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Abstract. — We show that among all the convex bounded domain in R2 having an assigned

asymmetry index related to Hausdor¤ distance, there exists only one convex set (up to a similarity)

which minimizes the isoperimetric deficit. We also show how to construct this set. The result can be
read as a sharp improvement of the isoperimetric inequality for convex planar domain.
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1. Introduction

The classical isoperimetric inequality in the plane states that, among all the sub-
sets of R2 of prescribed finite measure, the disk has the smallest perimeter, namely

PðEÞb ð4pjEjÞ1=2; with equality if and only if E is a disk:

Here jEj and PðEÞ denote, as usual, the measure and the perimeter of the set
EHR2.

It is almost impossible to give exhaustive references concerning the isoperimet-
ric inequality, therefore we refer the reader to some pioneering papers [2, 5, 16,
19], to the paper by De Giorgi [9] in the general framework of finite perimeter sets
in Rn, to the reviews [12, 20, 25] and to the books [7, 8].

In [3, 4] Bonnesen introduced some remarkable inequalities which imply the
isoperimetric one (see also the reviews [7, 21]). For example, we recall that for
bounded convex planar sets he proved that

PðEÞ2 � 4pjEjb 4pd 2:ð1:1Þ

Here d is the thickness of the minimal annulus containing the boundary of E and
we remark that the constant 4p and the exponent 2 on the right hand side are
optimal. The chief tool in the proof was a symmetrization technique known as
annular symmetrization. Later Bonnesen’s work led to the study of a wider class



of inequalities nowadays known as Bonnesen-style isoperimetric inequalities (see
[7, 21]).

Following Osserman [7, 21] we say that a Bonnesen-style isoperimetric in-
equality can be written in the form

PðEÞ2 � 4pjEjbFðEÞ;

where the function F is nonnegative, vanishes only on the disks, and somehow
measures how much E deviates from a disk. There are many di¤erent kinds of
functions F satisfying these properties, and each one leads to a di¤erent refine-
ment of the standard isoperimetric inequality.

Typical situations addressed in the literature are those where the function F
depends on the set E through the so-called Fraenkel asymmetry index or through
the Hausdor¤ distance from a ball. For the first case we quote the results con-
tained in [15, 13, 10, 1]. In [15, 1] it is considered the case of convex planar sets
and the best form of the inequality is given, while in [13, 10] the n-dimensional
case is addressed.

As regards the second case, it is clear that inequality (1.1) can be written in
terms of Hausdor¤ distance from a disk (see also [14])

PðEÞ2 � 4pjEjb 16pdHðE;CÞ2;

where dHðA;BÞ denotes the Hausdor¤ distance between the sets A;BHR2, and
C is the disk halfway between the inner and the outer circle of the annulus of
minimal width that contains the boundary of E. A sharp estimate of this type
can be found also in [11], for nearly spherical domains in Rn.

In this paper we are interested in those functions F whose dependence on the
set E is only through the Hausdor¤ asymmetry index dðEÞ defined as the transla-
tive Hausdor¤ distance of E from a disk DR having the same measure,

dðEÞ ¼ min
x AR2

dHðE;DRðxÞÞ;

where DRðxÞ is the disk centered at x, such that jEj ¼ jDRðxÞj. We provide a
sharp Bonnesen–style inequality for planar convex domains E involving just
PðEÞ2 � 4pjEj and dðEÞ. Obviously the trivial relation db d already implies the
following inequality

PðEÞ2 � 4pjEjb 4pdðEÞ2:

However such an inequality is not sharp. Actually there exists a maximal func-
tion G such that it holds

PðEÞ2 � 4pjEjbGðdðEÞÞ:ð1:2Þ

The determination of the function G relies on the investigation of the shape of the
optimal sets, i.e., those sets which minimize the left hand side of (1.2), for fixed jEj
and dðEÞ.
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We show that, for any 0a d < þl, it is possible to compute GðdÞ. In partic-
ular, for any fixed value of jEj, we work out the analytic expression of the set E
with asymmetry index dðEÞ ¼ d, which achieves the equality sign in (1.2). More-
over we prove that such a set is unique up to translations. Our result is based on a
new symmetrization technique introduced in [1]. It is closely related to the circu-
lar symmetrization, a technique which is well suited to the bidimensional frame-
work (see also [17, 18]). Using this tool we show how to reshape a given planar
convex set keeping, step by step, its measure and its Hausdor¤ asymmetry index
fixed and shortening the perimeter. The procedure eventually provides the family
of optimal sets.

