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ABSTRACT. — We prove the continuous dependence on the data of weak solutions to Dirichlet
problem for nonlinear elliptic equations with a first order term and datum in dual spaces of classical
Sobolev spaces. We deduce uniqueness results.
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1. INTRODUCTION

In this paper we are interested in continuous dependence on the data and unique-
ness of weak solutions to the Dirichlet problem

(1.1)

{—div(a(x7 Vu)) + B(x,Vu) = f in Q,
u=20 on 0Q

where Q is a bounded open set in RY (N > 2),

a:(x,&)eQxRY —a(x, &) = (a(x,8) e RY
and

B:(x,&) e QxRY = B(x,&) e R

are Carathéodory functions, f belongs to the dual space W~17'(Q) of WO1 T(Q),
for some p € ]1, +o0l.

Standard assumptions which assure the existence of a weak solution to prob-
lem (1.1) are the ellipticity of the operator

(1.2) a(x,&)- &= ¢, A>0,
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the growth conditions on a and B

(1.3) a(x, &) < c[lE]” " +ap(x)], ¢>0, aye L (Q),
(1.4) |B(x,&)| < B¢, B>0,

and the monotonicity of a

(1.5) (a(x,&) —a(x,&) - (£ -¢) >0, &#¢,

for a.e. x € Q, for all &,¢&" e RV,
Under these assumptions a weak solution to problem (1.1) exists (cf. [8], [9],
[12]), that is a function u € WO1 7 (Q) exists such that

(1.6) /Q a(x, Vi) - Vodx + /Q B(x,Vi)pdx = (f,p), Vo e Wi(Q),

As far as uniqueness is concerned, more restricitive assumptions on the structure
of the operator are required such as a monotonicity condition on a stronger then
(1.5)

(L7) (ax,9) —a(x,&) - (€= &) =ale+ e+ 1D - &7 & e RY,

where o >0, e >0 if p>2 or e=0if p <2, and a local Lipschitz continuity
condition on B

(1.8)  |B(x,&) — B(x,&)| <b(n+ &+ &) 2|e =&, & eRY,

where b >0andnp=0if p>2o0ry > 0if p < 2.

Uniqueness results for weak solutions to (1.1) are proved under similar as-
sumptions in [4], [6], [7], [11] and also in [1], [16] where they are obtained as a
consequence of a comparison principle.

The aim of this paper is to prove the continuous dependence on the data and
to deduce the uniqueness of a weak solution to (1.1) under the structural assump-
tions (1.7) and (1.8). Our approach is based on the classical symmetrization meth-
ods (cf. [13], [18]) which make use of isoperimetric inequalities and properties of
rearrangements (see also [2], [5], [10]).

We point out that condition (1.7) is guaranteed if a(x,0) = 0 and the follow-
ing ellipticity condition holds

Za"" (x,2)&E = (e + 2)P72E)?, e RV,

-
=1 9%

Roughly speaking this means that the operator a can be reduced to a linear de-
generate elliptic operator whose degenerancy is linked to the first order terms of
problem (1.1). The model we have in mind is a(x,&) = (e + |Vu|2)(p_2)/2Vu,
which yields the so-called p-Laplace operator when p <2 by our assumptions
on ¢. This linearization process suggests to require that the datum f belongs to
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a weighted dual space H~!(Q,m) for a suitable weight m linked to the degener-
ancy of the operator (cf. [15]). Actually, at least when p > 2, we assume that data
of (1.1) belong to the smaller dual space H~!(Q). Such an hypothesy seems to be
necessary in order to prove the continuous dependence on the data. No further
restrictions are required when p < 2: under this assumption we prove the contin-
uous dependence of weak solutions on data belonging to W =17 (Q).

Our main results are the following

THEOREM 1.1. Let u, v be weak solutions to problem (1.1) with data
f,g9 € HY(Q) respectively. Assume (1.2), (1.3), (1.4), (1.7), (1.8) and

2<p<

N-2’
ifN>3and?2 < p < +o0, if N = 2. Then the following inequality holds true

(1.9) [V = Vol |7, < CIf = gl

where C is a positive constant which depends on N, |Q|, p, o, b, &, | f] -1 and
|9 -1 however it is bounded when f and g belong to bounded subset of H~'(Q).

