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ABSTRACT. — We consider the elliptic equation g — Ly = f where 4 > 0, f is 0-Holder continu-
ous and L is an Ornstein-Uhlenbeck operator in a Hilbert space H. We show that the mapping D*p
(with values in the space of Hilbert—Schmidt operators on H) is §-Holder continuous.
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1. INTRODUCTION AND SETTING OF THE PROBLEM

Let H be a separable real Hilbert space (norm | - |, inner product {-,-»). We are
given a linear operator A : D(4) = H — H such that

HyproTHESIS 1.1.

(i) A is self-adjoint and there exists w > 0 such that
(1.1) (Ax,x) < —ol|x|*, x e D(A).

(i) A=Y is of trace class.

As well known, Hypothesis 1.1 implies that there exists a complete orthonormal
system (ex) in H and a sequence of real numbers (a;) greater than w such that

(12) Aek = —dajey, Vk e N

and
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Under Hypothesis 1.1 we can consider the Ornstein—Uhlenbeck semigroup de-
fined by (see [6])

(1.3) Rip(x) = / p(e"x + y)Ng,(dy), Vt>0,xeH.
H

Here ¢ : H — R is any continuous function with e.g. polynomial growth (that is
such that |p(x)| < M (1 + |x|") for all x € H and some M > 0, n € N) and Ny, is
the Gaussian measure in H with mean 0 and covariance operator Q, given by

0, = —%A‘l(l —e?y Vr>0.

Note that the Gaussian measure Ny, is well defined since 4~!, and consequently
0, 1s of trace class.

Let us define the infinitesimal generator L of R, through its Laplace transform
(as in [2]) setting for any 4 > 0 and for any continuous function f : H — R with
polynomial growth

(1.4) (—L)'f(x) = / "R () di, Vx e H.
0

The operator L acts as a concrete differential operator on the space &4(H) of all
exponential functions defined as the linear span of all real parts of functions ¢, of
the form

(15) (Ph(X) = ei(x,h>’ Vx e H7

where /1 varies in D(A). It is not difficult in fact to check that
1
(1.6) Lp=5 Tr[D*p] + {x, AD¢p), Vo e &4(H).

This paper is devoted to the study of the elliptic equation

where / > 0 is a given number and f is a given function in a suitable functional
space. As we shall see there is a dramatic difference between the case when H is
finite or infinite dimensional. In order to better illustrate this difference it is con-
venient to recall what happens when f belongs to L?(H, x) where u is the unique
invariant measure of R,, t > 0. The short Section 2 is devoted to recall the main
results in this case. Finally, Section 3 is devoted to study (1.7) in spaces of Holder
continuous functions. We first recall previous optimal regularity result proved in
[1] and [3] and then we present a new optimal regularity result. This last result
will allow us to take into account a new kind of perturbations of the Ornstein—
Uhlenbeck diffusion process for which it is will possible to prove existence and
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uniqueness of an associated martingale problems, arguing as in [13]. These facts
will be the object of a future paper.

REMARK 1.2. R, is the transition semigroup of the diffusion process X (¢), ¢ = 0,
the solution to the differential stochastic equation

(1.8) {dX(f)—AX(f)dterW(Z), >0,

X(0)=x€eH,

where W (¢) is a cylindrical Wiener process in some probability space (Q, 7, P)
taking values in H. We can take W (¢) as

o0
(W(),2) = Blz ey, VzeH,
k=0
where (f;) is a family of mutually independent standard Brownian motions on
(Q, 7 ,P). Then we have

Rip(x) = Elp(X(1,x)), t=0,xe H, pe Cy(H),

where [ denotes the expectation.

2. OPTIMAL REGULARITY RESULTS FOR f € L*(H, p)

By (1.3) it follows easily that u = Ny, where

[
QOO = _EA ’
is the unique invariant measure for R;, ¢ > 0, that is

/H Rip(x)pu(dx) = / () (),

H

for all ¢ : H — R continuous and bounded. So, R; can be uniquely extended to
L*(H,p) (even to LP(H,u) for any p > 1) which we shall denote by R?. The in-
finitesimal generator of R? will be denoted by L,.

