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Mathematical Analysis — Orlicz-Sobolev regularity of mappings with subexpo-
nentially integrable distortion, by Albert Clop, Pekka Koskela.

Abstract. — We study regularity properties of mappings of finite distortion. We show that some

sort of self-improvement phenomena hold also when only subexponential integrability is assumed
for the distortion function. We extend to this setting results by Faraco, Koskela and Zhong [9] and

Bildhauer, Fuchs and Zhong [6].
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1. Introduction

Let WHRn be a domain. We say that f : W ! Rn is a mapping of finite distortion
if:

(a) f belongs to the Sobolev space W 1;1
loc ðW;RnÞ.

(b) The Jacobian determinant Jð�; f Þ belongs to L1
locðW;RÞ.

(c) There exists a measurable function K : W ! ½1;l� finite almost everywhere,
such that the distortion inequality

jDf ðxÞjn aKðxÞJðx; f Þð1:1Þ

holds for almost every x a W.

Above, jDf ðxÞj stands for the operator norm of the di¤erential matrix of f at the
point x. The smallest function K satisfying (1.1) is called the distortion function of
f . When K a Ll one recovers the well known class of mappings of bounded dis-
tortion, or quasiregular mappings (see for instance [25]). More generally, under
suitable conditions of K one automatically has that nonconstant mappings of fi-
nite distortion are continuous, discrete and open (see [20, 23] and also the mono-
graph [21]).

When K is bounded, the distortion inequality immediately gives us that
jDf j a Ln

loc. However, by the seminal works of Boyarski [5] (for planar quasi-
conformal mappings), Gehring [11] (for spatial quasiconformal mappings) and
Elcrat and Meyers [8] (for spatial quasiregular mappings), one actually has
jDf j a L

p
loc for all p < p0, where p0 ¼ p0ðn; jjK jjlÞ depends only on n and jjK jjl,

and p0 > n. This result has a dual version, which asserts (see [16], [22]) that
there exists q0 ¼ q0ðn; jjK jjlÞ < n such that if f a W

1;q
loc for some q a ðq0; nÞ and



satisfies (1.1), then automatically f a W
1;n
loc . By the work of Astala [1], one

has p0ð2;KÞ ¼ 2K
K�1 and q0 ¼ p0

p0�1 . Later it was shown by Petermichl and Volberg
[27] that in the plane one can even take q ¼ q0.

The improved regularity theorem of Gehring [11] is based on a rather techni-
cal lemma, which asserts that the local reverse Hölder inequality is an open-ended
property with respect to the exponent. This fact has been shown to be extremely
useful in harmonic analysis and partial di¤erential equations. The lemma, known
since then as Gehring’s Lemma, have been systematically used and several new
versions have been formulated. We refer the reader to [6] for one of such versions,
which found applications also in fluid mechanics. See also the survey [17] and the
monographs [21] and [13].

The regularity theory for mappings of finite distortion has been deeply studied
during the last decade. See for instance the papers [2], [7], [9], [18], [19], [20], [23],
and also the monograph [21] and the references therein. Special interest has been
focused in understanding what is the Orlicz-Sobolev regularity for mappings of
finite distortion whose distortion function K is exponentially integrable, that is,

epK a L1ð1:2Þ

for some p > 0. Under this assumption, the inequality

ab

logðeþ abÞ a aþ eb � 1ð1:3Þ

says that locally jDf j a Ln

logL
. However, as in the quasiregular case, a better de-

gree of regularity can be obtained also in this weaker situation, although now
the self-improving rate is slower and has to be measured at a logarithmic scale.
We refer the reader to [2], [9], [19] and [20]. Basically, one has the implication

epK a L1 for some p > 0 ) jDf j a Ln logb�1 L for all b < p0ð1:4Þ

for some number p0 ¼ p0ðp; nÞ > 0. In [9] the authors go even further and give
quite precise estimates for p0, showing that in the above implication one can take

b < cðnÞpð1:5Þ

where cðnÞb 1 is a constant depending only on the dimension n. Concerning the
dual problem, a similar behavior is also shown in [9]. Namely, if f : W ! Rn be-
longs to W

1;1
loc and satisfies the distortion inequality (1.1) with K as in (1.2), then

jDf j a Ln

logbþ1 L
for some b < q0 ) Jð�; f Þ a L1ð1:6Þ

where q0 ¼ q0ðp; nÞ > 0 depends linearly on p. As far as we know, [9, Theorem
1.3] is the first published self-improvement result concerning Sobolev solutions to
the inequality (1.1) with unbounded K and which are not assumed to have locally
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integrable Jacobian determinant. On the other hand, implications (1.4) and (1.6)
can be used to obtain measure distortion estimates and removability results in
terms of Orlicz-Sobolev capacities. Very recently, a planar factorization argu-
ment has been used in [4] to show that in (1.5) one may take cð2Þ ¼ 1. This value
is sharp, as shown by Kovalev’s example,

f ðzÞ ¼ z

jzj

�
log

�
eþ 1

jzj

���p=2�
log log

�
eþ 1

jzj

���1=2

:ð1:7Þ

Unfortunately the tools from [4] are not available in higher dimensions.
In the present paper, we prove implications analogous to (1.4) and (1.6) hold

for mappings of finite distortion whose distortion function is only subexponen-
tially integrable. This means that instead of (1.2) we only assume that

expðAðpKÞÞ a L1

for some p > 0, where A is slightly below being linear, that is,

Z l

1

AðtÞ
t2

dt ¼ l:ð1:8Þ

Condition (1.8) is critical for mappings of subexponentially integrable distortion
to be continuous, either constant or both discrete and open, and to satisfy Lusin’s
N-condition [23]. See also [15], [24], [26]. We are restricted to the borderline situ-
ation in (1.8), so that examples as AðtÞ ¼ t

log gðeþtÞ , 0 < g < 1 are excluded from

our discussion and will be subject of forthcoming work. The examples we have in
mind are

AðtÞ ¼ t

AðtÞ ¼ t

logðeþ tÞ

AðtÞ ¼ t

logðeþ tÞ log logðee þ tÞ

ð1:9Þ

and so on. A convenient way of characterizing our functions A is by assuming
that

Z t

1

AðsÞ
s2

dsU
AðtÞA�1ðlog tÞ

t
ð1:10Þ

(see Section 2 for details). Indeed, it comes easily from the results in [23] and as-
sumption (1.10) that

f a W
1;1
loc ðW;RnÞ; eAðKÞ a L1ðWÞ and Jð�; f Þ a L1

locðWÞ ) jDf jn a LP0

locðWÞ;
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where we denote

PbðtÞ ¼ AðtÞ
�
1þ

Z t

1

AðsÞ
s2

ds
�b�1

:

for b a R. This is, hence, the starting point for our main result.

