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Number Theory — The level 1 case of Serre’s conjecture revisited, by Luis

Victor Dieulefait1.

Abstract. — We prove existence of conjugate Galois representations, and we use it to derive a

simple method of weight reduction. As a consequence, an alternative proof of the level 1 case of
Serre’s conjecture follows.
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1. A letter with the results

Barcelona, April 21, 2007

Dear Colleagues:

I think there is a simpler way of proving the level 1 case of Serre’s conjecture and
arbitrary weight (i.e., Khare’s result). The first steps are of course as before: you
start by proving it for k ¼ 2 as in my first work on Serre’s conjecture, and also
observing that by Schoof ’s modularity results for semistable abelian varieties of
conductors 3, 5, 7, 11 and 13, you have the cases of k ¼ 4; 6; 8; 12; 14 also cov-
ered. These are thus the ‘‘base cases’’ for the induction.

I have a procedure to do induction on the weight k. So if the representation has
level 1 and weight (which is thus even) k > 14 or k ¼ 10, the goal of the induction
step is to reduce such a case of Serre’s conjecture to another case (always with
level 1) of weight k 0 < k.

The setup is as in my first work on Serre’s conjecture and the similar work by
Khare-Wintenberger: you use existence of minimal lifts, existence of compatible
families and modularity lifting theorems à la Wiles to propagate modularity. We
also use existence of weight 2 lifts, as in Khare’s proof (for simplicity, we remove
the distinction between the ordinary and non-ordinary cases because we now
know that weight 2 lifts exist in both cases). But we will not use the links that
appear in Khare’s proof, where he uses an odd divisor of p� 1 (for a non-Fermat
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prime p), takes there a non-minimal lift, thus linking with another compatible
family and finally showing that one can force the weight to decrease.

Thus, what is the new argument? When we have to prove the conjecture for cer-
tain weight k, since we can ‘‘switch the prime’’ we can choose the characteristic p
to be any prime greater or equal to k � 1. In our proof we will always choose this
suitable prime p to be LARGER that k (i.e., we never choose p ¼ k � 1), so the
weight two lift will be a lift ‘‘with nebentypus’’. For such a p-adic Galois repre-
sentation with nebentypus, let us call it r, we want to consider a related one,
namely, a conjugate Galois representation rg. The definition of such a represen-
tation, (I will prove in the following lines that it exists!) is as in the case of mod-
ular forms, when you change the Galois representations attached to f by those
attached to f g where g is a field immersion of Kf into the complex numbers,
where Kf is the field of coe‰cients of f (i.e., an element of the Galois group of
the normal closure of Kf over the rationals).

Recall that since r is potentially modular (all p-adic representations that ap-
pear in our proof are known to be so) it has a ‘‘field of coe‰cients’’, namely, a
number field K such that all traces of Frobenius are in this field and they generate
it. We fix an immersion of the algebraic closure of Q into the one of Qp.

Using potential modularity, we can show that there exists a ‘‘conjugate’’ rep-
resentation rg, where g is a field immersion of K into the complex, and rg will be
another potentially modular p-adic representation with field of coe‰cients K g

and its traces are ag
p where ap are the traces of r, and its determinant is also con-

jugated to the one of r. The proof is done by imitating the arguments in the proof
of existence of compatible families for potentially modular Galois representa-
tions: you use Brauer’s theorem to relate r to modular representations attached
to Hilbert modular forms hi over several real field Fi, then you define in the same
way your virtual representation rg by taking the same formula except that you
replace for each i the p-adic representation attached to hi by the one attached to
h
g
i (and you also change c by cg for any character c appearing in the formula)
and when you want to check that this is a true Galois representation then the
formulas that you have to check, by just applying the inverse of g to both
sides, become equalities that you know to be true because r is a true Galois
representation.

Thus you conclude the existence of a ‘‘conjugate’’ Galois representation, and
the local properties of it can be also ‘‘read o¤’’ from the modular forms hg

i , as in
the proof of existence of compatible families2.

I want to consider this conjugate representation only in the situation that it is use-
ful for the proof of level 1 Serre’s conjecture (after taking a weight two lift, start-
ing with p > k): I have a p-adic representation r which is potentially Barsotti-
Tate at p, unramified outside p, and the determinant is mw where w is the p-adic
cyclotomic character and m is ok�2, where o is the Teichmuller lift of the mod p
cyclotomic character.

