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Mathematical Analysis — Orlicz-Sobolev regularity of mappings with subexpo-
nentially integrable distortion, by ALBERT CLOP, PEKKA KOSKELA.

ABSTRACT. — We study regularity properties of mappings of finite distortion. We show that some
sort of self-improvement phenomena hold also when only subexponential integrability is assumed
for the distortion function. We extend to this setting results by Faraco, Koskela and Zhong [9] and
Bildhauer, Fuchs and Zhong [6].
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1. INTRODUCTION

Let Q < R" be a domain. We say that f : Q — R" is a mapping of finite distortion
if:
(a) f belongs to the Sobolev space Wll’,1 (Q; R").

oc

a
(b) The Jacobian determinant J(-, /) belongs to L} .(Q; R).
(c) There exists a measurable function K : Q — [1, oo] finite almost everywhere,

such that the distortion inequality

(1.1) IDf (3)|" < K(x)J (x, f)
holds for almost every x € Q.

Above, | Df (x)| stands for the operator norm of the differential matrix of /" at the
point x. The smallest function K satisfying (1.1) is called the distortion function of
f. When K € L* one recovers the well known class of mappings of bounded dis-
tortion, or quasiregular mappings (see for instance [25]). More generally, under
suitable conditions of K one automatically has that nonconstant mappings of fi-
nite distortion are continuous, discrete and open (see [20, 23] and also the mono-
graph [21]).

When K is bounded, the distortion inequality immediately gives us that
|Df| € L}.. However, by the seminal works of Boyarski [5] (for planar quasi-
conformal mappings), Gehring [11] (for spatial quasiconformal mappings) and
Elcrat and Meyers [8] (for spatial quasiregular mappings), one actually has
|Df| e LY for all p < pg, where py = po(n,|K].,) depends only on n and |K]|,

loc

and po > n. This result has a dual version, which asserts (see [16], [22]) that
there exists go = qo(n, |K|,,) < n such that if f € W,(I)’C[’ for some ¢ € (go,n) and
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satisfies (1.1), then automat1cally fe Wl . By the work of Astala [1], one
has po(2, K) = 2 and ¢o = Petermichl and Volberg
[27] that in the plane one can’ even take ¢ = qo.

The improved regularity theorem of Gehring [11] is based on a rather techni-
cal lemma, which asserts that the local reverse Holder inequality is an open-ended
property with respect to the exponent. This fact has been shown to be extremely
useful in harmonic analysis and partial differential equations. The lemma, known
since then as Gehring’s Lemma, have been systematically used and several new
versions have been formulated. We refer the reader to [6] for one of such versions,
which found applications also in fluid mechanics. See also the survey [17] and the
monographs [21] and [13].

The regularity theory for mappings of finite distortion has been deeply studied
during the last decade. See for instance the papers [2], [7], [9], [18], [19], [20], [23],
and also the monograph [21] and the references therein. Special interest has been
focused in understanding what is the Orlicz-Sobolev regularity for mappings of
finite distortion whose distortion function K is exponentially integrable, that is,

(1.2) Pk e !
for some p > 0. Under this assumption, the inequality

ab 5
(1‘3) wSa—l—e —1

says that locally |Df| € 10 7 - However, as in the quasiregular case, a better de-
gree of regularity can be “obtained also in this weaker situation, although now
the self-improving rate is slower and has to be measured at a logarlthmlc scale.
We refer the reader to [2], [9], [19] and [20]. Basically, one has the implication

(14) e’ e L' forsomep>0 = |Df|eL"log’ 'L forallf< po

for some number py = po(p,n) > 0. In [9] the authors go even further and give
quite precise estimates for pg, showing that in the above implication one can take

(1.5) p <c(n)p

where ¢(n) > 1 is a constant depending only on the dimension 7. Concerning the
dual problem a similar behavior is also shown in [9]. Namely, if f : Q — R" be-
longs to Wl ! and satisfies the distortion inequality (1.1) with K as in (1.2), then

n

L
(1.6) |Df| € TIL for some f < qy = J(-,f)eL

where ¢y = qo(p,n) > 0 depends linearly on p. As far as we know, [9, Theorem
1.3] is the first published self-improvement result concerning Sobolev solutions to
the inequality (1.1) with unbounded K and which are not assumed to have locally
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integrable Jacobian determinant. On the other hand, implications (1.4) and (1.6)
can be used to obtain measure distortion estimates and removability results in
terms of Orlicz-Sobolev capacities. Very recently, a planar factorization argu-
ment has been used in [4] to show that in (1.5) one may take ¢(2) = 1. This value
is sharp, as shown by Kovalev’s example,

(1.7) f(z) = El (log<e+ |i|)) B 2(loglog<e+| |>>1/2.

Unfortunately the tools from [4] are not available in higher dimensions.

