rice’s theorem [21, 5.20] confirms that
no Turing machine can decide whether two Turing machines compute the Brat-
teli diagrams of isomorphic AF algebras.

Decision problems for classes of AF algebras having less general presentations
than Bratteli diagrams, are increasingly considered in the literature. Among the
possible codings of an AF algebra B by a finite string of symbols let us mention

(i) the traditional presentations by generators and relations of the dimension
group K0ðBÞ, [28];

(ii) presentations by integer matrices, [6], [7], by abstract simplicial complexes
[26], by formulas in Łukasiewicz logic [23];

(iii) Boca’s presentation of A, [5, §6].

In this section we will prove the recognizability of A among all AF‘ algebras hav-
ing a presentation of type (i). To fix ideas, let us recall that a (unital ‘-group) term
t ¼ tðX1; . . . ;XnÞ is a string of symbols obtained from the variable symbols Xi

and the constant symbols u and 0, by a finite number of applications of the
‘-group operation symbols þ, �,4,b. The map sending Xi to the ith coordinate
function xi : ½0; 1�n ! ½0; 1� and sending the symbol u to the constant function 1,
canonically extends to a map interpreting each term t as a function ft a M n. De-
noting by 3 ft4 the ideal of M n generated by ft, and taking the quotient in the
usual way [2], we obtain from t the unital ‘-group M n=3 ft4.

The term t is said to be a presentation of the unital ‘-group M n=3 ft4, (by gen-
erators X1; . . . ;Xn and the relation t ¼ 0). Our restriction to just one relation is
immaterial: as a matter of fact, any finite set of relations ft1 ¼ r1; . . . ; tm ¼ rmg
is always reducible to the single relation jt1 � r1j4� � �4jtm � rmj ¼ 0. Since uni-
tal dimension groups are in one-one correspondence with AF algebras via K0, it is
natural to say that t is a presentation of the unital AF‘ algebra B defined by
ðK0ðBÞ; 1BÞ ¼ M n=3 ft4. An AF‘ algebra is said to be finitely presented if it can
be presented by a term.

Examples. It is not hard to see that all finite-dimensional C �-algebras are fi-
nitely presented. A large class of nontrivial examples is provided by all unital
AF‘ algebras P such that ðK0ðPÞ; 1½P�Þ is finitely generated projective. This is so
because any such unital ‘-group is finitely presented, [27, Proposition 5].

The universal property of Lemma 1.1 ensures that M 1 is projective in the
category of unital ‘-groups. Here morphisms are unital ‘-homomorphisms, i.e.,
homomorphisms that also preserve the order unit and the lattice structure. It fol-
lows that A is finitely presented.

If an AF‘ algebra B is finitely presented, then so is the n-fold ‘‘free product’’
AF‘ algebra B½½n��, defined by

ðK0ðB½½n��Þ; ½1
B½½n�� �Þ ¼ ðK0ðBÞ; ½1B�Þ q � � � q ðK0ðBÞ; ½1B�Þ;ð3Þ
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where q denotes free product in the category of unital ‘-groups, [25]. In particu-
lar, A½½n�� is finitely presented, for each n.

Recalling the initial quotation of this section, our first problem now is to decide if
two terms r and t are presentations of the same AF‘ algebra. While terms are
very simple strings of symbols, we have the following

Theorem 2.1. There is no algorithm to decide if two terms rðY1; . . . ;YnÞ and
tðX1; . . . ;XmÞ are presentations of stably isomorphic AF‘ algebras.

Proof. Following [31], let us say that a rational polyhedron in the n-cube ½0; 1�n
is a finite union of rational simplexes T1; . . . ;Tk J ½0; 1�n, in the sense that the co-
ordinates of the vertices of each Ti are rational. Following [13] we first reduce the
PL-homeomorphism problem P1 of rational polyhedra to the isomorphism prob-
lem P2 for finitely presented (possibly non-unital) ‘-groups. Markov’s celebrated
unrecognizability result [20, p. 143–144] shows that P1 is undecidable, whence so
is P2. The proof is concluded by recalling that rðY1; . . . ;YnÞ and tðX1; . . . ;XmÞ
are presentations of stably isomorphic AF‘ algebras B and C i¤ the (possibly
non-unital) ‘-groups K0ðBÞ and K0ðCÞ are isomorphic. For more details see [26,
6.1]. r

Despite Markov’s undecidability result, the variant of Theorem 2.1 with ‘‘iso-
morphic’’ in place of ‘‘stably isomorphic’’ is an open problem: as a matter of fact,
already the recognizability of the unital AF‘-algebra A½½n�� defined as in (3) is open
for each n ¼ 2; 3; . . . . By a quirk of fate, for n ¼ 1 we have

Theorem 2.2. A is recognizable among finitely presented AF‘ algebras. In other
words, the problem whether a term tðX1; . . . ;XnÞ is a presentation of A, is Turing-
decidable.