The following result can be found in [7], see also [4, (10.55)].

PROPOSITION 2.1. Let A > 0and f € L>(H,u). Then equation (1.8) has a unique
solution ¢ € D(Ly) with the following properties

(2.1) pe W (H,p),

(2.2) (—A)'*Dy e L*(H, u; H).
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Moreover the following identity holds.

03 [ @eldu=s [ TV duct [ [-a4) Dol dn

Notice that if the dimension of H is finite, equation (1.8) reduces to
1
A9 —58p — (x, ADp) = f,

so that, by (2.1) it follows that both terms

Ap,  {x,ADgp)
belong to L>(H, u). Nothing similar happens if the dimension of H is infinite. In
this case we have no information on the terms

1
E TI’[ngO], <X, AD€0>7

we know only that the sum of these two terms is meaningful. However, the
weaker informations (2.1) and (2.2) are available. When H is infinite dimensional
A is unbounded and so, identity (2.3) shows that they are in a sense optimal.

3. OPTIMAL REGULARITY RESULTS IN SPACE OF
HOLDER CONTINUOUS FUNCTIONS

3.1. Introduction

Here we consider equation (1.8) when f belongs to the space of all #-Hdolder con-
tinuous and bounded real functions on H, which we denote by C/(H).
We start by recalling some known results.

THEOREM 3.1. Assume that Hypothesis 1.1 holds. Let 0 € (0,1), [ e C/(H),
A>0andletp = (A — L)flf be the solution to (1.8). Then the following statements
hold.

(i) ¢ belongs to C}?(H) and there exists M > 0 (independent on ). and on f) such
that

(3.1) lol 2oy < MIS oy

(ii) For all x € H we have Dp(x) € D((—A)"?) and (—4)"* Dy € C/(H). More-
over, there exists My > 0 (independent on ). and on f) such that

1/2
(3.2) [(=4) "2 Dol cory < Ml flcoiany:
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For a precise definition of C/(H) and C7™(H) see the end of this subsection.
The Schauder estimate (i) was proved in [1] whereas (ii) was proved in [3]. Clearly
(ii) is a counterpart of (2.2) in the Holder setting. The main result of this paper is
the proof of a counterpart of (2.1), namely that if / € C{(H) then

(ili) D%*p e CJ(H,Ly(H)) and there exists M3 > 0 (independent on J. and on f)
such that

(3.3) ||D2§0”Cb”(H,Lz(H)) < M| flcpm)

REMARK 3.2. When H is finite-dimensional, the Schauder estimates (3.1) were
proved in [5]. Even in this case they are not consequence of the general results in
[8] because the Ornstein—Uhlenbeck operator has unbounded coefficients.

REMARK 3.3. A result similar to (iii) was proved for the Gross Laplacian by
[11].

Let us finish this section by giving some notation and by recalling the defini-
tion of interpolation spaces needed in what follows.

3.1.1 Notations. In all the paper H is a separable Hilbert space, 4 : D(A4) <
H — H is a linear operator fulfilling Hypothesis 1.1 and (e;) is an orthonormal
basis defined by (1.2). For each x € H and any /& € N we set x;, = {x, e).

By L,(H) we denote the Hilbert space of all Hilbert—Schmidt operators from
H into H endowed with the inner product

(T,SY=Tr[TS"], VT € L,(H)

and the norm

0
ITV ) = TH(TT*) = > [KTen,ed|?, VT € Ly(H).
=1

Let E be a Banach space. We shall denote by C,(H; E) the Banach space of
all uniformly continuous and bounded functions from H into E endowed with
the norm \|go||0 = sup,. y|¢(x)|z. For any k € N we denote by C¥(H; E) the space
of all mappings ¢ : H — E which are uniformly continuous and bounded to-
gether with their derivatives up to the k-th order. CX(H; E) is a Banach space
with the norm

Il = Z sup [D"g(x)].

