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Calculus of Variations — On a Sobolev-type inequality, by ANGELO ALVINO.
Dedicated to the memory of Renato Caccioppoli

ABSTRACT. — A new proof of the classical Sobolev inequality in R” with the best constant is given.
The result follows from an intermediate inequality which connects in a sharp way the L? norm of
np

the gradient of a function u to L?" and L? -weak norms of u, where p € |1,n[ and p* = iy is the
Sobolev exponent.
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1. INTRODUCTION

The celebrated Sobolev inequality states that

(1) S )l < [1Vul |10,

where u is a sufficiently smooth function, defined in R”, Vu is the gradient of u,
"

pellnf, pr=5.

The optimal value of S(n, p) in (1) is
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This means that (2) is the infimum of the functional
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it is actually attained (see [1], [8] and, also, [2]) when

h
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where £, k are positive constants.
The proof proceeds in two steps. The first one consists of a symmetri-
zation procedure: u is replaced by its rearrangement u#* which is a spherically

(3) u(x) =

)



380 A. ALVINO

symmetric function and decreases with respect to |x|. Moreover u, u* have the
same distribution function, hence they have the same L” norm. On the other
side, the L” norm of the gradient decreases as a consequence of the following
Pdlya Principle

@) /|Vu#|”dx§/ IVul” dx.
Rn R"

In conclusion F(u) > F(u*); so only radial functions compete in reaching the
best constant in (1).

We stress the central role of (4) and recall that it follows from a combined use
of the Holder inequality and the classical isoperimetric inequality

P(E) = n" /7o) " minf|E|, [R"\E[} "~/

here |E| is the Lebesgue measure of a Caccioppoli set E, P(E) is the perimeter of
E in the sense of De Giorgi [5],

nnn/2

YTry)
is the measure of the unitary (n — 1)-dimensional sphere.

The problem thus becomes a classical question of one-dimensional Calculus of
Variation with constraints. It can be dealt with turning it into a Lagrange Prob-
lem whose extremals are available. These form a Mayer field; introducing the
Weierstrass excess function leads to the result.

As for the second step our proof appeals to simpler tools for free functionals
of the Calculus of Variations. A more general Sobolev-type inequality, involving
the norm of u in a Marcinkiewicz space, is established. The classical Sobolev in-
equality (1), with the optimal value (2) of the constant, easily follows.

2. MAIN RESULT

Let a > 0 and consider the following one-parameter family of extremals (3)
g(”fp)/]’

() up (x) = up(|x]) = 1+ (al])? P O

These functions have the same L? norm
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Moreover they all solve the nonlinear partial differential equation
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which is the Euler-Lagrange equation of the functional

| 1 —p) .
Jw)=—[ |Vul’dx—— L‘D)lal’/ lul? dx,
P Jrr p(p-1)7~ R
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if u 1s a radial function.
The curve
_ ) (p=1)/p?
™) ==l (ar) P = 5,00, >0,

P/

envelopes the graphs y = u,(r); these cover the region of the first quadrant which
lies below the curve (7) and will be called 7.

If v is a non negative, sufficiently smooth, compactly supported, radial func-
tion let

ol = sup[r"”"v(r)]
r>0

be its norm in the Marcinkiewicz space of the functions weakly L?". If we choose

) B (p— 1)(1’*1)/1) 1
(8) a= » Pl
“U"p*,oo

the minimum value such that v(r) < y,(r), for all r positive, the envelope (7) be-
comes

Y= ||D||p*7oor7(n7p)/p = y(l")

Each graph y = u,(r) touches the envelope at a point which splits it into two
curves Ci(¢), Cy(¢). These two families of curves are the trajectories of two differ-
ent fields of extremals of the functional (6), and both defined in the same set 7.
We denote by (1,¢(r, y)) the former and by (1,¢x(r, y)) the latter. As usual,
q1(r,y) is the slope of the extremal of the first family passing through (r, y);
¢2(r, y) has an analogous meaning. The envelope also touches the graph of v at
least in a point P = (o, y()) which splits it into two arcs I';, I'>. Moreover, we
simply denote by C;, C», respectively, the arcs of the families Cj(¢), C>(¢) passing
through P.

In Figure 1 (2) the graphs of the envelope y =y(r), I'y (I'z), Ci (C;) are
sketched, together with some further arcs of extremals.
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a

Figure 1

Setting

— )’ .
flro.w') = [W -
p E—

gives

J(v) = /Oxf(r,v,v’)dr—i—/ch(r,v,v’)drzll(v)—|—J2(v).