Proof. For each closed set j0Y J ½0; 1�n we denote by M n ZY the unital ‘-
group of restrictions to Y of the functions in M n, with the order unit given by
the constant function 1 on Y . In symbols,

M n ZY ¼ fg ZY j g a M ng:

For every f a M n let Zf ¼ f �1ð0Þ denote the zeroset of f .

Claim 1. Fix an element f of M n and suppose Zf 0j. Then, letting g range
over all elements of M n=3 f 4, it follows that the map g=3 f 4 7! g ZZf is an iso-
morphism of the unital ‘-groups M n=3 f 4 and M n ZZf .

One argues as in the proof of Baker theorem for finitely presented ‘-groups
(possibly without order unit), [12, 5.2.2]. The appropriate universal property of
M n is ensured by Lemma 1.1. See the proof of [19, 5.1, 5.2] and [27, Proposition
4] for further details.

Claim 2. The term t is a presentation of A i¤ M n ZZft is unitally ‘-isomorphic
to M 1, in symbols, M n ZZft GM 1.
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As a matter of fact, by Claim 1 we can identify M n=3 ft4 and M n ZZft . In the
light of (1)–(2), the desired conclusion now follows by combining [19, 5.1, 5.2]
with [27, Proposition 4].

Claim 3. M 1 GM n ZZft i¤ the real unit interval ½0; 1� is Z-homeomorphic to
Zft , in the sense that there is a homeomorphism h ¼ ðh1; . . . ; hnÞ : ½0; 1� ! Zft

such that each hi belongs to M 1, and h�1 belongs to M n ZZft :
This is an instance of the duality between finitely presented unital ‘-groups

and rational polyhedra. For details see the proof of [19, 6.5].

Our first three claims are to the e¤ect that a term tðX1; . . . ;XnÞ is a presentation
of A i¤ the rational polyhedron Zft is Z-homeomorphic to ½0; 1�. A routine induc-
tion on the number of operation symbols in t shows that the transformation
t 7! Zft can be e¤ectively computed: the output is a list of rational simplexes
T1; . . . ;Tr with Zft ¼ T1 A � � �ATr, where each Ti is presented by its vertices.
Thus, to conclude the proof, we must give an e¤ective procedure to decide if the
rational polyhedron Zft is Z-homeomorphic to ½0; 1�.

To this purpose we prepare some elementary material from polyhedral topol-
ogy, [11, 31]. For any rational point x a Rn we denote by denðxÞ the least com-
mon denominator of the coordinates of x, and we say for short that denðxÞ is the
denominator of x. The vector ~xx ¼ denðxÞðx; 1Þ a Znþ1 is called the homogeneous
correspondent of x. Conversely, for every integer vector y ¼ ðy1; . . . ; ynþ1Þ a
Znþ1 with ynþ1 > 0 and 0a y1; . . . ; yn a ynþ1, the rational point