Theorem 1.1. There exist two constants c0 ¼ c0ðn;AÞ < 0, c1 ¼ c1ðn;AÞ > 0,
with the following property. Let WHRn be a bounded open set. Let f : W ! Rn

belong to W
1;1
loc ðW;RnÞ, and assume that

jDf ðxÞjn aKðxÞJðx; f Þ for almost every x a W

where K : W ! ½1;l� is a measurable function such that eAðpKÞ a L1ðWÞ. If

jDf jn a L
Pb

locðW;RÞ for some b > c0p

then also

jDf jn a L
Pb

locðW;RÞ for all b < c1p:

In particular, Jð�; f Þ is locally integrable and f is a mapping of finite distortion.

This result extends Theorem 1.1 and Theorem 1.3 in [9] to the setting of subexpo-
nentially integrable distortion. As in [9], the proof of Theorem 1.1 is divided into
two parts. First, we show that

eAðpKÞ a L1 and Jð�; f Þ a L1
loc ) jDf jn a L

Pb

loc for all b < c1p:ð1:11Þ

The above implication is implicitely included in a much more general result, re-
cently obtained by Gianetti, Greco and Passarelli di Napoli [12, Theorem 2.2].
Here we get (1.11) as an easy corollary of Lemma 3.1 below, which is a sort of
Gehring Lemma for scalar functions, in the spirit of [6, Lemma 1.2]. That is, it
concerns the improved integrability of real valued functions, with a very slow
scale of self-improvement. This lemma has its own interest, and partially moti-
vated the present paper. The second part in the proof of Theorem 1.1 follows by
proving

eAðpKÞ a L1 and jDf jn a L
Pb

loc for some b > c0p ) Jð�; f Þ a L1
loc:ð1:12Þ

This is precisely the claim of Theorem 4.1, and provides an extension of [9,
Theorem 1.3]. The applications regarding measure distortion and removability
theorems will be reported elsewhere.

The paper is structured as follows. In Section 2, we give some prelimi-
naries and explain assumptions (1.8) and (1.10). In Section 3, we prove the self-
improving Lemma and as a Corollary we obtain implication (1.11). In Section 4
we face the weak problem and prove (1.12).
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2. Minimal regularity for mappings of finite distortion

The topic of this section is to recall some basic facts concerning the minimal
Orlicz-Sobolev regularity of mappings of finite distortion (see [23] and the
monographs [3] and [21] for more details). We will be dealing with functions
A : ½1;lÞ ! ½0;lÞ which are smooth, non-decreasing, onto, such that

Z l

1

AðtÞ
t2

dt ¼ l:ð2:1Þ

It was shown in [23] that the above assumption (together with other minor tech-
nical requirements) is critical for mappings of finite distortion K with eAðKÞ a L1

to be continuous, either constant or both discrete and open, and to satisfy Lusin’s
N-condition. The following inequality was verified in [23] (also see [3]), but we
give a short proof below for the reader’s convenience.

Lemma 2.1. Let A be as above. Let P be defined by

PðtÞ ¼
t 0a ta 1;

t

A�1ð2 log tÞ
t > 1:

8<
:ð2:2Þ

Then

PðxyÞa xþ eð1=2ÞAðyÞ

whenever xb 0, yb 1.

Proof. First, note that PðtÞa t for tb 0. Thus, if xya eð1=2ÞAðyÞ, then

PðxyÞa xya eð1=2ÞAðyÞ

and the desired inequality is obvious since eAðyÞ b 1. So we can restrict ourselves
to the case xy > eð1=2ÞAðyÞ. But then xy > 1 and therefore

PðxyÞ ¼ xy

A�1ð2 logðxyÞÞ
a

xy

y
¼ x

because A is non-decreasing. Now the desired inequality easily follows. r

As a consequence, if f : W ! Rn is a mapping of finite distortion, with distortion
function K , and p > 0 is fixed, then

PðjDf ðxÞjnÞa 1

p
Jðx; f Þ þ eAðpKðxÞÞ:

where P is as in (2.2). Therefore, if we further assume that eAðpKÞ a L1, we imme-
diately obtain that jDf jn a LP

locðW;RÞ. Since we are interested in comparing P
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and A, it is desirable to have precise estimates for A�1 in terms of A. Such esti-
mates easily follow, for instance, if we stay not too far from the borderline cases
for (2.1). To make this more precise, we will represent A as

AðtÞ ¼ t

LðtÞ

where L : ½1;lÞ ! ½1;lÞ is a smooth, non-decreasing function, growing to infin-
ity more slowly than any power, that is,

lim
t!l

LðtÞ ¼ l and lim
t!l

logLðtÞ
log t

¼ 0:ð2:3Þ

We extend L and A for 0a ta 1 by letting LðtÞ ¼ 1 and AðtÞ ¼ 0. In any case,
we are only interested in the behavior of A at infinity. For technical reasons, we
will restrict our attention to functions L such that

tL 0ðtÞ
LðtÞ a

C0

logðeþ tÞð2:4Þ

for some constant C0 b 0 and all tb 0. This includes the examples in (1.9), that
is,

LðtÞ ¼ logðeþ tÞ
LðtÞ ¼ logðeþ tÞ log logðee þ tÞ
LðtÞ ¼ logðeþ tÞ log logðee þ tÞ log log logðeee þ tÞ:

Among other facts, (2.4) guarantees that L does not see powers, that is,
LðtaÞa aC0LðtÞ whenever a; tb 1 (see Lemma 5.1 for more details). Note also
that if L enjoys (2.3) and (2.4), then ~LLðtÞ ¼ log tLðlog tÞ also does.

Lemma 2.2. If L : ½1;lÞ ! ½1;lÞ is smooth, monotonically increasing, satisfy-
ing (2.3) and (2.4), then

lim
t!l

A�1ðtÞ
tLðtÞ ¼ 1:

Proof. We use Lemma 5.1. By (2.3), L grows not faster than any power. Thus,
for each e > 0 there is se > 0 such that whenever s > se

Lðs1�eÞaLðs=LðsÞÞaLðsÞ:

Then, using (2.4), we see that

1a
LðsÞ

Lðs=LðsÞÞ a exp
�
log

LðsÞ
Lðs1�eÞ

�
a exp

�Z s

s1�e

C0 dr

r log r

�
¼ 1

ð1� eÞC0
:
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Hence

lim
s!l

A�1ðsÞ
sLðsÞ ¼ lim

t!l

LðtÞ
Lðt=LðtÞÞ ¼ 1;

as claimed. r

One can therefore estimate the Orlicz function P at (2.2) as follows, for large
values of t,

PðtÞ ¼ t

A�1ð2 log tÞ
U

t

logðtÞLðlog tÞ :ð2:5Þ

In other words, both functions give rise to the same Orlicz space, with compara-
ble norms. Some particular examples are:

AðtÞ ¼ t ) PðtÞU t

logðeþ tÞ ;

AðtÞ ¼ t

logðeþ tÞ ) PðtÞU t

logðeþ tÞ log logðee þ tÞ ;

AðtÞ ¼ t

logðeþ tÞ log logðee þ tÞ )

PðtÞU t

logðeþ tÞ log logðee þ tÞ log log logðeee þ tÞ :

We remark here that in all the examples above P agrees with the Orlicz function
PA given in the following conjecture of Iwaniec and Martin [21, p. 267].