In the present paper, we prove implications analogous to (1.4) and (1.6) hold
for mappings of finite distortion whose distortion function is only subexponen-
tially integrable. This means that instead of (1.2) we only assume that

exp(/(pK)) e L!
for some p > 0, where ./ is slightly below being linear, that is,

(1.8) “ )

Condition (1.8) is critical for mappings of subexponentially integrable distortion
to be continuous, either constant or both discrete and open, and to satisfy Lusin’s
N-condition [23]. See also [15], [24], [26]. We are restricted to the borderline situ-
ation in (1.8), so that examples as ./ (¢) = m 0 <y < 1 are excluded from
our discussion and will be subject of forthcoming work. The examples we have in
mind are

oA (1) =t
t
(1.9) A = tose 1)
A (1) = !

log(e + ) loglog(e¢ + 1)

and so on. A convenient way of characterizing our functions .o is by assuming
that

(1.10) /ltﬂ(s)dsz o (1) (logt)

52 t

(see Section 2 for details). Indeed, it comes easily from the results in [23] and as-
sumption (1.10) that

fewh (R, e?’® e LYQ)and J(-, f) e L) (Q) = |Df]" e LD (Q),

loc
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where we denote

Pylt) = M(t)(l + /lt&/(s) ds)ﬁ_l.

$2
for f € R. This is, hence, the starting point for our main result.

THEOREM 1.1. There exist two constants ¢y = co(n, /) <0, ¢; = ¢;(n,o/) > 0,
with the following property. Let Q — R" be a bounded open set. Let f :Q — R"
belong to I/Vhlj"cl (Q; R"), and assume that

|Df (x)|" < K(x)J(x,f) for almost every x € Q

where K : Q — [1, 0] is a measurable function such that e”P%) e L'(Q). If

Py
loc

|IDf|" € L,’(Q;R) for some B > cop

then also

Py
loc

|Df|" e L,"(Q;R) forall < cip.

In particular, J(-, ) is locally integrable and f is a mapping of finite distortion.

This result extends Theorem 1.1 and Theorem 1.3 in [9] to the setting of subexpo-
nentially integrable distortion. As in [9], the proof of Theorem 1.1 is divided into
two parts. First, we show that

(1.11) e’ eland J(-,f) e L., = |Df|"e L;;ﬁ for all f < ¢1p.

The above implication is implicitely included in a much more general result, re-
cently obtained by Gianetti, Greco and Passarelli di Napoli [12, Theorem 2.2].
Here we get (1.11) as an easy corollary of Lemma 3.1 below, which is a sort of
Gehring Lemma for scalar functions, in the spirit of [6, Lemma 1.2]. That is, it
concerns the improved integrability of real valued functions, with a very slow
scale of self-improvement. This lemma has its own interest, and partially moti-
vated the present paper. The second part in the proof of Theorem 1.1 follows by
proving

(1.12)  ¢“WK) ¢ LV and |Df|" e L)

loc

forsome f > cop = J(-,f)€ Llloc'

This is precisely the claim of Theorem 4.1, and provides an extension of [9,
Theorem 1.3]. The applications regarding measure distortion and removability
theorems will be reported elsewhere.

The paper is structured as follows. In Section 2, we give some prelimi-
naries and explain assumptions (1.8) and (1.10). In Section 3, we prove the self-
improving Lemma and as a Corollary we obtain implication (1.11). In Section 4
we face the weak problem and prove (1.12).
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2. MINIMAL REGULARITY FOR MAPPINGS OF FINITE DISTORTION

The topic of this section is to recall some basic facts concerning the minimal
Orlicz-Sobolev regularity of mappings of finite distortion (see [23] and the
monographs [3] and [21] for more details). We will be dealing with functions
of :[1,00) — [0, 00) which are smooth, non-decreasing, onto, such that

2.1) /lw*{f)dt: .

It was shown in [23] that the above assumption (together with other minor tech-
nical requirements) is critical for mappings of finite distortion K with e”X) e L!
to be continuous, either constant or both discrete and open, and to satisfy Lusin’s
N-condition. The following inequality was verified in [23] (also see [3]), but we
give a short proof below for the reader’s convenience.

LeEMMA 2.1. Let .o/ be as above. Let P be defined by
t 0<tr<l,
(2.2) P(t) =

o/~ (2logt)

P(xy) < x + /27
whenever x >0, y > L.
PRrOOF. First, note that P(¢) < ¢ for t > 0. Thus, if xy < e(!/2() then

P(Xy) <xy< 3(1/2)4’/0’)

and the desired inequality is obvious since ¢(¥) > 1. So we can restrict ourselves
to the case xy > e(1/2(») But then xy > 1 and therefore

P(xy) = —— "= . <Y_x
o/~ (2log(xy)) ¥
because .7 is non-decreasing. Now the desired inequality easily follows. O

As a consequence, if f: Q — R”" is a mapping of finite distortion, with distortion
function K, and p > 0 is fixed, then

P(Df(x)|") < %Ju, 1) 4 oK),

where P is as in (2.2). Therefore, if we further assume that e (?%X) € L', we imme-

diately obtain that |Df|" € L (Q;R). Since we are interested in comparing P
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and .7, it is desirable to have precise estimates for ./ ~! in terms of .«Z. Such esti-
mates easily follow, for instance, if we stay not too far from the borderline cases
for (2.1). To make this more precise, we will represent .oZ as

where L : [1,00) — [1, 00) is a smooth, non-decreasing function, growing to infin-
ity more slowly than any power, that is,

(2.3) lim () = oo and lim 28EW
=00 —x logt

We extend L and .7 for 0 < 7 < 1 by letting L(¢) = 1 and .«/(¢) = 0. In any case,
we are only interested in the behavior of .7 at infinity. For technical reasons, we
will restrict our attention to functions L such that

ZL/(Z) o
L(t) ~ log(e+1)

(2.4)

for some constant Cy > 0 and all # > 0. This includes the examples in (1.9), that
s,

L(1) =log(e +1)

L(t) = log(e + t)loglog(e® + 1)

L(1) = log(e + t) loglog(e® + t) logloglog(e¢” + 7).
Among other facts, (2.4) guarantees that L does not see powers, that is,

L(t*) < a“L(r) whenever o, > 1 (see Lemma 5.1 for more details). Note also
that if L enjoys (2.3) and (2.4), then L(z) = logtL(log?) also does.