IXE

Here D"¢p(x) is the derivative of ¢ at x of order / and |D"¢(x)| is the usual norm
of the A-linear form D"¢p(x).
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Finally, if 0 € (0,1), we shall denote by C{(H; E) (resp. C,f*H(H; E), ke N)
the subspace of Cy(H; E) (resp. CX(H; E)) consisting of all functions ¢ : H — E
such that

x —
(6], = sup |p(x) (/J(Hy)!<+007
yeH X =yl
(respectively,
[ D p(x) — D*p(y)]
(@] := sup 7 < 400.)
xyeH [x =yl

C/(H;E) is a Banach space with the norm
lolo = lolo + [0ly, 0 € CJ(H; E).
When E = R we shall write Cf(H;R) = Cf(H) and Cf(H;R) = Cf/(H).

3.1.2 Interpolation spaces. We shall use the K method for real interpolation
spaces, see e.g. [12]. Let X and Y be Banach spaces such that ¥ < X with con-
tinuous embedding. For any 7 > 0 and any x € H define

K(t,x) =inf{|a|y + t|b|y : x=a+b,ae X,b e Y}.
Then, for arbitrary 6 € (0,1), set
Ixlx, v), , = sup UK (1, %),
’ >0
(X, Y)g o, ={xeX:|x|yy, <t}
As is easily seen (X, Y), ., endowed with the norm
||x||(x, Y)p 0t

is a Banach space.

REMARK 3.4. It is not difficult to check that the following statement (i):
(1) For all > 0 there exist ¢, € X and b, € Y such that x = a, + b, and

lady + 26y < Lt’,

implies that

(ii) x € (X, Y)y ,, and |x]y, ), =L

Conversely, statement (ii) implies that Ve > 0, V¢ > 0 there exist ¢, € X and
b, € Y such that x = aq, + b, and

ladly + tlbely < (L+e)t”.
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Let us recall the basic interpolation theorem, see e.g. [12].
THEOREM 3.5. Let X, X1, Y, Y1 be Banach spaces such that Y < X, Y| < X,
with continuous embeddings. Let moreover T be a linear mapping T : X — X,
T:Y — Yy, such that for some M,N > 0
ITxly, < Mixly, [Tv1y, < Nlyly.
and

Then T maps (X,Y), ,, into (X1, Y1)

[se) 0,02

Tl ixy vy, < M Ny yy, o XE (X, V)0
We shall need also the following result, see [1].
THEOREM 3.6. Let K be a separable Hilbert space. Then we have
(3.4) (C(K). CL(K))y., = C(K). Y0 (0,1).

Moreover there exists a positive constant kg such that

1
(3.5) K—0||¢||c,§’(1<) < lelcyx). crx, . = rololcox)-

REMARK 3.7. Let ¢ € Cp(K) and let # € (0,1). By Remark 3.4 to prove that
¢ € C/(K) it is enough to prove that for any ¢ € (0, 1] there exist ¢, € C,(K) and
b, € C,} (K) such that ¢ = a, + b, and
(3.6) lado < e, bily < wt”!
for a suitable positive constant .

3.2. Estimates
We assume here that Hypothesis 1.1 holds. Under this assumption for any 7 > 0

and any ¢ € Cy(H) we have that R,p € C;°(H), see [7]. Moreover, the following
expressions hold for the three first derivatives of R,p.

(3.7)  <{DRip(x),0) = /H (A O Pydp(ex + y)No,(dy), Vx,o € H,

(3.8)  (D*Rip(x) -2, f> = /H N, O Py KA, 07 P yyp(ex + y)No, (dy)
— {ANo, AiBORip(x),  Vx, o, € H.

and, for any x,a, 5,y € H,
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(3.9)  D*Rip(x)(2,5,7)
= /H N O Py AP, O Py KA, 0Py yplex + »)No, (dy)

— (Ao, Ay D, Rip(x) + <Ay, Ayyy D Rip(x)
+ AP Ay DR (X))