Conjecture 2.3. Let f : W ! C be a planar mapping of finite distortion K, such
that eAðKÞ a L1. Then, jDf j2 belongs locally to the Orlicz space LPAðWÞ, where

PAðtÞ ¼ AðtÞ
�
1þ

Z t

1

AðsÞ
s2

ds
��1

:

However, it is not true in general that P and PA define the same Orlicz space, as
shown by the examples

AðtÞ ¼ t

ðlogðeþ tÞÞ1�e
;

AðtÞ ¼ t

logðeþ tÞðlog logðee þ tÞÞ1�e

AðtÞ ¼ t

logðeþ tÞ log logðee þ tÞðlog log logðeee þ tÞÞ1�e
;
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where e > 0. Because of this we restrict our attention to functions A such that the
limit

lim
t!l

PðtÞ
PAðtÞ

exists, and is positive and finite. That is, we require A to satisfy

Z t

1

AðsÞ
s2

dsU
AðtÞA�1ðlog tÞ

t
:ð2:6Þ

For these A, Lemma 2.1 holds with P replaced by PA, modulo some multiplica-
tive constant.

3. Improved regularity for mappings of subexponential distortion

Let A be as in the previous section. That is, AðtÞ ¼ 0 for 0a ta 1 and
A : ½1;lÞ ! ½0;lÞ is smooth, non-decreasing, and satisfies (2.4) and (2.6). In
what follows, E will denote

EðtÞ ¼ 1þ
Z t

1

AðsÞ
s2

ds:

Then (2.5) simply says that PðtÞUP0ðtÞ, where

P0ðtÞ ¼
AðtÞ
EðtÞ :

That is, if f : W ! Rn is a mapping of finite distortion with distortion function K
satisfying eAðpKÞ a L1 for some p > 0, then jDf jn a LP0

locðWÞ. Some particular ex-
amples are the following:

AðtÞ ¼ t ) EðtÞU logðeþ tÞ

AðtÞ ¼ t

logðeþ tÞ ) EðtÞU log logðeþ tÞ

AðtÞ ¼ t

logðeþ tÞ log logðee þ tÞ ) EðtÞU log log logðeþ tÞ:

The goal of this section is to show that this regularity improves as p grows. Such
an improvement is controlled precisely by powers of E, and will be obtained
in Corollary 3.3 as a consequence of the following lemma. Here we denote

j

Z
B

f ¼ 1

jBj

Z
B

f .
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Lemma 3.1. Let d > 1, s a ð0; 1Þ and p > 0 be fixed, and let WHRn be a
bounded open set. Suppose that f ; g; h : W ! R are three non-negative functions,
with

f a Ld
locðWÞ; eAðpgdÞ a L1

locðWÞ; h a Ld
locðWÞ:

If there exists a constant C0 > 0 such that the inequality

�

j

Z
B

f d
�1=d

aC0

j

Z
2B

fgþ C0

�

j

Z
B

hd
�1=d

ð3:1Þ

holds for all balls B with 2BHW, then there exist two constants c1 ¼
c1ðn; d;C0Þ > 0 and C1 ¼ C1ðn; d;C0; b; p; sÞ > 0 such that

j

Z
sB

f dE
� f

jj f jjd;B

�b

aC1jj f jjdd;B j

Z
B

eAðpgd Þ þ C1

j

Z
B

hdE
� h

jj f jjd;B

�b

ð3:2Þ

whenever 0 < b < c1p, for all balls B such that 2BHW, where jj f jjdd;B ¼ j

Z
B

f d.

To prove this lemma, we modify the argument of [6, Lemma 1.2]. Among the
needed results, we state the following standard one (cf. [6, p. 144]). For
j a L1

locðRnÞ,

MjðxÞ ¼ sup
x AB

j
Z
B

j f ðyÞj dy

is the Hardy-Littlewood maximal function of j.

Lemma 3.2. For any j a L1ðRnÞ and any t > 0,

AðnÞ
t

Z
fjjjbtg

jjðxÞj dxa jfMjb tgja BðnÞ
t

Z
fjjjbt=2g

jjðxÞj dx

where AðnÞ, BðnÞ are positive constants depending only on n.

Proof of Lemma 3.1. Fix a ball B0 HW. It is not restrictive to assume that

Z
B0

f ðxÞd dx ¼ 1:ð3:3Þ

For x a Rn, denote by dðxÞ ¼ dðx;RnnB0Þ the Euclidean distance between x and
RnnB0. We introduce the auxiliary functions

~ff ðxÞ ¼ f ðxÞ dðxÞn=d ;
~hhðxÞ ¼ hðxÞ dðxÞn=d ;
wðxÞ ¼ wB0

ðxÞ;
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all of them supported on B0. Standard arguments allow us to rewrite our starting
inequality (3.1) as

�

j

Z
B

~ff ðxÞd dx
�1=d

a c1ðn; d;C0Þ j

Z
2B

~ff ðxÞgðxÞ dxð3:4Þ

þ c2ðn; d;C0Þ
�

j

Z
2B

~hhðxÞd dx
�1=d

þ c3ðn; dÞ
�

j

Z
2B

wðxÞ dx
�1=d

:

Since this holds for all balls B, we have a counterpart in terms of maximal func-
tions,

Mð ~ff dÞðyÞ1=d a cMð ~ffgÞðyÞ þ cMð~hhdÞðyÞ1=d þ cMðwÞðyÞ1=d

for some constant c ¼ cðd; n;C0Þb 1. We can also rewrite this in terms of level
sets,

jfMð ~ff dÞ > ldgja jfcMð ~ffgÞ > lgj þ jfcMð~hhdÞ > ldgj þ jfcMðwÞ > ldgj

where the constant c ¼ cðn; d;C0Þb 1 may have changed. Now, there exists
l1 ¼ l1ðn; d;C0Þ > 0 such that if l > l1 ¼ l1ðn; d;C0Þ then the last term above
vanishes. For the other terms, we use Lemma 3.2. We obtain for all l > l1 the
estimate