LemMa 2.2. If L:[1,0) — [1,00) is smooth, monotonically increasing, satisfy-
ing (2.3) and (2.4), then

A 0))

Ay tL(r)

PrOOF. We use Lemma 5.1. By (2.3), L grows not faster than any power. Thus,
for each ¢ > 0 there is s, > 0 such that whenever s > s,

L(s'%) < L(s/L(s)) < L(s).

Then, using (2.4), we see that

| < % Sexp(log%>SCXP([]SﬂﬁggZ)_(l_lg)Co.
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Hence

as claimed. O

One can therefore estimate the Orlicz function P at (2.2) as follows, for large
values of ¢,

t t

(2.5) P(1) = </ (2log1) ~ Tog(r)L(log 1)’

In other words, both functions give rise to the same Orlicz space, with compara-
ble norms. Some particular examples are:

At)=t = Pt)~ m,
¢ t
o (1) = log(e + 1) P(r) ~ log(e + t) loglog(e¢ + 1)’
t
(1) = log(e + ) loglog(e¢ + 1)
P() :

= log(e + ) loglog(e¢ + ) logloglog(e® + 1)

We remark here that in all the examples above P agrees with the Orlicz function
P, given in the following conjecture of Iwaniec and Martin [21, p. 267].

CONJECTURE 2.3. Let [ : Q — C be a planar mapping of finite distortion K, such
that e K) e L', Then, |Df|* belongs locally to the Orlicz space L™ (), where

P(1) = &/(1)(1 + /ltd(j) ds)_l.

s

However, it is not true in general that P and P, define the same Orlicz space, as
shown by the examples

t

7 Gogte v

0=, [
og(e+ t)(loglog(e¢ + 1))

0 !

N log(e + 1) loglog(e¢ + t)(logloglog(e¢ + 1)) ™%’
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where ¢ > 0. Because of this we restrict our attention to functions .o such that the
limit

. P(1)
Jim 0

exists, and is positive and finite. That is, we require .o7 to satisfy

2.6) Aﬂiyhkz&ﬂgﬂﬁu%o

For these .o/, Lemma 2.1 holds with P replaced by P,, modulo some multiplica-
tive constant.

3. IMPROVED REGULARITY FOR MAPPINGS OF SUBEXPONENTIAL DISTORTION

Let 7 be as in the previous section. That is, /() =0 for 0 <7 <1 and
o/ :[1,00) — [0, 0) is smooth, non-decreasing, and satisfies (2.4) and (2.6). In
what follows, E will denote

E@zlﬁ/ﬂww.
1

2

Then (2.5) simply says that P(7) ~ Py(t), where

That is, if /' : Q — R” is a mapping of finite distortion with distortion function K
satisfying e (?X) ¢ L! for some p > 0, then |Df|" € L’(€Q). Some particular ex-
amples are the following:

At)=t = E(t) ~logle+1)

(1) = E(t) ~loglog(e + 1)

- log(e + 1)
t

A1) = log(e + 1) loglog(e€ + 1)

= E(t) ~logloglog(e + 7).

The goal of this section is to show that this regularity improves as p grows. Such
an improvement is controlled precisely by powers of E, and will be obtained
in Corollary 3.3 as a consequence of the following lemma. Here we denote

=mht
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LEMMA 3.1. Let d >1, o€ (0,1) and p >0 be fixed, and let Q < R" be a
bounded open set. Suppose that [,g,h:Q — R are three non-negative functions,
with

feLl(Q), ™) eLl (Q), heLl ().

If there exists a constant Cy > 0 such that the inequality

(3.1) (/de)wgCO/ZBfg+CO(/Bhd)W

holds for all balls B with 2B = Q, then there exist two constants ¢} =
ci(n,d, Cy) >0 and C, = Cy(n,d, Cy, 5, p,a) > 0 such that

ca fre() sairts fern v a fa(pr)

whenever 0 < < c¢\p, for all balls B such that 2B < Q, where ”f"Z.B = /fd'
B

To prove this lemma, we modify the argument of [6, Lemma 1.2]. Among the
needed results, we state the following standard one (cf. [6, p. 144]). For

¢ € L, (R"),

0 =sup {17 ds

xeB
is the Hardy-Littlewood maximal function of ¢.
LEMMA 3.2. For any ¢ € L'(R") and any t > 0,

o 500
P /{|¢>l} lo(x)[dx < {Myp > 1}] < ; /{|¢>z/2} lp(x)| dx

where A(n), B(n) are positive constants depending only on n.