THEOREM 1.2. Let u, v be weak solutions to problem (1.1) with data
1,9 € WL (Q) respectively. Assume (1.2), (1.3), (1.4), (1.7), (1.8) and

2N
N+2

<p<2.

Then the following inequality holds true
(1.10) [V = Vol < Clf =gl

where C is a positive constant which depends on N, |Q|, p, o, b, n, | f| -1, and
lgll yy-1.0; however it is bounded when f and g belong to bounded subset of

w=hr(Q).

Obviously Theorems 1.1 and 1.2 imply in turn uniqueness of weak solutions to
(1.1). They improve, at least when p < 2, well-known results contained in [6],
[11] and [16], since we find a larger range of the values of p for which uniqueness
holds.

2. POINTWISE ESTIMATES

The proofs of Theorems 1.1 and 1.2 are based on a pointwise estimate for the
decreasing rearrangement of u — v, difference of two weak solutions u, v to (1.1)
corresponding to the data f, g respectively.
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We recall that the decreasing rearrangement of a measurable function w de-
fined in Q is the function

w*(s) =sup{t = 0: u(t) > s}, s€]0,]Q]],
where u denotes its distribution function
w(t)y={xeQ:|wkx)|>rt}, t=>0.
The estimate of the decreasing rearrangement of u — v is proved by adapting clas-
sical symmetrization methods introduced in [13], [18] and extended to degenerate
elliptic operators in [3].

LEMMA 2.1. Let u, v be weak solutions to problem (1.1) with data f,g € H™'(Q)
respectively. Assume (1.2), (1.3), (1.4), (1.7), (1.8) and

2<
_p<N_2,

with N > 3. Then we have
(2.1) (u—0)"(s) <CIf —glyrs VN se(0,1Q)),

where C is a positive constant which depends on N, |Q|, p, o, b, ¢, |f|y-1 and
|9l -1, however it is bounded when f and g belong to bounded subset of H1(Q).

LEMMA 2.2. Let u, v be weak solutions to problem (1.1) with data f,g €
W=Lr'(Q) respectively. Assume (1.2), (1.3), (1.4), (1.7), (1.8) and

2N
N+2

<p<2.

Then we have
. - * = - —1,p! WP ) 9 )
(2.2) (u—0)"(s) < Clf = gl s VPN 5 (0,1

where C is a positive constant which depends on N, |Q|, p, o, b, n, | f]y-1.»
and g 1.7, however it is bounded when f and g belong to bounded subset of

WP (Q).

PROOF OF LEMMA 2.1. Denote w=u—0v, h=f —g and H € (L*(Q))" the
vector field such that

(2.3) h = —div(H).



CONTINUOUS DEPENDENCE ON THE DATA 5

For any fixed 7 € |0, esssup w[ and k > 0 we consider the function

k signw if |w| > t+k,
p=qw—tsignw if t<|w| <t+k,
0 otherwise,

as test function in (1.6) with datum f', g respectively. Then we subtract the equa-
tions and we divide by k,

1

k t<|w| < t+k

[a(x,Vu) —a(x, Vv)] - Vwdx

= / [B(x, Vu) — B(x, Vv)| signw dx
[w|>t+k

n
k t<|w| < t+k

1
+ —/ H -Vwdx.
k t<|w| < t+k

By assumptions (1.7) and (1.8), using Ho6lder inequality and letting k goes to zero,
we obtain

[B(x,Vu) — B(x, Vv)|(w — tsignw) dx

(2.4) (e + |Vu| + |Vo])?*|Vw|* dx

dt [w|>t

b 1 d 1/2
— p—2 b ra 5
<~ A,>,('V”'+'V“') Virldy+ s (-5 /w|>t|H| )

d a2
X(_E/w>t(8+|w|+|w|) VilPdx) "

On the other hand by Schwarz and isoperimetric inequalities, it follows

(2.5 Noy u@n'

il
< —— Vw|dx
dt [w|>t | |

(-1 (1)"”

d 1/2
\—e\Y) (o« p—2 2
< on ( 7 /w|>[(8 + [Vu| + |Vo])? 7| Vw| dx) )

where wy denotes the measure of the unit ball of RY.
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Therefore by (2.4) and (2.5), we get
d 210 12 5 \/2
ce (-5 /| (e Bl 9w dx)

b(—a(0)""
= an]lv/Ng(piz)/zﬂ([) 1-1/N

I d ENY:
+ ae(p_z)/z (_%‘/lw>t |H| dx) .