As a corollary to our result we provide the sharp inequality

PðEÞ2 � 4pjEjb 16dðEÞ2:

2. Main statement

In order to state our main result we define the class of lenses Ya as the family of
convex set E satisfying the following properties:

• E has measure a;

• E is symmetric with respect to a straight line such that the part of it which stays
on one side of the line coincides with a circular segment (the smallest part of a
disk cut by a chord).

Such a class satisfies the following properties.

Proposition 2.1. For any given positive a and any given positive d there exists a
unique set Yd a Ya such that

dðYdÞ ¼ d:

In particular, for such a set, d will be the di¤erence of the radii of the disk having
the same measure, and of the smallest circumscribed disk. Moreover it holds

4p2 ¼ lim
d!0

PðYdÞ2 � 4pa

d2
>

PðYdÞ2 � 4pa

d2
> lim

d!þl

PðYdÞ2 � 4pa

d2
¼ 16:

We are now able to state our main result.

Theorem 2.1. For every convex set W a R2, the set YdðWÞ a YjWj satisfies the in-
equality

PðWÞbPðYdðWÞÞ;

equality holding if and only if W ¼ YdðWÞ, up to translations.

As a consequence we have the following corollary.
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Corollary 2.1. Every convex set W a R2 satisfies the inequalities

PðWÞ2 � 4pjWjb 16dðWÞ2;
PðWÞ2 � 4pjWjb dðWÞ2ð4p2 �HðdðWÞÞ;ð2:1Þ

for some positive HðdÞ ¼ OðdÞ.

We postpone the proof of Proposition 2.1 until the last section where we carry
over a detailed study of the class Ya.

Remark 2.1. We observe that inequality (2.1) can be obtained in a di¤erent way.
Namely, one can consider a one-parameter family of sets Ed, d > 0, which smoothly
converge to a disk as d ! 0, being dðEdÞ ¼ d. The computation of the second deriv-
ative of PðEdÞ with respect to d gives:

lim
d!0

PðEdÞ2 � 4pjEdj
d2

b 4p2:

3. Proof of Theorem 2.1

Let W be an open bounded and convex subset of R2, and D be a circle of radius
R ¼

� jWj
p

�1=2
that achieves the minimal Hausdor¤ distance to W, i.e.:

dðWÞC dHðW;DÞ:

We refer to the last condition as the optimality condition for D with respect to W.
From now on we shall use as the origin of the coordinate system in R2 the center
O of D. We also denote by Di and De the two disks DR�dðWÞðOÞ and DRþdðWÞðOÞ.
It is trivial to check that Di JWJDe.

Since W is also starshaped with respect to O, we shall use rðyÞ to denote a
generic Lipschitz radial function which parametrizes the boundary of W with
respect to the angular variable y. Such a parametrization will by possibly chosen
case by case. The optimality condition immediately implies

max
y

fR� rðyÞ; rðyÞ � Rg ¼ dðWÞ;ð3:1Þ

roughly speaking there exists at least one point in which the boundary of W
touches either the boundaries of Di or De.

We also observe that, if D is the optimal disk, a line l passing through O can-
not split the plane into two open halfplanes Ti and Te, such that all the points
where the boundary of W eventually touches the boundary of Di belong to Ti,
while all the points where the boundary of W eventually touches the boundary
of De belong to Te. Indeed, this would imply that there exists a slight translation
of the set W in the direction normal to l and towards the halfplane Ti, such that
still Di JWJDe but qW will have no intersection with both the boundaries of Di
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and De contradicting (3.1). It follows that at least one of the following four cases
certainly happens.

Case 1 There exists a line l passing through O such that lBDe is included in W.
Case 2 There exists a line l passing through O such that lBW is included in Di.
Case 3 There exist three points P1 P2 and P3 of the boundary of W such that, P1

and P2 also belong to qDe, P3 lies inside the acute angle having vertex
in O and bounded by the halflines passing through P1 and P2, and
distðP3; qDiÞ ¼ minx A qW distðx; qDiÞ.

Case 4 There exist three points P1 P2 and P3 of the boundary of W such that, P1

and P2 also belong to qDi, P3 lies inside the acute angle having vertex in
O and bounded by the halflines passing through P1 and P2, and moreover
distðP3; qDeÞ ¼ minx A qW distðx; qDeÞ.