Proor oF LEMMA 3.1. Fix a ball By = Q. It is not restrictive to assume that

(3.3) F(x)dx =

For x € R", denote by d(x) = d(x, R"\By) the Euclidean distance between x and
R"™\ By. We introduce the auxiliary functions

(x) =S (x)d(x)"",

(x) = h(x)d(x)"",

w(x) = i, (%),

> N
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all of them supported on By. Standard arguments allow us to rewrite our starting
inequality (3.1) as

(3.4) ( /B f(x)ddx)l/ “ < ond G /23 F(x)g(x) dx
+ ca(n,d, C0)</28iz(x)ddx>l/d

+ ¢e3(n,d) ( /23 w(x) dx) l/d.

Since this holds for all balls B, we have a counterpart in terms of maximal func-
tions,

M(FNYN)' < eM(fg)() + M) () + eM (w)(y)

for some constant ¢ = ¢(d,n, Cy) > 1. We can also rewrite this in terms of level
sets,

M (7)) > 2} < {eM(fg) > A} + {eM (h?) > 27} + [{eM (w) > 27}

where the constant ¢ = ¢(n,d, Cy) > 1 may have changed. Now, there exists
A1 = Ai(n,d, Cy) > 0 such that if 2 > 4 = 1(n,d, Cy) then the last term above
vanishes. For the other terms, we use Lemma 3.2. We obtain for all A > A; the
estimate

(3.5) | f(x)%dx < ey(n)i ! /  f(x)g(x) dx + ea4(n) / o h(x)?dx,
{(/>7) {cfo>7) {ch>2}
where still ¢ = ¢(n,d, Cy) > 1. We now introduce the auxiliary function
- 1 o/ (A)
_ p=1 1 e A B
(3.6) OL) =2EA)"E'(4) = T ED E(2)
and let ®,¥ : [0, 00) — R be defined by
) 1 d 4
(1) = g7 g (11 0(0)
d—1
¥(2) = O) + ——E(1)’.

B

Note that W'(1) = ®(4). Further, as E is non-decreasing on (0, c0), then also
O(4) > 0 for A > 0 so that

d—1

(3.7) Yl > TE(N.
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On the other hand,

=001 1:2)

= EQ) M E'G)(d+ (B-1) AE(2) AE"(A))

EG) | EG)
Thus by Lemma 5.1 (g) (note that d > 1), there exists 1, = 4>(d, f) > 0 such that
@ is positive (hence both 4+ A“7'@(1) and ¥ are increasing) on the interval
(22, CO)

Fix 1o = max(4;,4,), and let j > A be very large. We multiply both sides of

(3.5) by @(1), then integrate with respect to 4 over (4, j) and change the order of
integration. We obtain

im0
/ T / @ () d2) dx
{f>ﬂo} ;[0

R min{Lf(x)g(y’C)J} -1
< C4(n)/ . f(x)g(x)(/ AT di) dx
{cfg>70} o

- min{ch(x),j}
+ ean) / e / (7)) dx.
{Ch>).0}

20
~ min{ef (x)g(x), /} i
If we denote G(x) = f(x)g(x) / AT D(A) dA, this leds us to
2o

(3.8) l~ FM(F(x)) d

f>20}

= 4 )
= /{f>/10} f(X) \P(AO) et 64(’1) /{ch>20} G(X) dx

+ ean) /{ - }h(x)d‘l’(min{ciz(x), ) dx

where jj(x) = min{f(x), j}. Now we proceed as follows. For the first term on the
right hand side above, normalization (3.3) gives us that

/~ F(x)"W(Jo) dx < C(n,d, Cy, B)|Bol.
{f>%}

Concerning the second term at (3.8), we will break it into two terms,

(3.9) / G(x)dx:/~ ~ G(x)dx+/_ G dx.
{cfg>10} {cfg>20.f < o} {efg>20, >0}
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Note that there is no restriction in assuming g > 1, otherwise at the pomts x with

g(x) < 1 we can replace g by g + 1 and observe that still exp o/ (p(g + 1) ye L'
Therefore

min{cf (x)g(x), /} < cg(x)f;(x),

where f;(x) = min{f(x), j} and still ¢ = ¢(n,d, Cy), and hence

G(x)

IA

N Cg(x)f?(x)
F(x)g(x) / 2\0(2) di

F(x)g(x)e fi(x) " g(x) T O(cf(x)g(x))
20 () () A (ef (%) g(x) E(efi (x)g(x))P !
=12 ;1 2p9= ot (ca;b) E(ca;h)’ ™!

IA

I/\

where a = f(x), a; = f;(x) and b = g(x). Lemma 5.3 now gives us that

< —2 = F()E(fi(x)! + C(n.d, Co, B, p) exp(# (pg(x)*))

for almost every x. In particular, at points x where f (x) < 4o we obtain

G(x) < C(n,d, Co, B, p) exp(# (pg(x)?)),

because ¢ — t9E(7)” is increasing. Combining these estimates with (3.8) and (3.9),
and using the lower bound for ¥ (3.7), we obtain
d—1
B Jiisio

C(n,d,C()) ~xd -x i »
< S /{M}f( VE(f(x) d

C(”a d7 Covﬁﬂ p) / eﬂ(pg(x)d) dx

By

F)E(f(x) dx

C(n,d,Co,B) | h(x)E(h(x))’ dx.

