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Solid Mechanics — Deep foundations, by Piero Villaggio, communicated on
11 June 2009.

Dedicated to the memory of Renato Caccioppoli

Abstract. — The stress transmission between a rigid foundation and the ground below is tradi-

tionally formulated into mathematical terms as the elastic problem of finding the stress state in a

half-plane loaded by a rigid indentor. But this model is not realistic since foundations are not built
on the surface of the ground but below its level, at the bottom of an excavation. We here suggest a

solution for a notched elastic half-plane loaded by a rigid punch applied at the throat of the cavity.
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1. Introduction

Foundations are rigid platforms designed for transmitting a vertical load on a
soft substrate, like earth, distributing the pressure over a su‰ciently large area
in order to avoid the excessive stress concentrations at the interface. The typical
model of a foundation, sketched in Fig. 1, is that of a rigid infinite beam, of rect-
angular cross-section of base 2L and height h, resting on an elastic half-space.
Since the length of the beam is infinite, each cross-section of the system is a plane
of symmetry and hence the stress state in the half-space can be determined by
applying the methods of plane elasticity. In this case the elastic solution is that
of a rigid beam with straight horizontal base indenting an elastic half-plane.
This is a classic solution in plane elasticity. Its di‰culty stems on the fact that
the boundary conditions on the edge of the half-plane are mixed type. But still
the problem was solved by di¤erent methods. Föppl [1], Sadowsky [6], Szabó [7,
§22] expanded the solution in terms of a series of trigonometric functions, while
Muskhelishvili [4] and Milne-Thomson [3] used the complex variable method.

However, modeling a foundation as a rigid plane punch is not realistic for its
bottom is not resting on the edge of the half-plane, but at the bottom of a trench
of a given deepth, say H, and given width 2L as shown in Fig. 2. But the elastic
solution to an indentation problem like that drawn in Fig. 2 is not obtainable
in an explicity form. We here study a di¤erent elastic problem formulated to
illustrate the influence of the trench in the propagation of stresses inside the
half-plane.



2. Smooth contact

We consider, instead of the case illustrated in Fig. 2 a semi-infinite region with
a rounded notch, as sketched in Fig. 3. Its profile can be analytically represented
by taking a system of Cartesian x; y-coordinates with origin at 0 and using the
representation in terms of complex variables (cf. Neuber [5, §4.11])

z ¼ mðzÞ ¼ zþ ih0 �
1

zþ ih0
;ð1Þ

where z ¼ xþ iy and z ¼ xþ ih, and h0 is a real constant ðh0 > 1Þ. Equation (1)
is a mapping associating points of the h-plane with points of the z-plane.
Since mðzÞ is analytic, the mapping is conformal everywhere except at the points

Figure 2. The trench.

Figure 1. The scheme of a rigid foundation.
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z ¼ iðe1� h0Þ where m 0ðzÞ ¼ 0. Therefore the half-plane hb 0 of the z-plane is
conformally mapped into the region of the z-plane situated below the curve

x ¼ x� x

x2 þ h20
; y ¼ h0 þ

h0

x2 þ h20
; �l < x < l;ð2Þ

in the z-plane. In particular, the depth H is given by (see Fig. 3)

H ¼ yð0; 0Þ ¼ h0 þ
1

h0
;ð3Þ

and for the width 2L we may assume the expression

2L ¼ xðl; 0Þ � xð�l; 0Þ ¼ 2l
�
1� 1

l2 þ h20

�
;ð4Þ

where l is a suitably chosen value of x.
Let us now study the following elastic problem formulated in the z-plane. The

half-plane hb 0 is subject to a vertical (parallel to the h-axis) rigid displacement
v ¼ d applied in the interval �la xa l of its boundary h ¼ 0, while the tangen-
tial stress txh is zero. The complementary part of the boundary is unladed. This is
the classical problem of smooth indentation of a half-plane. But in the z-plane,
after use of tranformation (1), we can get the solution to the problem shown in
Fig. 3.

The treatement of this mixed boundary value problem is classical (cf. Milne-
Thomson [3, 4.23]). Let us introduce the complex function WðzÞ which deter-
mines the stress state in the half-plane hb 0. WðzÞ is holomorphic in the lower

Figure 3. The notched half-plane.
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half-plane h > 0, denoted by L. In the region h < 0, denoted by R, where the
material is absent, W ðzÞ is defined by analytic continuation. Let us denote the
values of W ðzÞ as z ! t, a point of the boundary, from L or R by WLðtÞ,
WRðtÞ, respectively.