Z
f ~ff>lg

~ff ðxÞd dxa c4ðnÞld�1

Z
fc~ffg>lg

~ff ðxÞgðxÞ dxþ c4ðnÞ
Z
fc~hh>lg

~hhðxÞd dx;ð3:5Þ

where still c ¼ cðn; d;C0Þb 1. We now introduce the auxiliary function

YðlÞ ¼ lEðlÞb�1
E 0ðlÞ ¼ 1

l

AðlÞ
EðlÞ EðlÞ

bð3:6Þ

and let F;C : ½0;lÞ ! R be defined by

FðlÞ ¼ 1

ld�1

d

dl
ðld�1YðlÞÞ

CðlÞ ¼ YðlÞ þ d � 1

b
EðtÞb:

Note that C 0ðlÞ ¼ FðlÞ. Further, as E is non-decreasing on ð0;lÞ, then also
YðlÞb 0 for l > 0 so that

CðlÞb d � 1

b
EðlÞb:ð3:7Þ
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On the other hand,

FðlÞ ¼ YðlÞ
l

�
d � 1þ lY 0ðlÞ

YðlÞ

�

¼ EðlÞb�1
E 0ðlÞ

�
d þ ðb � 1Þ lE

0ðlÞ
EðlÞ þ lE 00ðlÞ

E 0ðlÞ

�
:

Thus by Lemma 5.1 (g) (note that d > 1), there exists l2 ¼ l2ðd; bÞ > 0 such that
F is positive (hence both l 7! ld�1YðlÞ and C are increasing) on the interval
ðl2;lÞ.

Fix l0 ¼ maxðl1; l2Þ, and let j > l0 be very large. We multiply both sides of
(3.5) by FðlÞ, then integrate with respect to l over ðl0; jÞ and change the order of
integration. We obtain

Z
f ~ff>l0g

~ff ðxÞd
�Z minf ~ff ðxÞ; jg

l0

FðlÞ dl
�
dx

a c4ðnÞ
Z
fc~ffg>l0g

~ff ðxÞgðxÞ
�Z minfc~ff ðxÞgðxÞ; jg

l0

ld�1FðlÞ dl
�
dx

þ c4ðnÞ
Z
fc~hh>l0g

~hhðxÞd
�Z minfc~hhðxÞ; jg

l0

FðlÞ dl
�
dx:

If we denote GðxÞ ¼ ~ff ðxÞgðxÞ
Z minfc~ff ðxÞgðxÞ; jg

l0

ld�1FðlÞ dl, this leds us to

Z
f ~ff>l0g

~ff ðxÞdCð ~ffjðxÞÞ dxð3:8Þ

a

Z
f ~ff>l0g

~ff ðxÞdCðl0Þ dxþ c4ðnÞ
Z
fc~ffg>l0g

GðxÞ dx

þ c4ðnÞ
Z
fc~hh>l0g

~hhðxÞdCðminfc~hhðxÞ; jgÞ dx

where ~ffjðxÞ ¼ minf ~ff ðxÞ; jg. Now we proceed as follows. For the first term on the
right hand side above, normalization (3.3) gives us that

Z
f ~ff>l0g

~ff ðxÞdCðl0Þ dxaCðn; d;C0; bÞjB0j:

Concerning the second term at (3.8), we will break it into two terms,

Z
fc~ffg>l0g

GðxÞ dx ¼
Z
fc~ffg>l0; ~ff a l0g

GðxÞ dxþ
Z
fc~ffg>l0; ~ff>l0g

GðxÞ dx:ð3:9Þ
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Note that there is no restriction in assuming gb 1, otherwise at the points x with
gðxÞ < 1 we can replace g by gþ 1 and observe that still expAðpðgþ 1ÞdÞ a L1.
Therefore

minfc~ff ðxÞgðxÞ; jga cgðxÞ ~ffjðxÞ;

where ~ffjðxÞ ¼ minf ~ff ðxÞ; jg and still c ¼ cðn; d;C0Þ, and hence

GðxÞa ~ff ðxÞgðxÞ
Z cgðxÞ ~ffjðxÞ

l0

ld�1FðlÞ dl

a ~ff ðxÞgðxÞcd�1~ffjðxÞ
d�1

gðxÞd�1Yðc~ffjðxÞgðxÞÞ
a cd�2~ff ðxÞ ~ffjðxÞ

d�2
gðxÞd�1Aðc~ffjðxÞgðxÞÞEðc~ffjðxÞgðxÞÞ

b�1

¼ cd�2aad�2
j bd�1AðcajbÞEðcajbÞb�1

where a ¼ ~ff ðxÞ, aj ¼ ~ffjðxÞ and b ¼ gðxÞ. Lemma 5.3 now gives us that

GðxÞa Cðn; d;C0Þ
p

~ff ðxÞdEð ~ffjðxÞÞ
b þ Cðn; d;C0; b; pÞ expðAðpgðxÞdÞÞ

for almost every x. In particular, at points x where ~ff ðxÞa l0 we obtain

GðxÞaCðn; d;C0; b; pÞ expðAðpgðxÞdÞÞ;

because t 7! tdEðtÞb is increasing. Combining these estimates with (3.8) and (3.9),
and using the lower bound for C (3.7), we obtain

d � 1

b

Z
f ~ff>l0g

~ff ðxÞdEð ~ffjðxÞÞ
b
dx

a
Cðn; d;C0Þ

p

Z
f ~ff>l0g

~ff ðxÞdEð ~ffjðxÞÞ
b
dx

þ Cðn; d;C0; b; pÞ
Z
B0

eAðpgðxÞd Þ dx

þ Cðn; d;C0; bÞ
Z
B0

~hhðxÞdEð~hhðxÞÞb dx:

Thus, by choosing b < d�1
2Cðn;d;C0Þ p, the first integral at the right hand side (which

is clearly finite since Eð ~ffjÞ
b is bounded) is absorbed into the left hand side and

after relabeling constants one obtains
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Z
f ~ff>l0g

~ff ðxÞdEð ~ffjðxÞÞ
b
dx

aCðn; d;C0; b; pÞ
�Z

B0

eAðpgðxÞd Þ dxþ
Z
B0

~hhðxÞdEð~hhðxÞÞb dx
�
:

By letting j ! l,

Z
f ~ff>l0g

~ff ðxÞdEð ~ff ðxÞÞb dx

aCðn; d;C0; b; pÞ
�Z

B0

eAðpgðxÞd Þ dxþ
Z
B0

~hhðxÞdEð~hhðxÞÞb dx
�
;

and therefore
Z
B0

~ff ðxÞdEð ~ff ðxÞÞb dx

aCðn; d;C0; b; pÞ
�Z

B0

eAðpgðxÞd Þ dxþ
Z
B0

~hhðxÞdEð~hhðxÞÞb dx
�
:

In particular, we obtain that ~ff dEð ~ff Þb a L1ðB0Þ. Now notice that if x a sB0 and
0 < s < 1 then ð1� sÞnjB0ja cn dðxÞn a jB0j. Recalling the normalization (3.3),
we get

j

Z
sB0

f dE
� f

jj f jjd;B0

�b

dx

aCðn; d;C0; b; p; sÞ
�
jj f jjd;B0

j

Z
B0

eAðpgd Þ dxþ
Z
B0

hdE
� h

jj f jjd;B0

�b

dx
�

where jj f jjdd;B0
¼ j

Z
B0

f d . This gives us the desired inequality. r

Now we are ready to prove (1.11).