By

Thus, by choosing ff < the first integral at the right hand side (which

2C (n, d Co) P
is clearly finite since E( f/) is bounded) is absorbed into the left hand side and
after relabeling constants one obtains
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[ F@EG) s
{/>2%}

< C(n,d, Co, b, p)( /B e gy 4 [ h(x)E(h(x))" dx).

0 By

By letting j — oo,
| R EG)
{f>%}

cind.Copop)( [ e [ b Eh) ).
B

0 By

and therefore
i F)E(f(x))’ dx

C(n,d, Cy, p, p)(/B e (P9 g il(x)dE(il(x))ﬁdx>.

0 By

In particular, we obtain that f/E(f)” e L'(B,). Now notice that if x € By and
0 <o <1then (1 —0)"|By| < c,d(x)" <|By|. Recalling the normalization (3.3),
we get

f B
Loy )
Cn,d, C0,57P7‘7)<”f"d.30/ st dx*/ th<||f||dB) )

where | f HZ B = /B /. This gives us the desired inequality. O
0

Now we are ready to prove (1.11).

COROLLARY 3.3. Let ¢ : Q — R" be a mapping of finite distortion, whose distor-
tion function K satisfies

e?PK) ¢ L1(Q).

Then |D¢|" belongs to le( ) for every p < c(n)p, and we have the estimate

J(x, ) J(x,0) \F ( )
/aso I/ (- E<||J(. ) dx < C(n,ﬁ,p,a)/ o (PK()) gy

) 5, O 5, B,

for all balls By with 2By < Q, and all 0 < o < 1.



314 A. CLOP AND P. KOSKELA

ProOOF. With the notation of Lemma 3.1, let /' = J(-,gb)l/d, g=KY h=0and
d= % Then all the integrability assumptions in Lemma 3.1 are satisfied, and
concerning (3.1) there is nothing to say since it is equivalent to the inequality

|1F|/I;J(x,¢)dx |2B|/ DY) n n+1) n+1)/n

which follows by standard arguments since ¢ is regular enough (see equation
(2.3) in [9]). Then, by Lemma 3.1, we obtain the estimate

170 ) o= Dl f e s

for every f < ¢ip, being ¢; and C; as in Lemma 3.1. By Lemma 5.1 (d), E does
not see powers, so we can write this as

J(x,9) J(x,¢) \F S (pK(x)
/GB||J<-,¢>||1,BE(||J<-,¢>||1,B> R R

Now the desired integrability for |[Dg|" comes from the inequality

Pp(xy) < %(xE(x)ﬁ + 7))

which easily follows from Lemma 5.2. O

Concerning the sharpness of the above results, we have the following example. Let
us write log(l)(l) =logt, and for each k = 2,3, ... write log“‘)(t) = log“"l)(log 7).

ExAMPLE 3.4. Given k=2,3,..., let us define for x € By, By = B(0,ry) and
ro > 0 small enough

P(x) = = p(|x])

X
|x]

with p(t) = (log(k) (e +%))7p/n (log (ke+1) ( + %))71/". 1t is not hard to see that

0ol =" i ) = (PEDY )

x| [x]

so that the distortion function K(x,¢) = ‘3?5“;‘) equals
(X))
K(x,¢) = =5
[xlp" (Ix[)

_%(e H)log(e+l|) 10g<k>(e+i> log*V (e + 1
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It can be easily checked that ¢ € Wl:)’(,l (Bo) and J(-,¢) € L}, (Bo), so that ¢ is a
mapping of finite distortion. Further, we have e’PX) e L'(By) with

t
" log(e+1)...log" e+ 1)

By Corollary 3.3, the integrability of the differential |Df|" must be controlled by

t
log® (e + 1 ﬂ_l,
log(e—i—t)...log(k_l)(e—l—t)( g )

Pp(1) =

and in fact
|Dg|" € Lloc(BO> & f<p.

This shows that in Corollary 3.3 we cannot expect for a better upper bound than
B < p, so that in particular ¢(n) < 1. Similarly, by letting f(x) = J(x, ¢)”/ D),
g(x) = K(x, )" "V h(x) =0 and d = 1 jn Lemma 3.1, one sees that there is
no room for lmprovement other than the precise value of the constant cy.

4. WEAK MAPPINGS OF FINITE DISTORTION
Here we assume that .o/, E are as in the previous sections. That is,
o/ : [1,00) — [0, 00) is smooth, non-decreasing, satisfying conditions (2.1), (2.3),

(2.4) and (2.6), and
Ez):1+/t&/gs)
1 S

Some properties of this function £ are given in Lemma 5.1 below. In this sec-
tion, we face the following question. Let Q < R” be a domain. Suppose that
f € W/ '(Q; R") has differential |Df| such that

IDf|" e LY(Q) for some S > 0,

loc

where

We also assume our mapping f satisfies almost everywhere in Q the distortion
inequality

1Df (x)| < K(x)J(x,f)
with distortion function K such that ¢”(?X) ¢ L', We want to show that f is a

true mapping of finite distortion, that is J(-, /) € L}, provided that g > 0 is
small enough.
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This question has already been treated for bounded K in the planar [1, 27] and
spatial [21] cases. Also when .«/(¢) = ¢ a qualitatively sharp result was given in [9,
Theorem 1.3].