In Figure 1 and Figure 2 we represent two examples of convex sets for which
Case 3 or Case 4 happens.

We claim that any element of the family Ya has the property of being the
unique set (up to translations) with the smallest possible perimeter among all the
sets having same measure and same Hausdor¤ asymmetry index. In particular we
shall see that for any given convex set W it holds PðWÞbPðYdðWÞÞ, where YdðWÞ
belongs to the family YjWj. We shall provide the proof of such an assertion for
each one of the four aforementioned cases.

3.1. Case 1. By hypotheses there exists a line l passing through O intersecting
qDe in two points P1 and P2 which belong to qW. We want to find a convex set
having the same property, but also same d and measure as W, and the least pos-
sible perimeter. We can restrict our attention to those sets which have two hor-
thogonal axes of symmetry: the line l, and the line intersecting l in O. In fact,

Figure 1. A convex set for which Case 3 happens.
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assuming that W does not posses such a symmetry, we denote by W� the Steiner
symmetric of W with respect to theese two axis, and from well-known properties
of the Steiner symmetrizzation we know that W� is convex, jW�j ¼ jWj, W� JDe,
jqW�j < jqWj, and moreover P1 and P2 belong to qW�. Using well known isoperi-
metric properties of the circular arcs, it is easy to prove that the unique set with
the least possible perimeter is the lens YdðWÞ belonging to the family YjWj. In view
of Proposition 2.1 our claim is proved.

Remark 3.1. It is important to observe that the proof of Case 1 works in hypoth-
esis weaker than convexity, for instance the starshapedness is enough.

3.2. Case 2. By hypotheses there exist two parallel lines l1 and l2 tangent to Di

and such that the set W lies in the strip S between these two lines and contains Di.
We want to find a set having the same property, which is also included in De,
which has the same measure as W, and such that it has the least possible perime-
ter. This set exists and it is unique [22] (possibly up to translations) and we shall
denote it by Er, where r ¼ dðWÞ2=jWj. We observe that there exists a feasible
range of values of r, namely ½0; rmax�, such that Er actually exists. Indeed, it is
easy to prove that when d is too big with respect to jWj then the set given by the
intersection of the strip S and the disk De is too small to contain a set having
measure jWj.

Some important properties of the set Er can be found in [22]. In particular Er

is either given by the convex hull of two disks both being translations of Di, in
case r is large enough, Er is a convex set which includes the largest possible (in
terms of measure) convex hull of two balls lying in the intersection between the
strip S and the disk De. In the first case our claim follows as a consequence of the
following result, whose proof is postponed until the last section.

Figure 2. A convex set for which Case 4 happens.
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Proposition 3.1. If W is the convex hull of two ball having the same radius then

PðWÞbPðYdðWÞÞ

whenever jWj ¼ jYdðWÞj.

In the second case, since the largest possible convex hull is certainly tangent to
De, Er will certainly contain a diameter of De and therefore Er can be treated as
in Case 1 (see Remark 3.1).

Remark 3.2. It is important to observe that the proof of Case 2 works even if W
is not convex provided it is starshaped and lies between two parallel lines l1 and l2
both tangent to the inner disk Di.

3.3. Case 3. By hypotheses there exists a parametrization of the radial function
rðyÞ such that rð0Þ ¼ rðy1Þ ¼ Rþ dðWÞ for some y1 < p and moreover there ex-
ists 0 < y2 < y1 such that rðy2Þ ¼ miny rðyÞ. We reshape the set W as follows: first
of all we replace the restriction r1 of the radial function r to the domain ½0; y1�
with its symmetric increasing rarrangement see [17], namely r1aðy� y1=2Þ; the
same is done with the complementary part r2, restriction of r to the domain
½y1; 2p�, which we replace by r2aðy� ðy1 þ 2pÞ=2Þ. The new radial function that
we denote by r̂r describes the boundary of a star shaped set having same measure
as W, but in view of the properties of rearrangements [6, 17, 23, 24], also a shorter
perimeter.

We can assume that rðy1=2þ pÞ ¼ miny A ½y1;2p� r̂r > miny A ½0;y1� r̂r ¼ rðy1=2Þ oth-
erwise, if rðy1=2Þ ¼ rðy1=2þ pÞ we replace the restriction of r̂r to the set
½y1=2; y1=2þ p� with its symmetric decreasing rearrangement, and the restriction
of r̂r to ½y1=2þ p; y1 þ 2p� with its symmetric decreasing rearrangement [17]. The
resulting function will describe the boundary of a starshaped set having a perim-
eter shorter then PðWÞ and containing a diameter of De, and the proof will con-
tinue as in Case 1.