Now we evaluate the first integral in the right-hand side of (2.6). By Schwarz
inequality and coarea formula, we get

/ (6 4+ |Vu| + [Vel)P~2|Vow| dx
[w|>t

(2.7) / (e + |Vu| + |Vo| )72 |Vw| dx
[w|>t

_/“‘ (_i/ (e-+ [Vl + Vo)) ~2 V] d) d
t dt [w|>t

+o0 d 1/2
< - P22 yw|* d
_[ ( dT/W>T(e+|Vu|+|w|) Vinf? )

d 1/2
X (——/ (e + |Vu| + Vo))" 2 dx) dr.
[w|>t

T

Denote by K, H : [0,|Q|) — R the functions which satisfy the following equal-
ities

(2.8) K(pu(0))(=p'(1)) = —%/M(H V| + |Vo|)? 2 dx,
oy 4 2 0
(29) H )4 (0) == [ P

Properties of such functions have been studied in 3], [17] (see also [14]).
Collecting (2.6), (2.7), (2.8) and (2.9), we get

d _ 1/2
(_E/l (e + |Vu| + |Vv])? 2|Vw|2dx)
w(>t

b(—p' (1) ted ) 12
= I/N l—l/N/ <_d/ (e + [Vu| +|Vu])” 2|VW|2dx)
OC]VCON 8(1)72)/2#([> 4 T Jw|>t

() P () 2 o (B () P ()2
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By Gronwall Lemma, we deduce

d I V.
2.10 ——/ e+ |Vu| + |Vo|)? *|Vw|“ dx
@10) (=g [ (et [Vl Vo)Vl )

(H(u(0) (=)' b(='(0)"

<
ae(p=2)/2 OczNwllv/ng_zﬂ(Z)lfl/N

/ " H () K () P (4 (1))

b " (K(u(0)))'?
(p—z)/z/,

X exp - (—u'(0))da) dr.
(chco]l\,/Ns ,u(a)1 /N )

Taking into account (2.5), we obtain

_ HuO)' (' (1)) b(=u'(1))

B ochojlv/Nsl’*zﬂ(t)lfl/N azNza)]zv/Nae/z)(P*z)u(t)272/N

<[ K@) )

X exp( b /T (K(ﬂ(a)))l/z

i/ (0)) do) dr,
och]lv/Na(l’*z)p ,u(a)l_l/N ( :u(a)) 0) T

from which in a standard way we get

AT (G K
dr aNwy " P2
b 2+2/N/r 1/2
r H(o)K
oczNzcojzv/Ng@/z)(p*Z) 0 (H(0)K())
b "(K 1/2
xeXp< TN / (_1(23)]\, dz) do.
aNoNer-2/2 )5 211
for r e (0.]2).

Now we evaluate the integral in the right-hand side of (2.11). To this aim
we recall that the functions K, H are weak limit of functions having the same
rearrangement as (& + |Vu| + [Vo|)” > and |H|* respectively. Therefore the Leb-
esgue norms of K and H can be estimated from above by the same norm
of (e+|Vu|+ |Vv|)”* and |H|? respectively. This implies that K belongs to
Lr/(r=2)(0,|Q) and H to L'(0,|Q|) respectively. Therefore, using Holder in-

equality, since p < %5, we have
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/ —
(2.12) /()Q(]—((Z))lzdzg (/Q(” Vul + |VU|)pdx)([7 /2

Z1-1/N
[l 1 J (p+2)/2p
8 </o DN (p72) 9 ST

and
e [ K@) s

1/2 (r—2)/2
< (/ 1 d) (/(8+|Vu|+|Vv|)pdx) R,
Q Q

Denote by C a positive constant which depends only on the data and which can
vary from line to line.