The boundary conditions are txhðt; 0Þ ¼ 0, which implies (cf. Milne-Thomson
[3, 4.52])

W ðzÞ þW ðzÞC 0;ð5Þ

and the mixed condition

vðt; 0Þ ¼ d for jtj < l; shðt; 0Þ ¼ 0 for jtj > l:ð6Þ

This last equation, written in terms of W ðzÞ, reduces to a Riemann-Hilbert prob-
lem for the sectionally holomorphic function W ðzÞ. The problem can be further
simplified by use of equation (5). Omitting the etails, we arrive at the following
expression for W ðzÞ:

ðm 0ðzÞ þm 0ðzÞÞWðzÞ ¼ C0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � l2

p ;ð7Þ

where C0 is a constant to be determined. C0 must be imaginary in order to satisfy
(5). A second condition to be met is

lim
z!l

zWðzÞ ¼ � iP

p
;ð8Þ

which indicates that iP is the vector resultant at the exernal force applied to the
boundary. Therefore, since

lim
z!l

m 0ðzÞ ¼ lim
z!l

m 0ðzÞ ¼ 1;ð9Þ

combination of (7) with (8) yields C0 ¼ �2iP
p

and hence WðzÞ has the explicit form

WðzÞ ¼ �2iP

pðm 0ðzÞ þm 0ðzÞÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � l2
p ¼ �2P

pðm 0ðzÞ þm 0ðzÞÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � z2
p :ð10Þ

Once we have W ðzÞ, the stress state in the region is completely determined.
Here we limit ourselves to illustrate a particular feature of the solution. The

pressure under the foundation is given by the formula (cf. Milne-Thomson [3,
4.30])

�2½pðtÞ � isðtÞ� ¼ WLðtÞ �WRðtÞ ¼ ðafter consideration of ð10ÞÞð11Þ

¼ �4P

pðm 0ðtÞ þm 0ðtÞÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � t2
p :

416 p. villaggio



Since the right hand side of (11) is real, the tangential stress sðtÞ is zero, as ex-
pected. The pressure pðtÞ is instead

pðtÞ ¼ 2P

p 1þ 1
ðtþih0Þ

2 þ 1þ 1
ðt�ih0Þ

2

h i 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � t2

p :ð12Þ

The pressure is, as expected, infinite at the edge points t ¼el, while at the centre
t ¼ 0, has the value

pð0Þ ¼ P

p
�
1� 1

h2
0

�
l
:ð13Þ

This result suggests an interesting comparison with the case of a flat punch
where h0 ! l and the pressure pð0Þ ¼ P

pl
. In the case of a deep foundation,

where h0 > 0, pð0Þ, as given by (13), is higher than P
pl
. This implies that, for

deep foundations, the pressure concentration at the vertex of the notch tends to
increase with the depth.

3. Complete adesion

The assumption of smooth contact examined above is sometimes not realistic be-
cause the bottom of a foundation may be rough enough to prevent the horizontal
displacement of the material. In this case the boundary conditions of the problem
must be changed. Instead of requiring the stress txh to vanish in the interval
jtj < l, we put uðt; 0Þ ¼ 0, where u is the displacement in the x-direction.

The problem is known as that of ‘‘adherent’’ indentation, and its solution
for the half-plane is classical. Its extension to a region with parabolic boundary
was done by Paria [6] in an unduly ignored paper. We here repeat Paria’s
argument adapting it to the present case. The displacement is constant and
so u 0ðtÞ þ iv 0ðtÞ ¼ 0 under the base. The solution of the corresponding Riemann-
Hilbert problem is

m 0ðzÞWðzÞ ¼ P0wðzÞ;ð14Þ

where P0 is a constant and wðzÞ is the Plemelj function given by (cf. Milne-
Thomson [3, 4.42])

wðzÞ ¼ ðz� lÞt�1

ðzþ lÞt ; t ¼ 1

2
þ il; l ¼ ln k

p
;ð15Þ

where k is an elastic constant ð1 < k < 7Þ. The constant P0 is again determined
by a condition like (8), and hence its value is P0 ¼ � iP

p
. Therefore the solution is

W ðzÞ ¼ �iP

m 0ðzÞ ðz� lÞ�ð1=2Þþilðzþ lÞ�ð1=2Þ�il:ð16Þ
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Thus the complete stress state in the region hb 0 is determined. In particular,
pressure and shear under the foundations are given by