Assuming that rðy1=2Þ < rðy1=2þ pÞ we have 0 ¼ jfy a ½y1; 2p� : r̂r <
min r̂rþ sgj < jfy a ½0; y1� : r̂r < min r̂rþ sgj for some s > 0 small enough. On
the other hand we can also assume that jfy a ½y1; 2p� : r̂r < max r̂rgj >
jfy a ½0; y1� : r̂r < max r̂rgj otherwise the starshaped set described by r̂r can be
treated as in Case 1, see Remark 3.1. Therefore by continuity there exist
min r < t < max r such that

jfy a ½y1; 2p� : r̂r < tgja jfy a ½0; y1� : r̂r < tgj

and

jfy a ½y1; 2p� : r̂ra tgjb jfy a ½0; y1� : r̂ra tgj:

As a consequence there exists 0 < y < y1=2 such that

r̂rðy1=2� yÞ ¼ r̂rððy1 � 2pÞ=2þ yÞ ¼ t
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and by simmetry

r̂rðy1=2þ yÞ ¼ r̂rððy1 þ 2pÞ=2� yÞ ¼ t

We consider now r̂r1 and r̂r2 restriction of r̂r to ½ðy1 � 2pÞ=2þ y; y1=2� y� and
½y1=2þ y; ðy1 þ 2pÞ=2� y�. We replace r̂r1 with its symmetric decreasing rear-
rangement namely r̂ra1 ðy� ðy1 � pÞ=2Þ, and r̂r2 by r̂ra2 ðy� ðy1 þ pÞ=2Þ. We obtain
in this way a radial function which describes the boundary of a starshaped set
having shorter perimeter, which can be treated as in Case 1.

3.4. Case 4. By hypotheses there exists a parametrization of the radial function
rðyÞ such that rð0Þ ¼ rðy1Þ ¼ R� dðWÞ for some y1 < p and moreover there ex-
ists 0 < y2 < y1 such that rðy2Þ ¼ maxy rðyÞ. We reshape the set W as follows:
first of all we replace the restriction r1 of the radial function r to the domain
½0; y1� with its symmetric decreasing rarrangement, namely ra1 ðy� y1=2Þ; the
same is done with the complementary part r2, restriction of r to the domain
½y1; 2p�, which we replace by ra2 ðy� ðy1 þ 2pÞ=2Þ. The new radial function that
we denote by r̂r describes the boundary of a star shaped set having same measure
as W, but in view of the properties of the symmetric decreasing rearrangements,
also a shorter perimeter.

We can assume that rðy1=2þ pÞ ¼ maxy A ½y1;2p� r̂r < maxy A ½0;y1� r̂r ¼ rðy1=2Þ
otherwise, if rðy1=2Þ ¼ rðy1=2þ pÞ we replace the restriction of r̂r to the set
½y1=2; y1=2þ p� with its symmetric increasing rearrangement, and the restriction
of r̂r to ½y1=2þ p; y1 þ 2p� with its symmetric increasing rearrangement. The re-
sulting function ~rr will describe the boundary of a starshaped set ~WW, such that
Pð~WWÞaPðWÞ, and touching the boundary of Di in two points symmetric with re-
spect to the origin O. In this case the proof can continue as in Case 2, see Remark
3.2, provided that the set lies between two parallel lines tangent to Di. The last
condition can be obtained arguing as in [1], indeed the convexity of the set W
and the fact that Di JW implies that r is an absolutely continuous function
which almost everywhere satisfies (see [26])

jr 0ðyÞja rðyÞ
R� dðWÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðyÞ2 � ðR� dðWÞÞ2

q
a:e: y a ½0; 2p�ð3:2Þ

By well known properties of rearrangements (see [18, 23, 24]) the function ~rr is
also an absolutely continuous function which satisfies (3.2) and since the same in-
equality holds with equality sign for the radial functions describing any line tan-
gent to Di the set ~WW lies in a strip between two of such parallel lines.