A priori estimates for the gradients of weak solutions to (1.1) are well-known
(cf. Lemma 3.1 in [8] or [9]), that is

(2.14) | \Val |, < Clf12"

W—l.p/'

Moreover, since p > 2,

(2.15) Tyt < L

Combining (2.11), (2.12), (2.13), (2.14) and (2.15), we have the following differen-
tial inequality

d %
Y (1) < CLH)] 2PN 4 O [ 2N r e (0,]Q)).

(216) —=—-() <

Finally we integrate such an inequality between s and |Q| and, by Holder inequal-
ity and the property of H stated above, we get

o] fo] 12
W < | [ ([T )",

This yields (2.1). O

REMARK 2.1. The previous proof can be easily adapted to the case when N = 2.
Indeed the integration of differential inequality (2.16) yields the following point-
wise estimate of (u — v)", which replaces (2.1),

=00 = 1 =l [0+ (10 7], se 0,100

The proof of Lemma 2.2 is analogous to the proof of Lemma 2.1.
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PROOF OF LEMMA 2.2. Denote w=u—0v, h=f —g and H € (L?'(Q))" the
vector field such that (2.3) holds. As for (2.4), we get

d Vw|? V|
T ol L= 7, dx
tJjwl> (|Vu| + | Vo)) % Jiwi>t (n + |Vu| + |Vo))

~(-= H
+( d%v>t(|vu|+|w|) H? dx)

o

d 2 1/2
« (-4 / L%dx) _
dt Jjwj>t (|Vu| + |Vo|)*7

On the other hand by Schwarz and isoperimetric inequalities, it follows

2 1/2
(2.17) Noy ()= < (—i/ Lz_pdx)
dt Jywi>« (|Vul + |Vol)

d NIRRT
X (—E/w|>t(|Vu| + |Vv)]) dx) .

Hence we have

2 1/2
o (L[ WP
At Jywi>1 (|Vul + [Vol)=7
b d / NN
< —— Vu| + |Vo])= 7 dx
o (a7 ¥+ V) )

/ V|
X 5 dx
>t (7 + |Vul + | Vo)

1, d 2\ 2
+—(—E/w>t(|w|+|w|) | dx) .

04

By Schwarz inequality and coarea formula, since # > 0, we have

(2.19) / [V —dx
[w|>t (77 + |Vu| + |VU|> 4

1 /*00 d / |Vw|? 2
< —— - ——————dx —u(z dr.
77(271))/2 t < dt [w|>1 (|VL!| + ‘VU|)2_p ) ( ( )>
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We denote by K,H : [0,]Q|) — R the functions which satisfy the following
equalities

(2.20) R(u(0) (') = 9 /| v (9ol
Q2 A 0) =~ /| (9l 5ol T

Collecting (2.18), (2.19), (2.20) and (2.21), we get

2 12
(_ i/ _ 7 dx)
di [w|>1 (|Vu| + |VU|)

bR(u(e)) (') (7 d Vol )
= /f /w|>r( )271) )

= @2 2N N u(n) N de V| + Vol

(o (0) P de () (4 (1))

Now we apply Gronwall lemma and use (2.17) again. Therefore, as in the proof
of Lemma 2.1, we obtain

dw* b]? —2+2/N ro
) Wy KO | e
dr 2p(2-)/2 Nsz/ 0

b "(K(z)"?
X ex ( dz) do
p OCNCOJI\/Nﬂ(p_2)/2/U Z1-1/N

+ (K(r)" P (H(r)) 2N,

ocNa)]lv/N

for r € (0,[€). Let us evaluate the integral in the right-hand side of (2.22). By
the property of H and K stated above, K belongs to L?/?=2)(0,|Q|) and H to

L'(0,]Q]). Therefore, using Holder inequality, since p > 345, we have
1 ((-))1/2 (2-p)/2
(2.23) / %dz < (/(|Vu| + |Vo|)? dx)
0 z Q