2 see section 2.1 for more details on this proof
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Observe that the field of coe‰cients K of r contains the field generated by the
values of m (which are roots of unity), let us call C this abelian field contained in
K . We take g such that it acts nontrivially on the roots of unity that generate C,
then the representations r and rg will have di¤erent ‘‘nebentypus’’ (i.e., di¤erent
determinant). For the representation r that we are considering, we know that the
inertial Weil-Deligne parameter at p is exactly:

ðok�2 a 1; 0Þ

When we proved above the existence of the conjugate representation, we re-
marked that the local properties of it can also be deduced from the ones of r
using potential modularity. In particular, rg will have nebentypus mg and it will
be potentially Barsotti-Tate at p with local parameter: ðmg a 1; 0Þ (this follows
from potential modularity, where the field F of modularity can be taken to be
unramified at p: over F the representation r corresponds to a Hilbert modular
form h and the one we have constructed, rg, obviously agrees with the one corre-
sponding to hg). The local properties at other primes are proved with the same
argument used in the proof of existence of families, in our case we conclude that
rg is unramified outside p.

The idea, as we will see later in more detail, is that by considering this conju-
gate representation we can change the nebentypus at p: g acts on the roots of
unity in the image of m as ‘‘raising to the i’’ for certain exponent i, thus the new
inertial parameter at p will be:

ðor a 1; 0Þ for some r (**), we will explain later what values of r are possible
here.

We will show that: if k ¼ 10 or k > 14 we can always take a prime p > k and a
suitable g so that the nebentypus of rg is as in (**) for an r such that when
we consider the reduction mod p of rg, its Serre’s weight, which is known to be
(after twisting!) either rþ 2 or pþ 1� r, is, in both cases, smaller than k. There-
fore, since it is evident that r is modular if and only if rg is so, this will con-
clude the inductive step in the proof of level 1 Serre (thanks to modularity lifting
theorems).

Moreover, in all cases we can just take p to be the smallest prime larger than
k, except for k ¼ 32 where we need to take p ¼ 43.

Remark: If we take g to be just ‘‘complex conjugation’’ this is useless. In fact in
this case the Serre’s weight of the conjugate (reduced modulo p and after twist-
ing) will give us again k: in fact in the above formula this is one of the two values
we obtain in this case (and using other arguments one can show that the complex
conjugated representation is just a twisted of the given one, thus the Galois rep-
resentation has an ‘‘inner twist’’).

The proof that this procedure always makes k smaller (as long as k ¼ 10 or
k > 14) will be given in two steps: for k up to 36 we can check it by hand, some-
thing I have already done so I can say which are the values of p (this I have
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already said) and which are g and r in each case. In the second step, for k > 36,
we work with p > 37, and we will use some well-known estimates on the distribu-
tion of primes to prove that the method works, basically we need to avoid cases
like k ¼ 32 and p ¼ 37 where p� 1 ¼ 36 and k � 2 ¼ 30 and the ratio here is
36=30 ¼ 6=5. We want this ratio to be smaller than that, and it is easy to show
that for p > 37 it is so.

Let us explain in detail this step: Let k be an even integer with k ¼ 10 or k > 14,
and let p be the smallest prime greater than k, except if k ¼ 32 where we take
p ¼ 43.

We start with a mod p representation of Serre’s weight k and we consider a
weight 2 lift r. The nebentypus is m ¼ ok�2 and o has order p� 1 and ramifies
at p only.

Let us call d ¼ ðp� 1; k � 2Þ and let m be such that m � d ¼ p� 1. Thus, the
character m has order m. We choose g so that the nebentypus is changed to
mg ¼ odt for some t < m with t relatively prime to m. We consider rg. The resid-
ual Serre’s weight of it (after twisting) is equal to dtþ 2 or to pþ 1� dt. Since we
want to CHANGE the Serre’s weight after this procedure, we need that the new
nebentypus odt is not equal to m nor to the complex conjugate of m. Thus we need
m to be such that there are more than 2 values of t, i.e., that for Euler’s f function
it holds:

fðmÞ > 2. We will see that we will always have m > 6 (or m ¼ 5 if k ¼ 10,
p ¼ 11), so this is true.