Assuming that rðy1=2Þ > rðy1=2þ pÞ we have 0 ¼ jfy a ½y1; 2p� : r̂r >
min r̂r� sgj < jfy a ½0; y1� : r̂r > min r̂r� sgj for some s > 0 small enough. On
the other hand we can also assume that jfy a ½y1; 2p� : r̂r > min r̂rgj >
jfy a ½0; y1� : r̂r > min r̂rgj otherwise the starshaped set described by r̂r can be
treated as in Case 2.

Therefore by continuity there exist min r < t < max r such that

jfy a ½y1; 2p� : r̂r > tgja jfy a ½0; y1� : r̂r > tgj
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and

jfy a ½y1; 2p� : r̂rb tgjb jfy a ½0; y1� : r̂rb tgj:

As a consequence there exists 0 < y < y1=2 such that

r̂rðy1=2� yÞ ¼ r̂rððy1 � 2pÞ=2þ yÞ ¼ t

and by simmetry

r̂rðy1=2þ yÞ ¼ r̂rððy1 þ 2pÞ=2� yÞ ¼ t

We consider now r̂r1 and r̂r2 restriction of r̂r to ½ðy1 � 2pÞ=2þ y; y1=2� y� and
½y1=2þ y; ðy1 þ 2pÞ=2� y�. We replace r̂r1 with its symmetric increasing rear-
rangement namely r̂r1aðy� ðy1 � pÞ=2Þ, and r̂r2 by r̂r2aðy� ðy1 þ pÞ=2Þ. We obtain
in this way a radial function which describes the boundary of a starshaped set
which, arguing as before, lies in a strip bounded by two parallel lines tangent to
Di, and can be treated as in Case 2.

4. Two classes of convex sets

In this section we study the ratio

PðEÞ2 � 4pjEj
dðEÞ2

;ð4:1Þ

when the set E belongs to two di¤erent classes, namely, we will consider the
classes of ‘‘stadia’’ and of ‘‘lenses’’.

Class Xa (stadia)

The class Xa contains any convex set E satisfying the following properties:

• E has measure a;

• E is the union of a rectangle with two half disks having the diameter which co-
incides with two opposite sides.

As we will see, any element in the class Xa can be identified by its Hausdor¤
asymmetry index d. Indeed, if we denote by a and b (see Figure 3) the measures

Figure 3. A set in Xa.
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of the sides, being b the diameter of the two half disks joined to the rectangle, it
is very easy to compute perimeter, measure and Hausdor¤ asymmetry index of
E a Xa:

PðEÞ ¼ 2aþ pb;ð4:2Þ

jEj ¼ abþ p

4
b2;ð4:3Þ

dðEÞ ¼ max

ffiffiffi
a

p

r
� b

2
;
aþ b

2
�

ffiffiffi
a

p

r( )
:ð4:4Þ

Actually, equality (4.3) states a constraint from which it is possible to write a
in terms of b and a

a ¼ a

b
� p

4
b:ð4:5Þ

The above relation states that, for fixed a, a is a decreasing function of b for
0 < ba 2

ffiffi
a
p

p
. Using (4.4) and (4.5), for fixed a, dðEÞ can be written as a decreas-

ing function of b, for 0 < ba 2
ffiffi
a
p

p
,

dðEÞ ¼

ffiffiffi
a

p

r
� b

2
if

2
ffiffiffiffiffi
pa

p

8� p
a ba 2

ffiffiffi
a

p

r
;

a

2b
þ
� 1

2
� p

8

�
b�

ffiffiffi
a

p

r
if 0 < ba

2
ffiffiffiffiffi
pa

p

8� p
:

8>>><
>>>:

ð4:6Þ

This means that we can parametrize the sets in Xa in terms of the Hausdor¤
asymmetry index, that is, we will denote by Xd the set such that Xd a Xa and
dðXdÞ ¼ d.

Using (4.2), (4.5) and (4.6), the ratio (4.1) for the set Xd can be calculated in
terms of d:

PðXdÞ2 � 4pjXdj
d2

¼

�
p
2

ffiffiffiffiffi
pa

p
� pdffiffiffiffiffi

pa
p

� pd

�2
if 0a da 2

4� p

8� p

ffiffiffi
a

p

r
;

� 4a� pgðdÞ2

2dgðdÞ

�2
if d > 2

4� p

8� p

ffiffiffi
a

p

r
;

8>>><
>>>:

ð4:7Þ

where, taking into account (4.6), gðtÞ is the decreasing function, for t > 2 4�p
8�p

ffiffi
a
p

p
,

gðtÞ ¼
4ð

ffiffiffi
p

p
tþ

ffiffiffi
a

p
Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð

ffiffiffi
p

p
tþ

ffiffiffi
a

p
Þ2 � apð4� pÞ

q
ffiffiffi
p

p ð4� pÞ :ð4:8Þ
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Using (4.7) and (4.8), it is easy to prove that, for a fixed a, one has

PðXdÞ2 � 4pa

d2
is increasing w:r:t: d if 0a da 2

4� p

8� p

ffiffiffi
a

p

r
;

PðXdÞ2 � 4pa

d2
is decreasing w:r:t: d if d > 2

4� p

8� p

ffiffiffi
a

p

r
:

ð4:9Þ

Furthermore, it is possible to evaluate the behaviour of the ratio (4.7) when d
goes to zero and when d diverges, that is, when the stadium tends to a disk or to a
line. We have:

lim
d!0

PðXdÞ2 � 4pa

d2
¼ 4p2;

lim
d!þl

PðXdÞ2 � 4pa

d2
¼ 16:

ð4:10Þ

Class Ya (lenses)

The class Ya contains any convex set E satisfying the following properties:

• E has measure a;

• E is symmetric with respect to a straight line such that the part of it which stays
on one side of the line coincides with a circular segment (the smallest part of a
disk cut by a chord).

As we will see, any element in the class Ya can be identified by its Hausdor¤
asymmetry index d. To show this fact we fix the reference axes ðx; yÞ in such a
way that x-axis coincides with the above mentioned line of symmetry and we de-
scribe the set by using two parameters r > 0 and y a �0; p=2� (see Figure 4) which
are the radius of the disk and half of the angle subtended by the chord. We have:

E ¼ fðx; yÞ a R2 : jxja r sin y; jyja
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p
� r cos yg:

Figure 4. Half of a set in Ya.
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It is very easy to compute perimeter, measure and Hausdor¤ asymmetry index
of E:

PðEÞ ¼ 4ry;ð4:11Þ
jEj ¼ 2r2ðy� sin y cos yÞ;ð4:12Þ
dðEÞ ¼ maxfr sin y�

ffiffiffiffiffiffiffiffi
a=p

p
;

ffiffiffiffiffiffiffiffi
a=p

p
� rð1� cos yÞg;ð4:13Þ

Actually, equality (4.12) states a constraint from which it is possible to write r
in terms of y and a

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

2ðy� sin y cos yÞ

r
:ð4:14Þ

The above relation states that, for fixed a, r is a decreasing function of y, for
0 < ya p=2. Using (4.13) and (4.14), for fixed a, dðEÞ can be written as a de-
creasing function of y, for 0 < ya p=2. Indeed, it is possible to prove that, if r
is given by (4.14), then,

r sin y�
ffiffiffiffiffiffiffiffi
a=p

p
b

ffiffiffiffiffiffiffiffi
a=p

p
� rð1� cos yÞ; 0 < ya p=2;ð4:15Þ

that is, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2ðy� sin y cos yÞ

r
ð1þ sin y� cos yÞb 2

ffiffiffi
a

p

r
; 0 < ya p=2:

If we square the above inequality, it is equivalent to

pð1þ sin y� cos yÞ � 4yþ ð4� pÞ sin y cos yb 0; 0 < ya p=2:ð4:16Þ

The above inequality can be proven computing the derivative of the function
hðyÞ ¼ pð1þ sin y� cos yÞ � 4yþ ð4� pÞ sin y cos y which appears on the left
hand side of (4.16),

h 0ðyÞ ¼ pðcos yþ sin yÞ � 4þ ð4� pÞðcos2 y� sin2 yÞ

¼
2 tan y

2�
1þ tan2 y

2

�2 �pþ ð3p� 16Þ tan y
2
þ p tan2 y

2
� p tan3 y

2

�
:

The observation that the polynomial pþ ð3p� 16Þtþ pt2 � pt3 has a negative
derivative for t a ½0; 1� gives the desired result (4.16). This means that (4.15) holds
true and, taking into account (4.13) and (4.14), we can finally write dðEÞ as a de-
creasing function of y:

dðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a sin2 y

2ðy� sin y cos yÞ

s
�

ffiffiffi
a

p

r
; 0 < ya p=2:ð4:17Þ
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The above relation states that we can determine y as a function of dðEÞ, that is,

y ¼ f ðdðEÞÞ; 0a dðEÞ < þl;ð4:18Þ

where f ðtÞ is the inverse function of the one given in (4.17), which applies the in-
terval ½0;þl½ into �0; p=2�.