THEOREM 4.1. Let f € W,(I) Qﬁ(Q; R") be such that e”PK) e L1(Q). There exists

C

a constant ¢, > 0 such that if

0<f <cyp,

then J(-, f) is locally integrable in Q and therefore f € Wl:)"cQO (Q; R™). In particu-
lar, f is a mapping of finite distortion.

PrOOF. Let us fix a ball By = B(xy, r), strictly included in Q, and let ¢ € € (By)
be a positive function. Denote

_ [lo(x)Df (x)] + 1/ (x) ® Vp(x)| x € B
g(x)—{o v e R By

and f = (fi,..., fn), and let u = ¢f;. For each 1 > 0, let
F; ={x e By: Mg(x) < Aand x is a Lebesgue point of u}.
Following the ideas of [10], one can show that there exists a constant ¢ = ¢(n)

and a cA-Lipschitz continuous function u; such that u;, = u on F,. Then the new
function

ﬁ: (u)b7¢.f‘27"'7¢ﬁl)

belongs to the Sobolev space Wll’q(Q; R") for all ¢ < n and has Lipschitz first

oc

component, so that one can integrate by parts

/ J(x, f;)dx=0
By

and therefore

/F‘J(x,(pf)dxg—/ J(x, f;) dx.

Bo\F;

Arguing as in [9], this leds us to

(4.1) /{<)}¢(x)"J(x,f) dxgc(n)/ () ® Vo)lg(x)" dx

{g<22}

+ c(n)A g(x)"dx.
{g>2}
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We now introduce an auxiliary function ® as

1 AE'(4) 7
SEG) E(A)ﬂ“_/;. D(1)dt.

The above definition forces

(4.2) D(s) < C

for s > 5. We multiply both sides of (4.1) by ®(4), integrate over some interval
(t, 00) and change the order of integration:

43 [ owraeen( [

max{g(x), 1}

o0

D(2) d/l) dx

o0

<) [ 170 @ ottt ( [ @ () d) dx

ax{(1/2)g(x), 1}

+ ¢(n) /B m{q>t}g(x)"71 (/ty(X) 2D(1) di) dx.

Now we look for a lower bound for the left hand side at (4.3). By Lemma 5.1 (b),
we can choose ¢y so that

tE'(1) - 1

E(t) = 2

0<

for all ¢ > ty, and then for such a ¢ we also have

0 . max{g(x), 1} £’ (max{g(x), 1}) 1 p(x)"J(x, f)
/Bo P (x.f) E(max{g(x),})""” = 2/30 BE(max{g(x),1})”

This fact, together with the definition of ®, gives us a lower bound for the left
hand side of (4.3),

l (D(X)nJ(x7f) b )" J(x. ’ X
2/30ﬁE(max{g(x)7t})ﬁd < /Bo p(x)"J( ,f)</max{g<x)7[}®(/l)dl>d .

On the other hand, using the fact that 7 +— r®(z) is positive and non-decreasing,
and also (4.2), we get

9> E'(g)
E(g)""

g
/ 2D(2)di < g*®(g) < C
t
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Thus (4.3) can be rewritten as

1 (x)"J(x, f) 1 p(x)"J(x, f)
@4 28 Jaynig=ty  E(g(x))” dx+2/3 Bnlg<t  E(0)” i
<ol [ LD OVe@lg)" "

B BE(max{lg(x), t})ﬂ

g(x)"" E'(g(x))
) /Bm{g>,} Eg)fT &

Note that the assumption Df € L,o(, says that all the integrals above are finite. We
now use the definition of g, the convexity of # ~— "~ !.o/(¢) for ¢ large enough, the
identity |Df|" = KJ and Lemma 5.2 with = 0 to get
9" E'(9)
=g""'/(g) < c(n)(p" ' 1Df|"" A (9|Df ) + | ® Vo'~ /(I ® Vo))
= c(n)p" 'K gy (@I KT 4 e(n) £ @ Vol (1 © Vi)
c n
< LI + el )+ cl)lf @ Vol A (1f © Vo)

Next, we divide both sides by E(g) "/ This gives us that

g""E'(g) _ cn) , E(pJ'") e’/ (PK) If ® Vo' (| f ® Vo))

FPT = 5 P pgT T e P g e Eg)™"
c(n) ¢"J e/ (PK) L ®Vo" A (f @ Vol)
= 5o g E(g)"!

Summarizing, (4.4) becames

1 e oI5 1) oI 1)
#3) (2ﬂ p )/Bom{q>z} E(g(x )/j . +2ﬁ Byn{g<1} E(Z)ﬁ 5

/() ® Vo)lg()"

<c(n
By BE(max{}g(x) })
n.p) e (PK(x.f)) J
+c(n, p / —————dx
Bintg>1) E(g(x))""!