y1
ynþ1

; . . . ; yn
ynþ1

� �
a ½0; 1�n is said to be the a‰ne correspondent of y. For every ratio-

nal m-simplex T ¼ convðv0; . . . ; vmÞJ ½0; 1�n, the cone T" JRnþ1 is defined by
T" ¼ Rb0~vv0 þ � � � þ Rb0~vvm. We say that the simplicial complex W is rational if
all simplexes of W are rational: in this case, the complex of cones W" ¼
fT" jT a Wg is known as a simplicial fan [11, 29]: letting vertðWÞ denote the set
of vertices (of all simplexes) of W, the primitive generating vectors of W" are pre-
cisely the homogeneous correspondents of elements of vertðWÞ. Following [32]
and [11], a simplex U ¼ convðw0; . . . ;wmÞJRn is said to be regular if it is ratio-
nal and the set of integer vectors f~ww0; . . . ; ~wwmg can be extended to a basis of the
free abelian group Znþ1. A rational, simplicial complex W is said to be regular if
all simplexes in W are regular. In other words, W" is a regular fan, [11] (‘‘nonsin-
gular fan’’ in [29]). For every simplicial complex W, its support jWj is the pointset
union of all simplexes of W. Given two simplicial complexes W 0 and W with the
same support, we say that W 0 is a subdivision of W if every simplex of W 0 is con-
tained in a simplex of W. For any c a jWjJRn, the blow-up of W at c is the sub-
division of W given by replacing every simplex C a W that contains c by the set of
all simplexes of the form convðF A fcgÞ, where F is any face of C that does not
contain c (see [32, p. 376], [11, III, 2.1]). For any regular m-simplex T ¼
convðv0; . . . ; vmÞJRn, the Farey mediant of T is the rational point c of T whose
homogeneous correspondent ~cc coincides with ~vv0 þ � � � þ ~vvm. If T belongs to a reg-
ular complex D and c is the Farey mediant of T , then the blow-up DðcÞ of D at c is
called a Farey blow-up. Direct inspection shows that DðcÞ is regular.
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We are now ready to give the promised decision procedure. If the zeroset Zft is
not homeomorphic to ½0; 1� (a property which can be e¤ectively checked by direct
inspection of Zft), we declare that t is not a presentation of A. Otherwise, Zft has
the form of a broken line contained in the n-cube. We choose an orientation
of Zft , and denote by a and o the initial and final vertices of Zft . Let a ¼
v0; v1; . . . ; vk; vkþ1 ¼ o be the list of all nodes (¼ nondi¤erentiability points) of
Zft . By definition of ft, all these points are rational, and their list can be ef-
fectively computed from the term t. On the support Zft there is a unique (one-
dimensional, rational) simplicial complex Wft having as its 1-simplexes the seg-
ments convðvi; viþ1Þ, i ¼ 0; . . . ; k. If it is not the case that denðaÞ ¼ denðoÞ ¼ 1
we declare that t is not a presentation of A, otherwise we proceed to con-
struct the minimal regular subdivision ‘t of Wft . ‘t is the a‰ne version of the
Hirzebruch-Jung [17, 18] continued fraction algorithm. The construction of ‘t

proceeds through the following steps, [29, p. 24]:
(i) For each i ¼ 0; . . . ; k, letting ~vvi, ~vviþ1 be the homogeneous correspondents of

vi, viþ1, we compute the finite set X JZnþ1 of nonzero integer points of the trian-
gle convð0; ~vvi; ~vviþ1ÞJRnþ1; we then let Y ¼ convðX ÞJRnþ1:

(ii) Let l0 ¼ ~vvi; l1; . . . ; ls; lsþ1 ¼ ~vviþ1 in this order be the points of Znþ1 lying in
the edges of the boundary polygon of Y, other than those lying in the relative in-
terior of the edge convð~vvi; ~vviþ1Þ.

(iii) Let ~‘‘t; i be the fan whose primitive generating vectors are the vec-

tors l0 ¼ ~vvi; l1; . . . ; ls; lsþ1 ¼ ~vviþ1. Let the fan ~‘‘t be the union of all ~‘‘t; i, for
i ¼ 0; . . . ; k:

(iv) We finally define ‘t to be the subdivision of Wft obtained from ~‘‘t by tak-
ing the a‰ne correspondents of all primitive generating vectors in ~‘‘t.

In [29, 1.19] it is shown that ~‘‘t is a regular fan, whence ‘t is a regular sub-
division of Wft . Direct inspection shows that the map t 7! ‘t is e¤ectively
computable. Let denð‘tÞ denote the naturally ordered list of denominators of
the vertices of ‘t. Let d ¼ maxðdenð‘tÞÞ be the largest such denominator. One
can verify that d ¼ maxðdenðv0Þ; . . . ; denðvkþ1ÞÞ. If the denominator of the Farey
mediant of every 1-simplex of ‘t is > d we say that ‘t is d-saturated. Otherwise,
by blowing-up ‘t at some Farey mediant c with denominatora d, we obtain
the regular subdivision ‘ 0 ¼ ‘tðcÞ of ‘t. Similarly, by blowing-up ‘ 0 at some
Farey mediant d of ‘ 0 with denominatora d, we obtain the regular subdivision
‘ 00 ¼ ‘ 0

ðcÞ of ‘
0. The sequence ‘t, ‘

0, ‘ 00, ‘ 000, . . . of Farey blow-ups at Farey me-
diants with denominatora d must terminate, because the n-cube contains only
finitely many points with denominatora d. The final outcome is a d-saturated
regular subdivision ‘�

t of ‘t. Note that ‘�
t is uniquely determined by ‘t, and

the map t 7! ‘�
t is e¤ectively computable. Let denð‘�

t Þ denote the naturally or-
dered list of denominators of the vertices in ‘�

t .