This means that we can parametrize the sets in Ya in terms of the Hausdor¤
asymmetry index, that is, we will denote by Yd the set such that Yd a Ya and
dðYdÞ ¼ d.

For the set Yd, using (4.11), (4.14) and (4.18), the ratio (4.1) can be calculated
in terms of d:

PðYdÞ2 � 4pjYdj
d2

¼ 4a
2f ðdÞ2 � pð f ðdÞ � sin f ðdÞ cos f ðdÞÞ

d2ð f ðdÞ � sin f ðdÞ cos f ðdÞÞ
;ð4:19Þ

where f ðtÞ is the decreasing function defined in (4.18).
It is possible to prove that, for a fixed a,

PðYdÞ2 � 4pa

d2
is decreasing w:r:t: d in ½0;þl½ :ð4:20Þ

In order to prove the above statement we first put j ¼ 2f ðdÞ in (4.19) obtaining

PðYdÞ2 � 4pa

d2
¼ 8pFðjÞ;ð4:21Þ

where

FðjÞ ¼ j2 � pðj� sin jÞ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� cos jÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðj� sin jÞ

p
Þ2
; j a �0; p�:

Then we show that FðjÞ is an increasing function of j. Indeed, we have

F 0ðjÞ ¼ F1ðjÞF2ðjÞ
F3ðjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j� sin j

p ;ð4:22Þ

where

F1ðjÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos j

p
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos j

p
;

F2ðjÞ ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cos jÞ

p
� ðp� jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðj� sin jÞ

p
;

F3ðjÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� cos jÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðj� sin jÞ

p
Þ3:

It is immediate to show that

F1ðjÞb 0 and F3ðjÞb 0; j a �0; p�:ð4:23Þ
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As regards F2ðjÞ, we observe that

F2ðjÞb j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ uðjÞÞ

p
� ðp� jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðj� vðjÞÞ

p
; j a �0; p�;ð4:24Þ

where

uðjÞ ¼

1� j2

2
if 0a ja

2

5
p;

10

p

� p

2
� j

�
cos

� 2

5
p
�

if
2

5
p < ja

p

2
;

p

2
� j if

p

2
< ja

3

5
p;

�1þ ðp� jÞ2

6
� ðp� jÞ4

24
if

3

5
p < ja p;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4:25Þ

vðjÞ ¼

j� j3

6
if 0a ja

2

5
p;

1þ 10

p

�
j� p

2

��
1� sin

� 2

5
p
��

if
2

5
p < ja

p

2
;

1þ 10

p

� p

2
� j

��
1� sin

� 2

5
p
��

if
p

2
< ja

3

5
p;

p� j� ðp� jÞ3

6
if

3

5
p < ja p:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4:26Þ

Using (4.25) and (4.26) in (4.24) we have F2ðjÞb 0 in �0; p�. This inequality, to-
gether with (4.17), (4.18), (4.21), (4.22) and (4.23), gives (4.20).

Furthermore, it is possible to evaluate the behaviour of the ratio (4.19) when d
goes to zero and when d diverges, that is, when the lens tends to a disk or to a
line. We have:

lim
d!0

PðXdÞ2 � 4pa

d2
¼ lim

j!p
8pFðjÞ ¼ 4p2;ð4:27Þ

lim
d!þl

PðXdÞ2 � 4pa

d2
¼ lim

j!0
8pFðjÞ ¼ 16:ð4:28Þ

We conclude this section observing that properties (4.20), (4.28) proven above
immediately imply Proposition 2.1. Moreover, a simple argument allows us to
prove Proposition 3.1.

Proof of Proposition 3.1. We claim that for each 0a d < þl, if Xd a Xa

and Yd a Ya, we have:

PðXdÞbPðYdÞ:ð4:29Þ
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In view of (4.9), (4.10), (4.20) and (4.27) the assertion follows for

0a da 2
4� p

8� p

ffiffiffi
a

p

r
:

In the case

d > 2
4� p

8� p

ffiffiffi
a

p

r
;

inequality (4.29) is a consequence of the fact that circular arcs minimize
perimeter. r
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der Ebene und auf der Kugeloberfläche nebst einer Anwendung auf eine Minkowskische

Ungleichheit für konvexe Körper. Math. Ann. 84 (1921), no. 3-4, 216–227.
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