Il 1 2\
< /0 o &) <

and

(2.24) /Or(H(o'))l/z do < (/Q(|Vu| + |VU|)2_p|H|2dx)l/2rl/2.
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Taking into account (2.22), (2.23), (2.24) and the a priori estimates (2.14), we get

dw*

(225) » (r) < C|:(/Q(|Vu| + ‘VU|>2*P|H|2dx)l/ZK(r)r_2+2/N+1/2

R0 ‘/zrl/Nl} ,

for r € (0, |Q|). Now we integrate such an inequality between s and |Q| and then
we use Holder inequality and the a priori estimates (2.14). Therefore we get

. - 12 _
26)  wi) = C( [ (v Vel ax) IRES

Lr/(2=p)

o
+(/ KN /(1) d,,) - ””’}

Since H € L”'(Q), using Holder inequality, we get

Q]
" |:"I?"l/2 (/ =3/22/N)(p/2(p-1) dr) p=l/p
N

/(IVMI + Vo)) > 7| H | dx < | [Vl + Vol |7

"IH|;

L L'
Combining this inequality, (2.26) and the a priori estimates (2.14), we get (2.2).
|

3. CONTINUOUS DEPENDENCE ON THE DATA

The pointwise estimates proved in the previous section imply estimates in
Lebesgue spaces of u — v in terms of the norms in dual space of the data. Indeed
under the assumptions of Lemma 2.1 (see also Remark 2.1), we have the follow-
ing estimate of L”-norm of u — v

(3.1) lu— vl < CIf = gl
while under the assumptions of Lemma 2.2,
(32) lu = vl < Clf = glyr-

These estimates play an important role in the proof of the continuous dependence
of the weak solutions to (1.1) on the data.

PROOF OF THEOREM 1.1. Denote h = f — g and H e (L*(Q))" the vector field
defined by (2.3). We consider w = u — v as test function in (1.1) with data f and g
respectively. Then we subtract the two equations and, using (1.7) and (1.8), we
get
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ac/g(a V| + [Vol)7 2| V| dx
sb/g(Wu +|Vv|)”2|Vw||w|dx+/Q|H| V| dx.
By Hoélder inequality we have
(3.3) oc/g(a—i— IVu| + [Vol)? 2| V| dx

1/2
Sb(/(£+|Vu| £ (Vo)) 2Vl )

2)/2 1/
(/(|Vu|+|Vv|”dx “( /de ’

1 2 210 2 5\ /2
+W(/Q|H| &) (/Q(s+|w|+|w) Vel )

On the other hand, since p > 2,
/ |Vu — Vo|P dx < /(8 + |Vu| + Vo) 2| Vw|* dx.
Q Q

Therefore combining (3.1), (3.3) and (2.14), we get (1.9). O
The proof of Theorem 1.2 is similar to the previous proof.

PrOOF OF THEOREM 1.2. As in the proof of Theorem 1.1, we consider
w=u — v as test function, then we subtract the two equations and we use (1.7)
and (1.8)

2
a/%dxgb/ [Vivf - dx+/ \H| |V dx,
o (|Vu| + |Vu|)=7? o (n+ |Vul + |Vo|)=7 Q

where H e (L”' (Q))" is the vector field defined by (2.3) holds.
By Schwarz inequality we have

2
(3.4) a/Lz_dx
o (|Vu| + |[Vo|)™"

b / |Vw|? /
< w dx
77(2*1’)/2< (IVu| + Vo)) 7 wr

_ 1/2 [Vw| 1/2
2—p 2
+(/Q(|Vu|+|Vv|) H d) (/Q(|Vu|+|w|)2_pdx) |
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On the other hand by Hoélder inequality
(3.5) /Q(IVMI + Vo)) | H | dx < | |Vul + Vol |17 | H

Finally, since p < 2,

Vw|? »/2 (2-p)/2
3.6 / Vw|? dx < /'—dx / Vu| + |Vv|)? dx .
(3.6) | vwirdv<( T+ ) ([, (val + [¥el)” )

Combining (3.2), (3.4), (3.5), (3.6) and the a priori estimates (2.14), we get
(1.10). O
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