() ® Vo)™ /(£ (x) ® Vo))
+“”Am@% E(g(x)" e
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Here is where we choose f = . Then, after multiplication by E(¢ ) we obtain

(
1

— x)"J(x, f)dx
7 Bm{gg}(”() (x, f)

E()’
BE (max{1g(x), t})ﬁ

n) / (%) ® Vo(x)[g(x)"! i

E(n?
) [ e AUPN
Bon{g>1} E(g(x))

e [ o W @ Ve (179 © Vo) # .

and letting ¢t — oo this finally gives

(46) (/’(X)”J(X, f) dx < C(I’l) |f(x) ® Vgp(x”g(x)nfl dx

ﬁ Bo BO

because |[f ® Voplg" !, e”PX) and | f ® Vo|./(|f ® Vgl|) are all integrable on By.
In particular, (4.6) says that J(-, ) € L} . and therefore f is a mapping of finite
distortion. O

EXAMPLE 4.2. Let ¢ be as in Example 3.4. We define

46
(o)

for x € By. Easy computations show that f € Wloc (By). Indeed,

J(x) =

I M) 1
A N

at almost every point x € By, and clearly J(-, f) > 0 because p is strictly increas-
ing. Thus [ has a well defined distortion function K which actually agrees with
K(-, ), that is

[Df ()" p(Ix])
J(x, f) |xlp'(Ix])

nlx| 1 ! Y gt et )
:7(e+m>log<e+m)m10g (€+|x|)10gk+1( +0) +

Ix]

1Df (x)| =

K(X,f) =

1
P

Therefore we have that exp(./(pK)) € L' for </ as in Example 3.4, although the
Jacobian determinant J (-, f) is not locally integrable, so f cannot be a mapping of
finite distortion and |Df|" cannot belong to L; . In fact, if
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{
logle+1)...log® V(e + 1) (log® (e + 1)) P!

Op(1)

then Theorem 4.1 forces |Df|" to belong to LI(Q)ﬁ (Bo) only for f > ¢,p. What actu-
ally happens is that
Dfle Lyt & f>p,

loc

so that Theorem 4.1 can only be improved by finding the precise value of c,.

5. TECHNICALITIES
As in the previous sections, .7 :[l,00) — [0,00) is a smooth, onto, non-

decreasing function, such that (2.1), (2.3), (2.4) and (2.6) hold. We extend it by 0
to [0, 1]. We have represented .o/ as

where L : [1, 00) — [1, 00) is also smooth, non-decreasing, onto, and L(z) = 1 for
t € [0,1]. Recall as well that

E(t):1+/l &igs)ds=1+/1 SLd(SS)

is smooth, monotonically increasing to infinity, and E’ is decreasing. We under-
stand that E(¢) = 1 for ¢ € [0, 1].

PROPOSITION 5.1. For o/, E and L as above, the following holds:

a) There is a constant C > 0 such that E(t) < Ct for all t > 1.
b) lim, .. ‘7 = 0.

(

( ,

(c) There exists C > 0 such that AU Sforall t = 0.
(

E(r) — logt
d) L and E do not see powers, i. é.)for ecfch o> 0 there is C = C(a) such that
L(t*) < CL(t) for all t > 1, and similarly for E.
(e) Ift,s =ty then E(s+t) < E(s) + E(2).
(f) If t > ty then E(ts) < C(E(t) + E(s)).

. E//
(g) hmpoﬁ =—1.

PRrROOF. For (a), use just (2.1) and I"'Hopital’s rule to see that

E 1
tim £ _ 0,

= |lim =
i—on  f ziaozL(t)

and then the statement is clear. Claim (b) follows by the definition of E. Indeed,
by the definition of E, (2.6) and Lemma 2.2 we have
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E) S0 1 1 e
E(t) tE() — o '(2logt) ~ 2logiL(2logr) ~ logt

from which (c) follows as well. Claim (d) is a consequence of (c) and (2.4). In fact,
for L we proceed as follows,

L([x) - t* LI(S) t*
0 < log L(0) —/t (s) dssC/t

whenever o > 1. The same reasoning can be aplied to E. For (e), it is not restric-
tive to assume 1 < s < ¢. Since E is smooth on (1, c0), we can use the mean value
theorem, so that there exists ¢ € (¢, + s) such that

=Cl
slogs 0B

E(t+s)—E(t) sE'(E) sE'(s) 1
EG) Els) = Ely EGLK) =

because E’ is decreasing and E(s),L(s) > 1 for s > 1 (in particular, can take
to = 1). To show (f) we write

E(ts) < E((t+5)%) < CE(t + 5) < C(E(1) + E(5))

because £ does not see powers. Finally, note that

- tE"(¢) /') o tL'(1)
E'(t) (1) L)’
from which (g) can be obtained. O

LeEMMA 5.2. Letc,p > 0and d > 1 be fixed. For every a>0,b>1and f >0,

a’"'b" o/ (cab)E(cab)’ ™" < C(i’ 2 a’E(a)’ + C(d, p, p, c)e'”(l’bd).

ProOF. For P defined as in Lemma 2.1, we have the following inequality

P(ab) < la—}—e(lﬂ)'«‘?/(pb),
p

for each p > 0. By relabelling variables, this can be written as

P(a’b?) < lad + (1724 (pb%)
p
Due to (2.6), we have that %% <Pit<C % Thus the above inequality

reads as

A(a’b?) _ C(lad n e(l/z»wpb"))
p
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or equivalently

ab

d—1pd—1
RN )

- C(lad 4 e(l/z)wpb"))_
p
By Lemma 5.1 (d), neither L nor E do see powers, so that

1yd1 - (ab) 1 a
d—1pd-1 Lod L0/ (pb?)
a®'b (@b < C(d)(pa +e )

and we just paid the price that the constant at the right hand side now depends on
d. Further, both .7 and E are doubling, so that

1, 41 (cab) 1 d
d—1pd-1 1 od (/2 (pb?)
(5.1) a® b (cab) < C(d,c)(pa +e )

again by suitably modifying the constant at the right hand side. This is precisely
the desired inequality for f = 0. To get it as well for f > 0, we start by noting
that

E(cab)? <2E(a)’ + C(B,c)E(b)".