WLðtÞ �WRðtÞ ¼ �2ðpðtÞ � isðtÞÞ; jtj < l:ð17Þ

Then, using (16) and recalling the property that

wLðtÞ ¼ � 1

k
wRðtÞ; jtj < l;

wLðtÞ ¼ wRðtÞ; jtj > l;

equation (17) yields

pðtÞ � isðtÞ ¼ ðkþ 1ÞP
2pkm 0ðtÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � t2

p eil ln
l þ t

l � t

� �
:ð18Þ

At the vertex t ¼ 0, we have sð0Þ ¼ 0, and

pð0Þ ¼ ðkþ 1ÞP
2pkl

1�
1� 1

h2
0

� :ð19Þ

This means that, in this case again, the pressure at the vertex of the cavity in-
creases for deep cavities for which h0 is close to 1. Moreover, since k > 1, the
pressure concentration is higher than that found in Section 3 in the same geomet-
rical situation.

4. Aqueous foundations

Often the foundation rests on a medium that is not elastic, but a sort of wet
sponge able to transmit a normal pressure pðtÞ eventually accompanied by a tan-
gential shear force sðtÞ, due to friction (Fig. 4). For definitess, we will assume that
the magnitude of pðtÞ is a constant p0 along the whole contact interval jtj < l,
and sðtÞ has the expression sðtÞ ¼ fp0

t
l
, where f is the friction factor. As it is

plausible, sð0Þ ¼ 0 for symmetry, and is an odd function of t.
At this point the problem is purely statical. We must find the value of p0 such

that the vertical resultant of the tractions exerted along the arc having, in the x; y-
plane, the parametric equation (2) with �la ta l. Therefore the vertical resul-
tant of the traction acting along the arc must balance the force P. The related
equation is

Z þl

�l

p0ny dsþ
Z þl

�l

fp0
t

l
ty ds ¼ P;ð20Þ

where ny, ty are the y-components of the unit normal vector and the unit tangen-
tial vector, respectively, and ds is the lenght of the arc element. But from (2), after
replacement of x with t, we find
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ny ds ¼
qx

qt
dt; ty ds ¼

qy

qt
dt:

The first integral in (20) is immediate

Z þl

�l

p0
qx

qt
dt ¼ p0½xðl; 0Þ � xð�l; 0Þ� ¼ p02l

�
1� 1

l2 þ h20

�
:

The second is also explicitly evaluable (cf. Gradshteyn–Ryzhik [2, 2.175])

Z þl

�l

fp0
t

l

qy

qt
dt ¼

Z þl

�l

fp0
t

l

� �2h0t

ðt2 þ h20Þ
2

�
dt ¼ 2fp0

h0
l

� l

l2 þ h20
� 1

h20
arctg

l

h0

�
:

Thus replacement of these values into (20) gives a relation for determining p0 as a
function of P. The expression of p0 in terms of P is rather involved, but the in-
spection of two limiting cases may be useful to illustrate the result. For h0 ! l,
that is where the cavity is very flat, equation (20) yields p0 ¼ P

2l ¼ P
2L , a constant

pressure over a segment of lenght L. For lf h0, the cavity is rather narrow and
sharp, and neglection of l2 with respect to h2o leads to he following expression
of (20)

p0 ¼
P

2l
�
1� 1

h2
0

� :ð21Þ

Here again we find that in a deep foundation the normal pressure exerted by the
terrain on the basis is higher than that arising in a superficial foundation of the
same width.

Figure 4. The floating foundation.
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5. Conclusion

Foundations are customarily regarded as plane rigid indentors able to transmit a
vertical load on a substrate with a suitable distribution of the interfacial pressure.
But, in practice, foundations are built not on the surface of the underlying me-
dium but at the bottom of a trench excavated at a certain depth. The stress state
under a deep foundation is more severe than that under a superficial foundation
of the same width. However, deep foundations are necessary in order to rely upon
a more consistent terrain, and also to prevent the toppling of the superposed
structure. Inhabitants of lacustrian villages rested their huts on palafittes. Vene-
tians of the 10 th century A.D. built stone palace and dams on wooden piles driven
into the Lagoon.
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