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Calculus of Variations — On a Sobolev-type inequality, by Angelo Alvino.

Dedicated to the memory of Renato Caccioppoli

Abstract. — A new proof of the classical Sobolev inequality in Rn with the best constant is given.
The result follows from an intermediate inequality which connects in a sharp way the Lp norm of

the gradient of a function u to Lp �
and Lp �

-weak norms of u, where p a �1; n½ and p� ¼ np

n�p
is the

Sobolev exponent.
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1. Introduction

The celebrated Sobolev inequality states that

Sðn; pÞjjujjL p� a jj j‘uj jjL p ;ð1Þ

where u is a su‰ciently smooth function, defined in Rn, ‘u is the gradient of u,
p a �1; n½ , p� ¼ np

n�p
.

The optimal value of Sðn; pÞ in (1) is
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This means that (2) is the infimum of the functional

FðuÞ ¼ jj j‘uj jjL p

jjujjL p�
;

it is actually attained (see [1], [8] and, also, [2]) when

uðxÞ ¼ h

½1þ kjxjp=ðp�1Þ�ðn�pÞ=p ;ð3Þ

where h, k are positive constants.
The proof proceeds in two steps. The first one consists of a symmetri-

zation procedure: u is replaced by its rearrangement ua which is a spherically



symmetric function and decreases with respect to jxj. Moreover u, ua have the
same distribution function, hence they have the same Lp�

norm. On the other
side, the Lp norm of the gradient decreases as a consequence of the following
Pólya Principle Z

Rn
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Z
Rn
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In conclusion F ðuÞbFðuaÞ; so only radial functions compete in reaching the
best constant in (1).

We stress the central role of (4) and recall that it follows from a combined use
of the Hölder inequality and the classical isoperimetric inequality

PðEÞb nðn�1Þ=no1=n
n minfjEj; jRnnEjgðn�1Þ=n;

here jEj is the Lebesgue measure of a Caccioppoli set E, PðEÞ is the perimeter of
E in the sense of De Giorgi [5],

on ¼
npn=2

G 1þ n
2

� �
is the measure of the unitary ðn� 1Þ-dimensional sphere.

The problem thus becomes a classical question of one-dimensional Calculus of
Variation with constraints. It can be dealt with turning it into a Lagrange Prob-
lem whose extremals are available. These form a Mayer field; introducing the
Weierstrass excess function leads to the result.

As for the second step our proof appeals to simpler tools for free functionals
of the Calculus of Variations. A more general Sobolev-type inequality, involving
the norm of u in a Marcinkiewicz space, is established. The classical Sobolev in-
equality (1), with the optimal value (2) of the constant, easily follows.

2. Main result

Let a > 0 and consider the following one-parameter family of extremals (3)

ueðxÞ ¼ ueðjxjÞ ¼
eðn�pÞ=p

½1þ ðaejxjÞp=ðp�1Þ�ðn�pÞ=p :ð5Þ

These functions have the same Lp�
norm
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Moreover they all solve the nonlinear partial di¤erential equation
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which is the Euler-Lagrange equation of the functional

JðuÞ ¼ 1
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if u is a radial function.
The curve

y ¼ ðp� 1Þðn�pÞðp�1Þ=p2

pðn�pÞ=p ðarÞ�ðn�pÞ=p ¼ gaðrÞ; r > 0;ð7Þ

envelopes the graphs y ¼ ueðrÞ; these cover the region of the first quadrant which
lies below the curve (7) and will be called T .

If v is a non negative, su‰ciently smooth, compactly supported, radial func-
tion let

jjvjjp�;l ¼ sup
r>0

½rn=p�
vðrÞ�

be its norm in the Marcinkiewicz space of the functions weakly Lp�
. If we choose

a ¼ ðp� 1Þðp�1Þ=p

p
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the minimum value such that vðrÞa gaðrÞ, for all r positive, the envelope (7) be-
comes

y ¼ jjvjjp�;lr�ðn�pÞ=p ¼ gðrÞ:

Each graph y ¼ ueðrÞ touches the envelope at a point which splits it into two
curves C1ðeÞ, C2ðeÞ. These two families of curves are the trajectories of two di¤er-
ent fields of extremals of the functional (6), and both defined in the same set T .
We denote by ð1; q1ðr; yÞÞ the former and by ð1; q2ðr; yÞÞ the latter. As usual,
q1ðr; yÞ is the slope of the extremal of the first family passing through ðr; yÞ;
q2ðr; yÞ has an analogous meaning. The envelope also touches the graph of v at
least in a point P ¼ ða; gðaÞÞ which splits it into two arcs G1, G2. Moreover, we
simply denote by C1, C2, respectively, the arcs of the families C1ðeÞ, C2ðeÞ passing
through P.

In Figure 1 (2) the graphs of the envelope y ¼ gðrÞ, G1 (G2), C1 (C2) are
sketched, together with some further arcs of extremals.
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Setting

f ðr; v; v 0Þ ¼ on

p
rn�1 jv 0jp � ðn� pÞp

ðp� 1Þp�1
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gives

JðvÞ ¼
Z a

0

f ðr; v; v 0Þ drþ
Z l

a

f ðr; v; v 0Þ dr ¼ J1ðvÞ þ J2ðvÞ:

We begin by estimating J1ðvÞ from below; to this aim we refer to the first field of
extremals.