We begin by estimating J; (v) from below; to this aim we refer to the first field of
extremals.
Since f is convex with respect to the last variable, we get

g(h v, U/7 ql) = f(}’, v, U/) _f(rv v, ql) - (U/ - ql).fv’(rv v, ql) = 07
where & is the well-known Weierstrass excess function. Therefore

9) J(0) 2 / o) + @ — a0 fo(ry0,01)] dr

Now we use classical arguments of one-dimensional Calculus of Variations (see,
for example, [6], [7]).
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Figure 2

Since the 1-form

(10) [f(r,U,QI) - Cllfv’(”»U,CII)]dr"‘fv’(”,v,ql)d’]

is exact, the integral on the right-hand side of (9) equals the line integral of (10)
along a segment of the vertical axis, which is null, plus the integral line along the
curve C; (see Figure 1). The latter is

Ji(u) = / S(ryug,ul) dr.
0
Thus, we have
(11) J](U)ZJ](HC).
A similar procedure applies to J,(v). We integrate the exact 1-form

(12) [/ (r,0,42) = g2 /o (r; v, g2) dr + fur(r, 0, g2) do

along the closed path delineated in Figure 2.
A simple asymptotic argument allows us to claim that the line integral of (12)
along the vertical segment Sy is infinitesimal when f goes to infinity. Therefore

(13) Jo(v) = /%f(r,v, v dr = Jh(u,) = /wf(r, Uy, u,) dr.
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Collecting (11) and (13) gives J(v) > J(u,). Hence, computing J(u,) leads to

Vol dx > a” =
R" (p—1)

(n—p) vy g2 (1 p“F() (n=%)
1||U|| +ap 2n p—l) () ()

If we recall the value (8) of @, by density arguments, we have the following result.

THEOREM 2.1. If v belongs to the Sobolev space W'P(R") and p € ]1,n[, then

2/ (n—
(14) Jofl2./ &) IVol2 > A(n, p)|o]2. + B(n, p)lvl- .,
where
n— p)
Al p) ="
V4
and

= TET(-Y)
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REMARK 2.1. Handling with a sole extremal field leads to trivial outcomes.
Namely it is not possible to assemble the graphs of v and of an extremal, and
make a closed path along which calculate the integral of an exact 1-form as above.
This becomes possible if one thinks of the extremal fields as a unique field defined
on a surface, a sort of cylinder, squashed onto T. In some sense we deal with a sheet
with two pages: when an extremal touches the envelope it passes from one page to
another. Therefore, the extremals can be viewed as closed paths which describe a
complete ring. The same happens to the graph of v when it touches the envelope.
In some sense the graphs of v and of each extremal are in the same homotopy class.

REMARK 2.2. Recently the problem of the optimality of the Sobolev constant has
been tackled by different tools (see [4]). Instead of a symmetrization procedure and
the Pélya inequality (4), mass transport methods and a subtle result by Brenier [3]
are used. Both methods have deep, but different, geometric flavours.

3. THE SOBOLEV INEQUALITY

Inequality (14) can be viewed as a generalization of the Sobolev inequality.
Namely (1) can be deduced from (14) dividing by [v[}." -/ =P) and minimizing the
right-hand side with respect to ||,

We can also argue in a different way.

For instance, if p = 2 and n = 3, (14) becomes

L olg

Vel = 4 + 2o, -
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By Young inequality we get

72.'2—02

2/3
(15) Vols = 3(557) 7 1ol + 0%l

for any ¢ € [0, z]. If ¢ = 0 we obtain the Sobolev inequality, whereas, if ¢ = 7, we
have

(16) Vol = 7lols o

However the value of the constant in (16) is not sharp, as the following result
shows.

THEOREM 3.1. Let u e WH2(R"). Then
(17) (n = 2)ulul,/ny. o < |Vula.

It is obviously sufficient to deal with spherically decreasing and spherically sym-
metric functions. For the sake of simplicity we assume

(18) sup(r"™=22u(r)) = r(()"_z)/zu(ro) =1

>0

for a suitable rp > 0. Among all functions satisfying (18) the one with the lowest
energy is

() = R it r<n
ré"*z)/zrz’” ifr>rp

The energy of w is (n — 2)w,, then we get (17). Moreover the constant is sharp.

REMARK 3.1. As for (15), if S < 3(z%/4)*>, one could ask for the best constant
C(S) such that

IVol3 > S|ole + C(S)|vlg, .-

Analogous question can be set when we remove any restriction on p and n.
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