Corollary 3.3. Let f : W ! Rn be a mapping of finite distortion, whose distor-
tion function K satisfies

eAðpKÞ a L1ðWÞ:

Then jDfjn belongs to L
Pb

locðWÞ for every b < cðnÞp, and we have the estimate

j

Z
sB0

Jðx; fÞ
jjJð�; fÞjj1;B0

E
� Jðx; fÞ
jjJð�; fÞjj1;B0

�b

dxaCðn; b; p; sÞ j

Z
B0

eAðpKðxÞÞ dx

for all balls B0 with 2B0 HW, and all 0 < s < 1.
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Proof. With the notation of Lemma 3.1, let f ¼ Jð�; fÞ1=d , g ¼ K 1=d , h ¼ 0 and
d ¼ nþ1

n
. Then all the integrability assumptions in Lemma 3.1 are satisfied, and

concerning (3.1) there is nothing to say since it is equivalent to the inequality

1

jBj

Z
B

Jðx; fÞ dxaC
� 1

j2Bj

Z
2B

jDfðxÞjn
2=ðnþ1Þ

�ðnþ1Þ=n

which follows by standard arguments since f is regular enough (see equation
ð2:3Þ in [9]). Then, by Lemma 3.1, we obtain the estimate

j

Z
sB

Jðx; fÞE
�� Jðx; fÞ

jjJð�; fÞjj1;B

�n=ðnþ1Þ�b

dxaC1jjJð�; fÞjj1;B j

Z
B

eAðpKðxÞ dx;

for every b < c1p, being c1 and C1 as in Lemma 3.1. By Lemma 5.1 (d), E does
not see powers, so we can write this as

j

Z
sB

Jðx; fÞ
jjJð�; fÞjj1;B

E
� Jðx; fÞ
jjJð�; fÞjj1;B

�b

dxaC1

j

Z
B

eAðpKðxÞ dx:

Now the desired integrability for jDfjn comes from the inequality

PbðxyÞa
C

p
ðxEðxÞb þ eAðpyÞÞ

which easily follows from Lemma 5.2. r

Concerning the sharpness of the above results, we have the following example. Let
us write logð1ÞðtÞ ¼ log t, and for each k ¼ 2; 3; . . . write logðkÞðtÞ ¼ logðk�1Þðlog tÞ.

Example 3.4. Given k ¼ 2; 3; . . . , let us define for x a B0, B0 ¼ Bð0; r0Þ and
r0 > 0 small enough

fðxÞ ¼ x

jxj rðjxjÞ

with rðtÞ ¼
�
logðkÞ

�
eþ 1

t

���p=n�
logðkþ1Þ�eþ 1

t

���1=n
. It is not hard to see that

jDfðxÞj ¼ rðjxjÞ
jxj and Jðx; fÞ ¼

� rðjxjÞ
jxj

�n�1

r 0ðjxjÞ

so that the distortion function Kðx; fÞ ¼ jDfðxÞjn
Jðx;fÞ equals

Kðx; fÞ ¼ rðjxjÞ
jxjr 0ðjxjÞ

¼ njxj
p

�
eþ 1

jxj

�
log

�
eþ 1

jxj

�
. . . logðkÞ

�
eþ 1

jxj

� logðkþ1Þ�eþ 1
jxj
�

logðkþ1Þ�eþ 1
jxj
�
þ 1

p

:

314 a. clop and p. koskela



It can be easily checked that f a W
1;1
loc ðB0Þ and Jð�; fÞ a L1

locðB0Þ, so that f is a
mapping of finite distortion. Further, we have eAðpKÞ a L1ðB0Þ with

AðtÞ ¼ t

logðeþ tÞ . . . logðk�1Þðeþ tÞ
:

By Corollary 3.3, the integrability of the di¤erential jDf jn must be controlled by

PbðtÞ ¼
t

logðeþ tÞ . . . logðk�1Þðeþ tÞ
ðlogðkÞðeþ tÞÞb�1;

and in fact

jDfjn a L
Pb

locðB0Þ , b < p:

This shows that in Corollary 3.3 we cannot expect for a better upper bound than
b < p, so that in particular cðnÞa 1. Similarly, by letting f ðxÞ ¼ Jðx; fÞn=ðnþ1Þ

,
gðxÞ ¼ Kðx; fÞn=ðnþ1Þ

, hðxÞ ¼ 0 and d ¼ nþ1
n

in Lemma 3.1, one sees that there is
no room for improvement other than the precise value of the constant c1.

4. Weak mappings of finite distortion

Here we assume that A, E are as in the previous sections. That is,
A : ½1;lÞ ! ½0;lÞ is smooth, non-decreasing, satisfying conditions (2.1), (2.3),
(2.4) and (2.6), and

EðtÞ ¼ 1þ
Z t

1

AðsÞ
s2

ds:

Some properties of this function E are given in Lemma 5.1 below. In this sec-
tion, we face the following question. Let WHRn be a domain. Suppose that
f a W 1;1

loc ðW;RnÞ has di¤erential jDf j such that

jDf jn a L
Qb

loc ðWÞ for some b > 0;

where

QbðtÞ ¼
AðtÞ

EðtÞ1þb
:

We also assume our mapping f satisfies almost everywhere in W the distortion
inequality

jDf ðxÞjaKðxÞJðx; f Þ

with distortion function K such that eAðpKÞ a L1. We want to show that f is a
true mapping of finite distortion, that is Jð�; f Þ a L1

loc, provided that b > 0 is
small enough.
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This question has already been treated for bounded K in the planar [1, 27] and
spatial [21] cases. Also when AðtÞ ¼ t a qualitatively sharp result was given in [9,
Theorem 1.3].

Theorem 4.1. Let f a W
1;Qb

loc ðW;RnÞ be such that eAðpKÞ a L1ðWÞ. There exists
a constant cn > 0 such that if

0 < b < cnp;

then Jð�; f Þ is locally integrable in W and therefore f a W
1;Q0

loc ðW;RnÞ. In particu-
lar, f is a mapping of finite distortion.