Claim 4. Let x, y be two consecutive vertices of ‘�
t . Then the denominator of

every rational point z lying in the relative interior of the segment convðx; yÞ is
> d.

As a matter of fact, the regularity of the simplex ‘�
t ensures that the homoge-

neous correspondent ~zz of z is a linear combination of ~xx and ~yy with integer coef-
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ficientsb 1. Since ‘�
t is d-saturated, the denominator of the Farey mediant m of

x and y is > d. One now observes that ~mm ¼ ~xxþ ~yy, whence denðzÞb denðmÞ > d,
which settles our claim.

Let Fd be the dth Farey sequence, i.e., the naturally ordered list of all rationals
in ½0; 1� having denominatora d. Then Fd is the set of vertices of a unique subdi-
vision Fd of ½0; 1�. As a reformulation of the unimodularity property of Fd , Fd is
regular. Let denðFdÞ be the naturally ordered list of denominators of the vertices
of Fd .

Claim 5. If denðFdÞ coincides with denð‘�
t Þ, then Zft is Z-homeomorphic to

½0; 1�.
For any two consecutive points v1; v2 a Fd ¼ vertðFdÞ, letting w1, w2 be

the points in the same position in vertð‘�
t Þ, it is su‰cient to exhibit a linear

Z-homeomorphism of the rational 1-simplex S ¼ convðv1; v2Þ onto T ¼
convðw1;w2Þ mapping v1 into w1 and v2 into w2. Writing e1 ¼ ð1; 0Þ and
e2 ¼ ð0; 1Þ for the standard basis vectors of R2, let the 1-simplex EJR2 be de-
fined by E ¼ convðe1=denðv1Þ; e2=denðv2ÞÞ. Then it is easy to exhibit a linear
Z-homeomorphism w of S onto E such that wðviÞ ¼ ei=denðviÞ for all i ¼ 1; 2.
We will construct a linear Z-homeomorphism x of T onto E such that, for all
i ¼ 1; 2, xðwiÞ ¼ ei=denðwiÞ ¼ ei=denðviÞ. For i a f1; 2g there are uniquely deter-
mined integers a1i; . . . ; ani such that the homogeneous correspondent ~wwi a Znþ1 of
wi can be displayed as ~wiwi ¼ ða1i; . . . ; ani; denðwiÞÞ. Let Q be the n� ðnþ 1Þ in-
teger matrix whose rightmost n� 1 columns are all zero, and whose ith column
coincides with a1i; . . . ; ani for each i ¼ 1; 2. By construction, Q sends ei=denðwiÞ
to wi, and the restriction Q ZE is a one-one linear map of E onto T with in-
teger coe‰cients. There remains to be proved that the inverse of Q ZE has integer

coe‰cients, too. To this purpose, let T̂T JRn be a (positively oriented) regular n-
simplex such that T is a face of T̂T . We can write T̂T ¼ convðw1;w2; . . . ;wnþ1Þ. Let
M be the ðnþ 1Þ � ðnþ 1Þ integer matrix whose jth column ð j ¼ 1; . . . ; nþ 1Þ
coincides with the homogeneous correspondent ~wwj of the jth vertex wj of T̂T . The
regularity of T̂T ensures that the inverse N ¼ M�1 is an integer matrix. It follows
that N ~wwj ¼ ej and N ~wwj=denðwjÞ ¼ Nðwj; 1Þ ¼ ej=denðwjÞ. Thus the homogeneous
linear map N determines a one-one linear (a‰ne) map, whose restriction x to T
has the desired properties to settle our claim.

Claim 6. If there is a Z-homeomorphism h : ½0; 1� ! Zft then denðFdÞ coin-
cides with denð‘�

t Þ.
By definition of Z-homeomorphism, h preserves the denominator of each ra-

tional point of ½0; 1�. By Claim 4, the set of rational points hðFdÞ is contained in
vertð‘�

t Þ. Actually, hðFdÞ ¼ vertð‘�
t Þ, for otherwise, letting x a vertð‘�

t ÞnhðFdÞ,
the point h�1ðxÞ would contradict the definition of Fd . This settles our last claim.