Here we have set

(3.10) A= 0 Pett = V() Pet(1 - 2)1 2,
LeEmMMA 3.8. There exist ¢; > 0 such that

(3.11) A < ert7V? Ve >0,

ProoOF. It is enough to notice that

A = sup v/ Zage™ (1 — ) V2
keN

<P supy2Ee (1 —e )72 >0 O

E>0

LEMMA 3.9. Let 9 € C,(H) and t > 0. Then D*R,p € Cy(H; Ly(H)) and there
exists di > 0 such that

(3.12) ID*Rip(X) |y < dit M loply, V>0, xe H.
PrOOF. By (3.8) we have for all 4,k € N
(D?Rp(x) - ep,ery = /H (Asen, O vy <Aer, O Pyyp(ex + y)No, (dy)
— {Nep, Aver ) Rip(x),
which can be written as

(D*Rp(x) - en,ery = Ny idan ()P (1) 72 / yiyep(ex + y)No,(dy)
H

— A 1Onk /H p(e'x + y)No,(dy),

where y, = (y,ex) for all k e N and for t > 0, A, x, k € N, is the sequence of
eigenvalues of A, defined by,

(3.13) Aep = Aprer, Y1>0 keN,
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whereas Ax(¢), h € N, are the sequence of eigenvalues of Q,,
(3.14) Qier = Ai(t)ex, heN.

In order to estimate |D’R,p(x)| L(rr) We proceed as in [7, Lemma 6.2.7], intro-

ducing a suitable orthonormal system in L?(H, Ng,). More precisely, for any
t > 0 we define

- -1 —_
(3.15) O 1(1) _{2 200 y2 = 1), if h=k,

2 PO POy i h# k.

(It is not difficult to check that (@, x(7)) is indeed orthonormal in L*(H, No,) for
any ¢ > 0.)
Now let # = k € N and write

(D’Rp(x) - ex,exy = V2A], | @ri(t)ple™x+ y)No,(dy)
H

= \/EAzz,k<®k,k(t)v plex + VDL2(H,Ng,)-
Recalling that |A,2 | < |A)? for all k e N and all £ > 0 we have

[KD*Rip(x) - e, eid|” < 20A N [<Diic (1), (e x + ) 1221, g |-

Summing up on k£ we deduce by the Parseval inequality that

OO
Y KD’ Rip(x) - e ed|* < 20A " /H lp(e"x + »)I*No,(dy) = 21Ad Iol}-
k=1

Now from (3.11) we have

o0
(3.16) S KD Rp(x) - ex, ed| < 2¢i 2o
k=1
Let now /1 # k € N and write

(D*Rip(x) - ey, exy = Az,h/\z,k/ Dy, 1 (1) p(e™x + y)No,(dy)
H

= A w1 D i (1), p(ex + VDL2(H N,

Proceeding as before we see that

[KD*Rip(x) - eny e > < AL KDy (0), 0" + ) 12011, 350 |-

By the Parseval inequality we deduce that
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S KD Rp(x) - enedl < I 1ol

hok=1,h#k
Now from (3.11) we have
- 2 2

(3.17) S KD R - e el < i olR.

h k=1
By (3.16) and (3.17) it follows that
(3.18) Tr((D*Rip(x))?] < 2¢i1 g5,

which proves the result with dj = v/2¢7. However, it remains to show that
D>R,p € Cy(H,Ly(H)). To this purpose let us introduce a one-to-one mapping
Y : N x N — N. For any x, y € H and any N € N we have

N

|D*Rip(x) = D*Rigp(») 1,0 = Y, (DuDiRip(x) — DyDxRip(y))
(h, k) (hk)=1

o0
+ > (DiDkRip(x) — DyDxRy(y))?
(h Ky (I K)=N+1

=L+ 1.

Now I, can be made arbitrarily small by (3.18) choosing N sufficiently large, then
I, goes to zero when y is close to x because all partial derivatives of R,p are Lip-
schitz continuous. The proof is complete. O

Now we prove

LEMMA 3.10. Let ¢ € C}(H) and t > 0. Then D*R,p € Cy(H; Ly(H)) and there
exists dy > 0 such that

(3.19) ID*Rip(x)| ) < dot ™ loly, Vi>0,xeH.