Proof. Let us fix a ball B0 ¼ Bðx0; rÞ, strictly included in W, and let j a Cl
0 ðB0Þ

be a positive function. Denote

gðxÞ ¼ jjðxÞDf ðxÞj þ j f ðxÞn‘jðxÞj x a B0

0 x a RnnB0

�

and f ¼ ð f1; . . . ; fnÞ, and let u ¼ jf1. For each l > 0, let

Fl ¼ fx a B0 : MgðxÞa l and x is a Lebesgue point of ug:

Following the ideas of [10], one can show that there exists a constant c ¼ cðnÞ
and a cl-Lipschitz continuous function ul such that ul ¼ u on Fl. Then the new
function

fl ¼ ðul; jf2; . . . ; jfnÞ

belongs to the Sobolev space W
1;q
loc ðW;RnÞ for all q < n and has Lipschitz first

component, so that one can integrate by parts

Z
B0

Jðx; flÞ dx ¼ 0

and therefore

Z
Fl

Jðx; jf Þ dxa�
Z
B0nFl

Jðx; flÞ dx:

Arguing as in [9], this leds us to

Z
fgalg

jðxÞnJðx; f Þ dxa cðnÞ
Z
fga2lg

j f ðxÞn‘jðxÞjgðxÞn�1
dxð4:1Þ

þ cðnÞl
Z
fg>lg

gðxÞn�1
dx:
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We now introduce an auxiliary function F as

1

bEðlÞb
� lE 0ðlÞ
EðlÞbþ1

¼
Z l

l

FðtÞ dt:

The above definition forces

FðsÞaC
E 0ðsÞ

EðsÞbþ1
ð4:2Þ

for sb s0. We multiply both sides of (4.1) by FðlÞ, integrate over some interval
ðt;lÞ and change the order of integration:

Z
B0

jðxÞnJðx; f Þ
�Z l

maxfgðxÞ; tg
FðlÞ dl

�
dxð4:3Þ

a cðnÞ
Z
B0

j f ðxÞn‘jðxÞjgðxÞn�1
�Z l

maxfð1=2ÞgðxÞ; tg
FðlÞ dl

�
dx

þ cðnÞ
Z
B0Bfg>tg

gðxÞn�1
�Z gðxÞ

t

lFðlÞ dl
�
dx:

Now we look for a lower bound for the left hand side at (4.3). By Lemma 5.1 (b),
we can choose t0 so that

0a
tE 0ðtÞ
EðtÞ a

1

2b

for all t > t0, and then for such a t we also have

Z
B0

jðxÞnJðx; f ÞmaxfgðxÞ; tgE 0ðmaxfgðxÞ; tgÞ
EðmaxfgðxÞ; tgÞ1þb

dxa
1

2

Z
B0

jðxÞnJðx; f Þ
bEðmaxfgðxÞ; tgÞb

dx:

This fact, together with the definition of F, gives us a lower bound for the left
hand side of (4.3),

1

2

Z
B0

jðxÞnJðx; f Þ
bEðmaxfgðxÞ; tgÞb

dxa

Z
B0

jðxÞnJðx; f Þ
�Z l

maxfgðxÞ; tg
FðlÞ dl

�
dx:

On the other hand, using the fact that t 7! tFðtÞ is positive and non-decreasing,
and also (4.2), we get

Z g

t

lFðlÞ dla g2FðgÞaC
g2E 0ðgÞ
EðgÞbþ1

:
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Thus (4.3) can be rewritten as

1

2b

Z
B0Bfg>tg

jðxÞnJðx; f Þ
EðgðxÞÞb

dxþ 1

2b

Z
B0Bfgatg

jðxÞnJðx; f Þ
EðtÞb

dxð4:4Þ

a cðnÞ
Z
B0

j f ðxÞn‘jðxÞjgðxÞn�1

bE
�
max 1

2 gðxÞ; t
� ��b dx

þ cðnÞ
Z
B0Bfg>tg

gðxÞnþ1
E 0ðgðxÞÞ

EðgðxÞÞbþ1
dx:

Note that the assumption Df a L
Pb

loc says that all the integrals above are finite. We
now use the definition of g, the convexity of t 7! tn�1AðtÞ for t large enough, the
identity jDf jn ¼ KJ and Lemma 5.2 with b ¼ 0 to get

gnþ1E 0ðgÞ
¼ gn�1AðgÞa cðnÞðjn�1jDf jn�1AðjjDf jÞ þ j f n‘jjn�1Aðj f n‘jjÞÞ
¼ cðnÞjn�1Jðn�1Þ=nK ðn�1Þ=nAðjJ 1=nK 1=nÞ þ cðnÞj f n‘jjn�1Aðj f n‘jjÞ

a
cðnÞ
p

jnJEðjJ 1=nÞ þ cðn; pÞeAðpKÞ þ cðnÞj f n‘jjn�1Aðj f n‘jjÞ:

Next, we divide both sides by EðgÞ1þb. This gives us that

gnþ1E 0ðgÞ
EðgÞbþ1

a
cðnÞ
p

jnJ
EðjJ 1=nÞ
EðgÞbþ1

þ cðn; pÞ eAðpKÞ

EðgÞbþ1
þ cðnÞ j f n‘jjn�1Aðj f n‘jjÞ

EðgÞbþ1

a
cðnÞ
p

jnJ

EðgÞb
þ cðn; pÞ eAðpKÞ

EðgÞbþ1
þ cðnÞ j f n‘jjn�1Aðj f n‘jjÞ

EðgÞbþ1
:

Summarizing, (4.4) becames

� 1

2b
� cðnÞ

p

�Z
B0Bfg>tg

jðxÞnJðx; f Þ
EðgðxÞÞb

dxþ 1

2b

Z
B0Bfgatg

jðxÞnJðx; f Þ
EðtÞb

dxð4:5Þ

a cðnÞ
Z
B0

j f ðxÞn‘jðxÞjgðxÞn�1

bE
�
max 1

2 gðxÞ; t
� ��b dx

þ cðn; pÞ
Z
B0Bfg>tg

eAðpKðx; f ÞÞ

EðgðxÞÞbþ1
dx

þ cðnÞ
Z
B0Bfg>tg

j f ðxÞn‘jðxÞjn�1Aðj f ðxÞn‘jðxÞjÞ
EðgðxÞÞbþ1

dx:
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Here is where we choose b ¼ p