For the moment, just assume that m > 6 (or m ¼ 5 if k ¼ 10) and we take the
following value for t:

• t ¼ ðmþ 1Þ=2 if m is odd

• t ¼ m=2þ 2 if m is even but not divisible by 4

• t ¼ m=2þ 1 if m is divisible by 4

Observe that t is always relatively prime to m.
Let us check, by hand, that for k up to 36, after taking this conjugate repre-

sentation, the residual representation will have a smaller Serre’s weight (let us call
k 0 the Serre’s weight after taking Galois conjugation, also recall that we choose
p ¼ 43 for k ¼ 32):

• k ¼ 10, p ¼ 11: d ¼ 2, m ¼ 5, t ¼ 3, dt ¼ 6; thus: k 0 ¼ 8 or 6.

• k ¼ 16, p ¼ 17: d ¼ 2, m ¼ 8, t ¼ 5, dt ¼ 10; thus: k 0 ¼ 12 or 8.

• k ¼ 18, p ¼ 19: d ¼ 2, m ¼ 9, t ¼ 5, dt ¼ 10; thus: k 0 ¼ 12 or 10.

• k ¼ 20, p ¼ 23: d ¼ 2, m ¼ 11, t ¼ 6, dt ¼ 12; thus k 0 ¼ 14 or 12.

• k ¼ 22, p ¼ 23: d ¼ 2, m ¼ 11, t ¼ 6, dt ¼ 12; thus k 0 ¼ 14 or 12.

• k ¼ 24, p ¼ 29: d ¼ 2, m ¼ 14, t ¼ 9, dt ¼ 18; thus k 0 ¼ 20 or 12.

• k ¼ 26, p ¼ 29: d ¼ 4, m ¼ 7, t ¼ 4, dt ¼ 16; thus k 0 ¼ 18 or 14.

• k ¼ 28, p ¼ 29: d ¼ 2, m ¼ 14, t ¼ 9, dt ¼ 18; thus k 0 ¼ 20 or 12.

• k ¼ 30, p ¼ 31: d ¼ 2, m ¼ 15, t ¼ 8, dt ¼ 16; thus k 0 ¼ 18 or 16.
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• k ¼ 32, p ¼ 43: d ¼ 6, m ¼ 7, t ¼ 4, dt ¼ 24; thus k 0 ¼ 26 or 20.

• k ¼ 34, p ¼ 37: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k 0 ¼ 22 or 18.

• k ¼ 36, p ¼ 37: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k 0 ¼ 22 or 16.

Now we prove the same for k > 36 and p the smallest prime larger than k (in
particular, p > 37). The fact that at the end k 0 will be smaller than k is based on
the fact that two consecutive primes pn and pnþ1 are very close (in relative value)
if pnþ1 > 37. We use the same kind of estimates that appear in Khare’s paper, in
particular we use the fact that for x > 100000 we have Chebyshev’s inequalities
for the prime counting function with A ¼ 1 and B ¼ 1:130289.

From this, an elementary argument used also by Khare gives (we need to take
a constant a > B=A and we take a ¼ 1:144): For pn > 100000 (the initial value
has not changed because the constant a and B=A are not extremely close3), the
quotient pnþ1=pn is smaller than 1:144.

With the help of a computer, we check that in fact this is also true for
100000 > pnþ1 > 37. Thus, if pnþ1 > 37:

pnþ1=pn < 1:144

An obvious corollary of this inequality is the following: For pnþ1 > 37:

ðpnþ1 � 1Þ=ðpn � 1Þ < 1:15

In what follows, we will use these two inequalities that hold for pnþ1 > 37. We
have a weight k > 36 and it is between two primes: pn < k < pnþ1, thus k � 2b
pn � 1. The prime pnþ1 is thus equal to our prime p. Then:

ðpnþ1 � 1Þ=ðk � 2Þa ðpnþ1 � 1Þ=ðpn � 1Þ < 1:15 < 1:2 ¼ 6=5

This implies that m > 6. Then we take t as defined before, a value that tends to
half of m. An easy computation (see (*) below, where we use m > 6) shows that
for such a t, if pnþ1 > 37, for the two possible values of k 0 that one obtains it
always holds: pnþ1=k

0 > 1:144.
In particular, because of the first inequality for consecutive primes, k 0 < pn,

therefore k 0 < k and we are done. This concludes the induction and the new
proof of the level 1 case of Serre’s conjecture.