Since f is convex with respect to the last variable, we get

Eðr; v; v 0; q1Þ ¼ f ðr; v; v 0Þ � f ðr; v; q1Þ � ðv 0 � q1Þ fv 0 ðr; v; q1Þb 0;

where E is the well-known Weierstrass excess function. Therefore

J1ðvÞb
Z a

0

½ f ðr; v; q1Þ þ ðv 0 � q1Þ fv 0 ðr; v; q1Þ� dr:ð9Þ

Now we use classical arguments of one-dimensional Calculus of Variations (see,
for example, [6], [7]).

Figure 1
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Since the 1-form

½ f ðr; v; q1Þ � q1 fv 0 ðr; v; q1Þ� drþ fv 0 ðr; v; q1Þ dvð10Þ

is exact, the integral on the right-hand side of (9) equals the line integral of (10)
along a segment of the vertical axis, which is null, plus the integral line along the
curve C1 (see Figure 1). The latter is

J1ðueÞ ¼
Z a

0

f ðr; ue; u 0
eÞ dr:

Thus, we have

J1ðvÞb J1ðueÞ:ð11Þ

A similar procedure applies to J2ðvÞ. We integrate the exact 1-form

½ f ðr; v; q2Þ � q2 fv 0 ðr; v; q2Þ� drþ fv 0 ðr; v; q2Þ dvð12Þ

along the closed path delineated in Figure 2.
A simple asymptotic argument allows us to claim that the line integral of (12)

along the vertical segment Sb is infinitesimal when b goes to infinity. Therefore

J2ðvÞ ¼
Z l

a

f ðr; v; v 0Þ drb J2ðueÞ ¼
Z l

a

f ðr; ue; u 0
eÞ dr:ð13Þ

Figure 2

383on a sobolev-type inequality



Collecting (11) and (13) gives JðvÞb JðueÞ. Hence, computing JðueÞ leads toZ
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If we recall the value (8) of a, by density arguments, we have the following result.

Theorem 2.1. If v belongs to the Sobolev space W 1;pðRnÞ and p a �1; n½ , then
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Remark 2.1. Handling with a sole extremal field leads to trivial outcomes.
Namely it is not possible to assemble the graphs of v and of an extremal, and
make a closed path along which calculate the integral of an exact 1-form as above.
This becomes possible if one thinks of the extremal fields as a unique field defined
on a surface, a sort of cylinder, squashed onto T. In some sense we deal with a sheet
with two pages: when an extremal touches the envelope it passes from one page to
another. Therefore, the extremals can be viewed as closed paths which describe a
complete ring. The same happens to the graph of v when it touches the envelope.
In some sense the graphs of v and of each extremal are in the same homotopy class.

Remark 2.2. Recently the problem of the optimality of the Sobolev constant has
been tackled by di¤erent tools (see [4]). Instead of a symmetrization procedure and
the Pólya inequality (4), mass transport methods and a subtle result by Brenier [3]
are used. Both methods have deep, but di¤erent, geometric flavours.

3. The Sobolev inequality

Inequality (14) can be viewed as a generalization of the Sobolev inequality.

Namely (1) can be deduced from (14) dividing by jjvjjp
2=ðn�pÞ

p�;l and minimizing the
right-hand side with respect to jjvjjp�;l.

We can also argue in a di¤erent way.
For instance, if p ¼ 2 and n ¼ 3, (14) becomes

jj‘vjj22 b
1

4

jjvjj66
jjvjj46;l

þ p2jjvjj26;l:
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By Young inequality we get

jj‘vjj22 b 3
� p2 � s2

4

�2=3

jjvjj26 þ s2jjvjj26;lð15Þ

for any s a ½0; p�. If s ¼ 0 we obtain the Sobolev inequality, whereas, if s ¼ p, we
have

jj‘vjjL2 b pjjvjj6;l:ð16Þ

However the value of the constant in (16) is not sharp, as the following result
shows.

Theorem 3.1. Let u a W 1;2ðRnÞ. Then

ðn� 2Þonjjujj22n=ðn�2Þ;la jj‘ujj2L2 :ð17Þ

It is obviously su‰cient to deal with spherically decreasing and spherically sym-
metric functions. For the sake of simplicity we assume

sup
r>0

ðrðn�2Þ=2uðrÞÞ ¼ r
ðn�2Þ=2
0 uðr0Þ ¼ 1ð18Þ

for a suitable r0 > 0. Among all functions satisfying (18) the one with the lowest
energy is

wðrÞ ¼ r
�ðn�2Þ=2
0 if ra r0

r
ðn�2Þ=2
0 r2�n if r > r0

(

The energy of w is ðn� 2Þon, then we get (17). Moreover the constant is sharp.

Remark 3.1. As for (15), if S < 3ðp2=4Þ2=3, one could ask for the best constant
CðSÞ such that

jj‘vjj22 bSjjvjj26 þ CðSÞjjvjj26;l:

Analogous question can be set when we remove any restriction on p and n.
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