Summing up, the term t is a presentation of A i¤ the two lists of integers
denðFdÞ and denð‘�

t Þ are identical. This latter property can be easily verified,
since the three maps t 7! ‘�

t , ‘
�
t 7! d, and d 7! Fd are e¤ectively computable. r
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3. Further properties of A

Following [15, p. 310], for every unital AF algebra C we let TðCÞJC� be the
weak*-compact convex set of tracial states (i.e., positive traces taking the value
1 on the unit) of C, where C� denotes the (Banach) dual space of C. A (tracial)
state f of C is faithful if fðxÞ ¼ 0 implies x ¼ 0, for all positive elements of C.

Theorem 3.1. Every finitely presented AF‘ algebra B, whence in particular the
AF algebra A, has a rational-valued faithful (automorphism-)invariant tracial state,
whence B is *-embeddable into the Glimm universal algebra U, [10, p. 41], [9].

Proof. By a state of a unital ‘-group ðG; uÞ we mean a unit-preserving homo-
morphism s : G ! R such that 0a g a G ) 0a sðgÞ. We say that s is faithful
if sðxÞ ¼ 0 implies x ¼ 0, for all elements xb 0 of G. The state s is said to be
(automorphism-)invariant if for every unit-preserving ‘-group automorphism a
of ðG; uÞ and for each x a G we have sðxÞ ¼ sðaðxÞÞ. Following [15, p. 95], we
denote by SðG; uÞ the compact convex set of states of ðG; uÞ.

As is well known in AF algebra theory, (see, for instance, [15, p. 310]) there is
an a‰ne homeomorphism oB : a 7! sa of TðBÞ onto SðK0ðBÞ; ½1B�Þ. Under this
map, faithful (resp., invariant) tracial states of B correspond to faithful (resp.,
invariant) states of its unital K0-group. In [27, Theorem 4.1] it is proved that
ðK0ðBÞ; ½1B�Þ has a rational-valued faithful invariant state, whence the desired
first conclusion follows.

To prove the *-embeddability of B into U, let us recall that, up *-
isomorphism, U is the only AF algebra such that ðK0ðUÞ; ½1U�Þ ¼ ðQ; 1Þ. The Leb-

esgue integral f a M 1 7!
Z
½0;1�

f a R is a positive unit-preserving homomorphism

l of M 1 (as a partially ordered group) into the totally ordered group R. Since f is
piecewise linear with integer coe‰cients, lð f Þ is a rational number. The preserva-
tion properties of the K0-functor (see, e.g., [14, 20B, p. 172], or [16, 1.1(iv)]) yield
a unital *-homomorphism m : B ! U such that l ¼ K0ðmÞ. Since lð f Þ > 0 for
every nonzero f b 0, m is injective, [14, 19J, p. 160]. Combining (1) with (2), we
conclude that m is the desired injective unital *-homomorphism of B into U. r

Theorem 3.2. Up to *-isomorphism, the infinite-dimensional simple quotients of
A coincide with the E¤ros-Shen AF algebras Fy of [9, p. 65]. Thus, each irrational
rotation C �-algebra Ay is *-embeddable into a simple quotient of A.

Proof. The first statement is proved in [24, 3.1]. The second statement now im-
mediately follows from the celebrated Pimsner-Voiculescu embedding [30]. r

Theorem 3.3. Suppose B is a unital AF algebra and ðK0ðBÞ; ½1B�Þ is a unital
‘-group, generated (as an ‘-group) by the order unit ½1B� together with ½p�, for
some projection p a B. Then B is *-isomorphic to A=I for some ideal I of A.

Proof. By Lemma 1.1, because K0 preserves exact sequences, [10, p. 34], [9,
§9]. r
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The AF algebra A has many other interesting properties, besides those proved
in [24], [5], and in the above sections. Here is a sample of new results, whose
proofs will appear elsewhere:

Theorem 3.4. Let B½0;1� be the compact convex subset of the dual Banach space
Cð½0; 1�;RÞ� given by all Borel probability measures on the unit interval ½0; 1�. Then
the tracial space TðAÞ is a‰nely homeomorphic to B½0;1�.

Theorem 3.5. Let us equip the group AutðAÞ of *-automorphisms of A with the
topology whose basic open sets are all sets of the form Oa;a; e ¼ fb a AutðAÞ j
jjaðaÞ � bðaÞjj < eg, for a a AutðAÞ, a a A and e > 0. Then AutðAÞ has exactly
two connected components.

Theorem 3.6. Every primitive ideal I of A is essential. In other words, every non-
zero ideal K of A has nonzero intersection with I .
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