Computation (*): For each of the three cases in the definition of t we take the
larger of the two values of k 0, which is equal to dtþ 2, and when comparing
p ¼ pnþ1 with k 0 we obtain the quotients:

• p=k 0 ¼ ð7d þ 1Þ=ð4d þ 2Þ or ð9d þ 1Þ=ð5d þ 2Þ or ð11d þ 1Þ=ð6d þ 2Þ . . . . . .
• p=k 0 ¼ ð10d þ 1Þ=ð7d þ 2Þ or ð14d þ 1Þ=ð9d þ 2Þ or ð18d þ 1Þ=ð11d þ 2Þ . . . . .
• p=k 0 ¼ ð8d þ 1Þ=ð5d þ 2Þ or ð12d þ 1Þ=ð7d þ 2Þ or ð16d þ 1Þ=ð9d þ 2Þ . . . . . .

3 see section 2.2 for details
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In all these cases we easily see that it holds p=k 0 > 1:144. The same holds in the
three cases, a fortiori, if we take the smaller of the two possible values of k 0.

Your comments are suggestions will be strongly appreciated.

Best regards,

Luis Dieulefait

2. Details

2.1 Details on the Proof of Existence of Conjugates

Let us include, following an editor’s suggestion, a more detailed proof of exis-
tence of the conjugate representation:

As in the proof of existence of compatible families, we start with the relation
given by Brauer’s formula: Let F be the totally real Galois number field such
that, by Taylor’s result, we know that the restriction of r to it is modular, corre-
sponding to a Hilbert modular form h of parallel weight 2. We know that p is
unramified in F=Q. Let us call Fi the subfields of F such that GalðF=FiÞ is a solv-
able group, so by solvable base change we know that over each Fi the restriction
of r is also modular, corresponding to some Hilbert modular form hi of parallel
weight 2. Then we have:

r ¼
X

i

ni Ind
GalðF=QÞ
GalðF=FiÞ rhi ;p n fi

for some characters fi : GalðF=FiÞ ! Q� and integers ni. Observe that here we
have used modularity over each Fi to identify the restriction of r to each such
field with the p-adic representation attached to the modular form hi: the key
point is that this allows us to consider, for any Galois conjugation g the conju-
gated representations rg

hi;p
, equal by definition to the representation rh g

i
;p attached

to the Hilbert modular form h
g
i . Thus, we define as a virtual representation:

rg ¼
X

i

ni Ind
GalðF=QÞ
GalðF=FiÞ r

g
hi ;p

n f
g
i

To check that it is a true Galois representation, we proceed as in the proof of ex-
istence of compatible families given in [Di1] and we compute the inner product
ðrg; rgÞ, via an application of Frobenius reciprocity and Mackey’s formula (cf.
[Ta3], section 5.3.3) we obtain:

ðrg; rgÞ ¼
X

i; j

X

g AGFi
nGQ=GFj

ti; j;g
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where GK denotes the absolute Galois group of K for any number field K , and
ti; j;g is defined as follows: ti; j;g ¼ ni � nj if

r
g
hi ;p

n f
g
i jGFi

gFj
G cg � rg

hj ;p
n f

g
j jG

g�1
Fi Fj

and ti; j;g ¼ 0 otherwise. In the above formula, cg transforms, for K ¼ g�1
Fi Fj,

representations of GK into representations of GgK by conjugation, i.e., transforms
s into sðg�1 � gÞ.

Thus it is easy to see that the value of this inner product is the same as that
of the inner product ðr; rÞ just by the following elementary and fundamental
principle:

A ¼ B , Ag ¼ Bg

for any pair of algebraic numbers A, B and any Galois conjugation g.
Thus ðrg; rgÞ ¼ ðr; rÞ ¼ 1, the last equality follows from the fact that r is a

true, irreducible, Galois representation. Then we conclude that rg is also a true,
irreducible, Galois representation, and this concludes the proof since by construc-
tion it is clear that rg satisfies the definition of ‘‘conjugate’’ representation that we
have given in the previous section.

2.2 On the Quotient of Consecutive Primes

Starting from the following Chebyshev’s inequalities for the prime counting
function:

A
x

log x
< pðxÞ < B

x

log x

with A ¼ 1 and B ¼ 1:130289 which are known to hold for any x > x0 ¼ 100000,
as in Khare’s paper if we take a > C :¼ B=A ¼ B then we also have: pnþ1=pn < a
for any4 pn > maxðx0; aC=ða�CÞÞ. We have chosen a ¼ 1:144 and since for this
value we easily check that aC=ða�CÞ ¼ 65530:89 . . . < 100000 then we conclude
that for pn > 100000 it holds pnþ1=pn < 1:144.
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