4cðnÞ . Then, after multiplication by EðtÞb, we obtain

1

2b

Z
B0Bfgatg

jðxÞnJðx; f Þ dx

a cðnÞ
Z
B0

j f ðxÞn‘jðxÞjgðxÞn�1 EðtÞb

bE
�
max 1

2 gðxÞ; t
� ��b dx

þ cðn; pÞ
Z
B0Bfg>tg

eAðpKðx; f ÞÞ EðtÞb

EðgðxÞÞbþ1
dx

þ cðnÞ
Z
B0Bfg>tg

j f ðxÞn‘jðxÞjn�1Aðj f ðxÞn‘jðxÞjÞ EðtÞb

EðgðxÞÞbþ1
dx

and letting t ! l this finally gives

1

2b

Z
B0

jðxÞnJðx; f Þ dxa cðnÞ
Z
B0

j f ðxÞn‘jðxÞjgðxÞn�1
dxð4:6Þ

because j f n‘jjgn�1, eAðpKÞ and j f n‘jjAðj f n‘jjÞ are all integrable on B0.
In particular, (4.6) says that Jð�; f Þ a L1

loc and therefore f is a mapping of finite
distortion. r

Example 4.2. Let f be as in Example 3.4. We define

f ðxÞ ¼ fðxÞ
jfðxÞj2

for x a B0. Easy computations show that f a W 1;1
loc ðB0Þ. Indeed,

jDf ðxÞj ¼ 1

jxjrðjxjÞ and Jðx; f Þ ¼ jxjr 0ðjxjÞ
rðjxjÞ

1

jxjnrðjxjÞn ;

at almost every point x a B0, and clearly Jð�; f Þ > 0 because r is strictly increas-
ing. Thus f has a well defined distortion function K which actually agrees with
Kð�; fÞ, that is

Kðx; f Þ ¼ jDf ðxÞjn

Jðx; f Þ
rðjxjÞ

jxjr 0ðjxjÞ

¼ njxj
p

�
eþ 1

jxj

�
log

�
eþ 1

jxj

�
. . . logðkÞ

�
eþ 1

jxj

� logðkþ1Þ�eþ 1
jxj
�

logðkþ1Þ�eþ 1
jxj
�
þ 1

p

:

Therefore we have that expðAðpKÞÞ a L1 for A as in Example 3.4, although the
Jacobian determinant Jð�; f Þ is not locally integrable, so f cannot be a mapping of
finite distortion and jDf jn cannot belong to LP0

b . In fact, if
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QbðtÞ ¼
t

logðeþ tÞ . . . logðk�1Þðeþ tÞðlogðkÞðeþ tÞÞbþ1

then Theorem 4.1 forces jDf jn to belong to L
Qb

loc ðB0Þ only for bb cnp. What actu-
ally happens is that

jDf j a L
Qb

loc , b > p;

so that Theorem 4.1 can only be improved by finding the precise value of cn.

5. Technicalities

As in the previous sections, A : ½1;lÞ ! ½0;lÞ is a smooth, onto, non-
decreasing function, such that (2.1), (2.3), (2.4) and (2.6) hold. We extend it by 0
to ½0; 1�. We have represented A as

AðtÞ ¼ t

LðtÞ

where L : ½1;lÞ ! ½1;lÞ is also smooth, non-decreasing, onto, and LðtÞ ¼ 1 for
t a ½0; 1�. Recall as well that

EðtÞ ¼ 1þ
Z t

1

AðsÞ
s2

ds ¼ 1þ
Z t

1

ds

sLðsÞ

is smooth, monotonically increasing to infinity, and E 0 is decreasing. We under-
stand that EðtÞ ¼ 1 for t a ½0; 1�.

Proposition 5.1. For A, E and L as above, the following holds:

(a) There is a constant C > 0 such that EðtÞaCt for all tb 1.

(b) limt!l
tE 0ðtÞ
EðtÞ ¼ 0.

(c) There exists C > 0 such that
tE 0ðtÞ
EðtÞ a C

log t
for all tb 0.

(d) L and E do not see powers, i.e. for each a > 0 there is C ¼ CðaÞ such that
LðtaÞaCLðtÞ for all tb 1, and similarly for E.

(e) If t; sb t0 then Eðsþ tÞaEðsÞ þ EðtÞ.
(f ) If tb t0 then EðtsÞaCðEðtÞ þ EðsÞÞ.
(g) limt!0

tE 00ðtÞ
E 0ðtÞ ¼ �1.

Proof. For (a), use just (2.1) and l’Hôpital’s rule to see that

lim
t!l

EðtÞ
t

¼ lim
t!l

1

tLðtÞ ¼ 0;

and then the statement is clear. Claim (b) follows by the definition of E. Indeed,
by the definition of E, (2.6) and Lemma 2.2 we have
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tE 0ðtÞ
EðtÞ ¼ AðtÞ

tEðtÞ U
1

A�1ð2 log tÞ
U

1

2 log tLð2 log tÞ a
C

log t

from which (c) follows as well. Claim (d) is a consequence of (c) and (2.4). In fact,
for L we proceed as follows,

0 < log
LðtaÞ
LðtÞ ¼

Z ta

t

L 0ðsÞ
LðsÞ dsaC

Z ta

t

ds

s log s
¼ C log a

whenever a > 1. The same reasoning can be aplied to E. For (e), it is not restric-
tive to assume 1a sa t. Since E is smooth on ð1;lÞ, we can use the mean value
theorem, so that there exists x a ðt; tþ sÞ such that

Eðtþ sÞ � EðtÞ
EðsÞ ¼ sE 0ðxÞ

EðsÞ a
sE 0ðsÞ
EðsÞ ¼ 1

EðsÞLðsÞ a 1

because E 0 is decreasing and EðsÞ;LðsÞb 1 for sb 1 (in particular, can take
t0 ¼ 1). To show (f ) we write

EðtsÞaEððtþ sÞ2ÞaCEðtþ sÞaCðEðtÞ þ EðsÞÞ

because E does not see powers. Finally, note that

1þ tE 00ðtÞ
E 0ðtÞ ¼ tA 0ðtÞ

AðtÞ � 1 ¼ � tL 0ðtÞ
LðtÞ ;

from which (g) can be obtained. r

Lemma 5.2. Let c; p > 0 and d > 1 be fixed. For every ab 0, bb 1 and bb 0,

ad�1bd�1AðcabÞEðcabÞb�1
a

Cðd; cÞ
p

adEðaÞb þ Cðd; b; p; cÞeAðpbd Þ:

Proof. For P defined as in Lemma 2.1, we have the following inequality

PðabÞa 1

p
aþ eð1=2ÞAðpbÞ;

for each p > 0. By relabelling variables, this can be written as

PðadbdÞa 1

p
ad þ eð1=2ÞAðpbd Þ:

Due to (2.6), we have that 1
C

AðtÞ
EðtÞ aPðtÞaC

AðtÞ
EðtÞ . Thus the above inequality

reads as

AðadbdÞ
EðadbdÞ aC

� 1

p
ad þ eð1=2ÞAðpbdÞ

�
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or equivalently

ad�1bd�1 ab

LðadbdÞEðadbdÞ aC
� 1

p
ad þ eð1=2ÞAðpbdÞ

�
:

By Lemma 5.1 (d), neither L nor E do see powers, so that

ad�1bd�1 AðabÞ
EðabÞ aCðdÞ

� 1

p
ad þ eð1=2ÞAðpbd Þ

�

and we just paid the price that the constant at the right hand side now depends on
d. Further, both A and E are doubling, so that

ad�1bd�1 AðcabÞ
EðcabÞ aCðd; cÞ

� 1

p
ad þ eð1=2ÞAðpbd Þ

�
ð5:1Þ

again by suitably modifying the constant at the right hand side. This is precisely
the desired inequality for b ¼ 0. To get it as well for b > 0, we start by noting
that