PROOF. Let g € C}(H), t > 0. Then, differentiating (1.3) with respect to x yields
DRp(x).5) = [ Dplext y),e"i)No(dy), Vi>0 xne H.
H
Now, using (3.7) with {Dg(e"x + -), e o) replacing ¢, yields

(D’Rp(x)e, B = /H (B, O Py Dplex + y), e ayNo, (dy),

V>0, x,0,f€ H.
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Consequently for any i,k € N

(D*Rip(x)en, ey = Ay e /H J(0)" P yDyple x + y)No,(dy),
Vi>0,xe H,
where A, ; were defined in (3.13). Setting
Wo(t) = () Py, >0, keN,

we can write the above identity as

(D’Rip(x)en, ey = Ay " OV (1), Dpgp(e™x + ) D 1211w ) -
It follows that

[KD?Rep(x)en, exd|* < A [<En(0), Daple™x + V2w -

Now, summing up on k and taking into account that the system (W¥;(¢)) is ortho-
normal on L?>(H, Ny,), we see by the Parseval inequality and (3.11) that

o0
> KD*Rgp(x)en, erd]” < ! /H IDyp(e™x + y)|*No,(dy) < it g,
k=1

Equation (3.19) follows summing up on % and taking d» = ¢;. O

COROLLARY 3.11. Let pe C/(H), 0€(0,1) and t>0. Then DR e
Cy(H; Ly(H)) and we have

(3.20) ||D2Rt€”||c,,(H;L2(H)) <ot oly, >0,
where ¢y = dll’()dzozcg and 1y is defined in (3.5).
PRrROOF. Let ¢ > 0 be fixed and denote by y the mapping

y: Co(H) — Cyp(H; Ly(H)), ¢ — D*Rip.
From Lemmas 3.9 and 3.10 it follows that

(i) y maps Cy(H) into Cy(H; Lo(H)) with norm less than d;z~!,
(ii) y maps C}(H) into C,(H; Ly(H)) with norm less than dyr~1/2.

Consequently, by Theorem 3.6, we have that y maps (C,(H), C}(H)), ,, into
Cy(H; Ly(H)) with norm less than (dyt)'%(dyt7/)". Therefore '

SN0 5 —1/200
1@, t1; Loy < (it N ) ”(p”(C;,(H),C,}(H))

()‘oo.
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On the other hand by Theorem 3.5 we have

(Cb(H)7 Cl} (H))(),oo = Cbe(H)7
and so the conclusion follows from (3.5). O

LEMMA 3.12. Let ¢ € Cy(H) and t > 0. Then D*Ryp € CL(H; Ly(H)) and there
exists dz > 0 such that

(3:21) [DD*Rip()| 111y < st opllg, 1> 0.

PRrOOF. Let ¢ € Cp(H). Then we have

(3.22) |DD*Rip(x)| 1, a1 Z |D3R,p(x)(en, ex, e))|”.
hyk, =1

On the other hand, by (3.9) we have

(323)  D’Rip(x)(en, ek, er)

= At,hAt.kAt,l/ ;uh(l)71/2)%/11((Z)71/2)’1«/110)71/2)/14’)(9”?6 + ¥)No,(dy)
H
— A2 Ak / 30 Pyp(ex + y)No, (d)
H
— A2 Ak / 70 Pyep(ex + y)No,(dy)
H

— Al ALk, / 21(0) " Pynp(ex + y)No, (dy).
H

Now we define an orthonormal system on L?*(H, Ny,) setting

(0 (O (D)™ vy, ifhsk+#1,
b=l 1/Z(ii(t)ﬂ»z(t)) V22 ) Py, i h=k £
N OO MD) P = () Py, i h=1#k
3" 1/2(,1,3(1)1,1(z))*‘/2y,1y,§ — )y, i k=1%#h