This follows from Lemma 5.1 (f) and the inequality (x + y)” < 2x# + C(p)y*.
We then multiply the above inequality by (5.1),

1yd1 - (cab)
(5.2) a’"'b? 1mE(cab)ﬁ

< C(d,c) (%ad + e<1/2W<Pb“>) (2E(a)’ + C(B, ¢)E(b)")

and then the desired inequality comes, provided that we show that

(5.3) C(B, )a'EB) < a’E(@) + C(d, B, p,c)e” "
and
(5.4) C(d,p, c),E(b)ﬁeU/z)J//(”b") < C(d, B, p, C)e%(pb"')
and

C(d
p

(55)  Cld, QB ") < B jagyr o e, p, p, ey,

For proving (5.3), we first see that if C(S, ¢)E(b)? < E(a)” then the inequality is
obvious. Otherwise, we have C(f, ¢)E(b) > E(a) and then
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a’E(b)’ < EN(C(B.)E(D))"E(b)"
< EN(C(B.e.d)EB)E®) < C(df, p, c)e” )
which can be easily shown due to the slow growth properties of E. Inequality
(5.4) is also an easy consequence of the slow growth of E. Finally, to prove

(5.5), we can assume that e(1/2#(rb") < a’, since otherwise (5.5) is clear. Then
one has that

1
a< pl/dexp(ﬂ&i(pbd)).

Now, using Lemma 5.1 (a) and (d) we get

E(a) < C(d, pE(a!) < C(d, Ba!* < C(d, B, p) exp(zl—ﬁ;z/(pbd))

which easily gives (5.5). O

LemMA 5.3. Let ¢,p,f>0 and d > 1 be fixed For every a>0, b>1, let
aj = min{a, j}. Then

Cld,c) 4

adf b S cab)Elea)” < == a’E() + C(d.f.p. ).

ProoOF. We use the above inequality. On one hand, there is no restriction in as-
. . d—1)/d
suming that ¢; > 1 for every j. Hence g; < a; and thus by Lemma 5.2

d—1pd d—1pd
d-2pd—1 cai b caf b (d—1)/d pd—1 (d-1)/d
a!="b* o (caib) = — < = (a; b)) ol (ca; b)
! ! L(caib) = L(cd ™ Vp) /

J

d

ajd_lE(aj) + exp (@/(%))

C(d,c)
P

<

where M = M(d) > 1 is a large constant, to be determined later. Hence

aaffzbd* ! Jz/(cajb)E(cajb)/‘L1

<af C<Z’ D a1 E(a) + exp(ﬂ(%)))E(wjb)ﬁl
c@.)

< LDy (s exp(or (7)) ) Blcap.

Now, since (x + y)? < 2xf + C(B)y*, we get

E(caip)’ < 2E(a))’ + C(B, c)E(ch)”
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and then a multiplication gives us

aajdfzbdflJzi(cajb)E(cajb)ﬁfl

c d
< S %a( g v ool (57 ))) 2B @) + € EeH)
< C(d, C) aa;l_lE(aj)ﬂ 4 C(d, C) aa;l—l C(ﬂ, C)E(Cb)ﬂ

p
0 wenn (7)) + L Daenn( (7)) e

and this gives us the desired inequality, provided that we check the estimates,

(5.6) aE(a;)f‘exp(w(”—AZd)) < a’E(a))" + C(d. ) exp(/ (pb?))

and
(5.7) aa!"' C(p.c)E(ch)’ < a’E(a))’ + C(d, B, p,c) exp(.+/(pb?))
and

(5.8) aexp(&/(p—g))E(cb)ﬁ < a’E(a)" + C(d, B, p, ) exp(/ (ph?)).

d

We check first (5.6). If exp (.7 (£ Abl )) < a’~!, then we are done. If not, using that
E(1) < [log(7)],

B

()" exple (b /M) < |t (00 )| exp( o (o0 )

< cd.pexpl( 255 o/ (o)1)

and we are reduced to find a constant M > 1 large enough so that

exp(dL_dld(pbd/MD < exp((ph?)).

Equivalently, we must find M so that

2d

d_ld(x/M) < d(x), x=p.

But for this we only need M to be large enough, since

A(x/M)  L(x) 1 xm@m<0%MW
o (x)  ML(x/M) M /
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where Cj is the constant in (2.4). Thus (5.6) follows. The inequality (5.8) can be
similarly checked, and so we are reduced to prove (5.7). For this, there is nothing
to say if C(B, ¢)E(chb)? < E(a)”, since

d-1 d
aa; E(at)/j <a E(aj)ﬁ,

as t'—>td’1E(z)7/j is increasing for large enough 7. Otherwise, E(a)

<
C(p, c)E(chb) and then one just has to argue similarly as in the proof of (5.3). O
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