EðcabÞb a 2EðaÞb þ Cðb; cÞEðbÞb:

This follows from Lemma 5.1 (f ) and the inequality ðxþ yÞb a 2xb þ CðbÞyb.
We then multiply the above inequality by (5.1),

ad�1bd�1 AðcabÞ
EðcabÞ EðcabÞ

bð5:2Þ

aCðd; cÞ
� 1

p
ad þ eð1=2ÞAðpbdÞ

�
ð2EðaÞb þ Cðb; cÞEðbÞbÞ

and then the desired inequality comes, provided that we show that

Cðb; cÞadEðbÞb a adEðaÞb þ Cðd; b; p; cÞeAðpbdÞð5:3Þ

and

Cðd; b; cÞ;EðbÞbeð1=2ÞAðpbd Þ
aCðd; b; p; cÞeAðpbd Þð5:4Þ

and

Cðd; cÞEðaÞbeð1=2ÞAðpbdÞ
a

Cðd; cÞ
p

adEðaÞb þ Cðd; b; p; cÞeAðpbdÞ:ð5:5Þ

For proving (5.3), we first see that if Cðb; cÞEðbÞb aEðaÞb then the inequality is
obvious. Otherwise, we have Cðb; cÞEðbÞbEðaÞ and then
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adEðbÞb aE�1ðCðb; cÞEðbÞÞdEðbÞb

aE�1ðCðb; c; dÞEðbÞÞEðbÞb aCðd; b; p; cÞeAðpbd Þ

which can be easily shown due to the slow growth properties of E. Inequality
(5.4) is also an easy consequence of the slow growth of E. Finally, to prove
(5.5), we can assume that eð1=2ÞAðpbdÞ a 1

p
ad , since otherwise (5.5) is clear. Then

one has that

aa p1=d exp
� 1

2d
AðpbdÞ

�
:

Now, using Lemma 5.1 (a) and (d) we get

EðaÞaCðd; bÞEðad=bÞaCðd; bÞad=b
aCðd; b; pÞ exp

� 1

2b
AðpbdÞ

�

which easily gives (5.5). r

Lemma 5.3. Let c; p; b > 0 and d > 1 be fixed. For every ab 0, bb 1, let
aj ¼ minfa; jg. Then

aad�2
j bd�1AðcajbÞEðcajbÞb�1

a
Cðd; cÞ

p
adEðajÞb þ Cðd; b; p; cÞeAðpbd Þ:

Proof. We use the above inequality. On one hand, there is no restriction in as-
suming that aj b 1 for every j. Hence a

ðd�1Þ=d
j a aj and thus by Lemma 5.2

ad�2
j bd�1AðcajbÞ ¼

cad�1
j bd

LðcajbÞ
a

cad�1
j bd

Lðcaðd�1Þ=d
j bÞ

¼ ðaðd�1Þ=d
j bÞd�1Aðcaðd�1Þ=d

j bÞ

a
Cðd; cÞ

p
ad�1
j EðajÞ þ exp

�
A

� pbd

M

��

where M ¼ MðdÞ > 1 is a large constant, to be determined later. Hence

aad�2
j bd�1AðcajbÞEðcajbÞb�1

a a
�Cðd; cÞ

p
ad�1
j EðajÞ þ exp

�
A

� pbd

M

���
EðcajbÞb�1

a
Cðd; cÞ

p
a
�
ad�1
j þ exp

�
A
� pbd

M

���
EðcajbÞb:

Now, since ðxþ yÞb a 2xb þ CðbÞyb, we get

EðcajbÞb a 2EðajÞb þ Cðb; cÞEðcbÞb
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and then a multiplication gives us

aad�2
j bd�1AðcajbÞEðcajbÞb�1

a
Cðd; cÞ

p
a
�
ad�1
j þ exp

�
A
� pbd

M

���
ð2EðajÞb þ Cðb; cÞEðcbÞbÞ

a
Cðd; cÞ

p
aad�1

j EðajÞb þ
Cðd; cÞ

p
aad�1

j Cðb; cÞEðcbÞb

þ Cðd; cÞ
p

a exp
�
A
� pbd

M

��
EðajÞb þ

Cðd; b; cÞ
p

a exp
�
A
� pbd

M

��
EðcbÞb

and this gives us the desired inequality, provided that we check the estimates,

aEðajÞb exp
�
A
� pbd

M

��
a adEðajÞb þ Cðd; bÞ expðAðpbdÞÞð5:6Þ

and

aad�1
j Cðb; cÞEðcbÞb a adEðajÞb þ Cðd; b; p; cÞ expðAðpbdÞÞð5:7Þ

and

a exp
�
A
� pbd

M

��
EðcbÞb a adEðajÞb þ Cðd; b; p; cÞ expðAðpbdÞÞ:ð5:8Þ

We check first (5.6). If exp
�
A
� pbd

M

��
a ad�1, then we are done. If not, using that

EðtÞa jlogðtÞj,

aEðajÞb expðAðpbd=MÞÞa 1

d � 1
Aðpbd=MÞ

����
����
b

exp
� d

d � 1
Aðpbd=MÞ

�

aCðd; bÞ exp
� 2d

d � 1
Aðpbd=MÞ

�

and we are reduced to find a constant M > 1 large enough so that

exp
� 2d

d � 1
Aðpbd=MÞ

�
a expðAðpbdÞÞ:

Equivalently, we must find M so that

2d

d � 1
Aðx=MÞaAðxÞ; xb p:

But for this we only need M to be large enough, since

Aðx=MÞ
AðxÞ ¼ LðxÞ

MLðx=MÞ ¼
1

M
exp

Z x

x=M

tL 0ðtÞ
LðtÞ

dt

t
a

ðlogMÞC0

M

324 a. clop and p. koskela



where C0 is the constant in (2.4). Thus (5.6) follows. The inequality (5.8) can be
similarly checked, and so we are reduced to prove (5.7). For this, there is nothing
to say if Cðb; cÞEðcbÞb aEðaÞb, since

aad�1
j EðaÞb a adEðajÞb;

as t 7! td�1EðtÞ�b is increasing for large enough t. Otherwise, EðaÞa
Cðb; cÞEðcbÞ and then one just has to argue similarly as in the proof of (5.3). r
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Facultat de Ciències, Campus de la U.A.B.

08193-Bellaterra (Barcelona)

Catalonia

albertcp@mat.uab.cat

Pekka Koskela

Department of Mathematics and Statistics

P.O. Box 35 (MaD)

FI-40014 University of Jyväskylä
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