Assume first that i # k # / and write (3.23) as

D3 Rip(x)(en, ex, e1) = Ao i<l g1 (e x + VDL2(H, N,

which implies

ID*Rop(x)(en, ex,e)|” < e§3 K kr p(e™x + ) > vy |-
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So, by the Parseval inequality
(324) > IDRo()(en e e < i1 ol
hok, L h#k#1
Let now /& = k # [ and write (3.23) as
D’ Rop(x)(en e, er) = 327 LA 1<Ch k1 (X + ) D r2a1, g )
which implies
|D* Rup(x) (ens ex, e1)|” < 36173 [<Ch e 0™ + )21 ng

So, by the Parseval inequality

(3.25) > IDRp(x)(ens ex, e < 3c5173 gl
ok, | =k #1

In a similar way we see that if 7 = # k we have

(3.26) > DR (en en el < 3ol
ke, 1 h=1#k

and if kK = [ # h we have

(3.27) > IDRg(x)(en exs e < 3efr gl
Bk, L=l

Taking into account (3.25), (3.26) and (3.27) we end up with
> 1D Rip(x)(ensex el < 3ei Lol
h =1

and so, the conclusion follows since the fact that D?R,p € C,(H, Ly(H)) can be
proved as before. O

LEMMA 3.13. Let 9 € C}(H) and t > 0. Then D*R,p € C}(H; Ly(H)) and there
exists dy > 0 such that

(3.28) ||DD2Rt¢(X)”L2(H) <dytplp, 1>0.

PROOF. Letp e C}(H) and h,k e N. Then, differentiating (1.3) with respect to x
in the direction ¢, yields

(DRp(x),epy = e "™ / Dyp(e"x + y)No,(dy), Vt>0, x.
H
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Now, using (3.8) with Dyp(e™x + -) replacing ¢, yields

D*Rip(x)(en, e, er) = / New, 07 Pyycher, 07 PyyDyp(ex + )N, (dy)
H
- <A[€k’ A,e/>R,D/1§0(X),

which can be written as

D3 R.p(x)(en, ex,e;)

A, Ay / 2206 Py Daplex + )N, (dy)
— e A} (O /H Dyp(e"x + )N, (dy).

Let now k = [. Then recalling (3.15) we have

D*Rip(x)(en, ex, e1) = 21/2eimh/\t2,k<(bk,k7Dh(ﬂ(emx + ‘)>L2(H,NQ,),
from which

1D Rip(x) (h, k., k)|* < 262 <D i, Dap(e™x + ) > 20z g |

and, summing up on k and 4

(3.29) 3 1D R ensexren|” < 262 ol
k=1
Finally, if k& # /, then using again by (3.15) we have
D’ Rip(x)(en, e, er) = e “"A7 (D1, Dpp(e™x + ) > 1211, ng )

from which

|D*Ryp(x) (en, e, e1)|” < G Dr e, Dup(e™x + ) 1211w

and, summing up on k, / and &

[e¢]
(3.30) S D Re()(en e e’ < ol
hok,1=1,k+#1

Now the conclusion follows from (3.29) and (3.30). O
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Finally we prove.

COROLLARY 3.14. Let ¢pe C/(H), 0€(0,1) and t>0. Then D*Rpe
C/(H; Ly(H)) and we have

(3.31) ID*Ro() e a1, ooy < 1.0t lolg, 1> 0,
where cp.1 = di ~0d{x.
PRrROOF. Let ¢ > 0 be fixed and denote by ¢ the mapping

6: Cy(H) — Cyp(H, Ly(H)), ¢ +— D’Rip.
From Lemmas 3.12 and 3.13 it follows that

(i) 6 maps Cy(H) into C} (H L,(H)) with norm less than dst~3/2,
(ii) 6 maps C} (H) into C (H; L,(H)) with norm less than dt~'.

Consequently, by Theorem 3.5, we have that 6 maps (Cy(H), C}(H)), ., into
C}(H; Lr(H)) with norm < (d3l 3/2y170(@ 1YY Therefore '

Z3/N1-0, . —1\0
[6(p) "C/}(H:LZ(H)) < (eat™?) ™ est™) ||(P||(cb<H),c,; (H)),.."
Now the conclusion follows from Theorem 3.5. O
3.3. Proof of the Main Result

We are now ready to prove the main result of the paper. The proof is similar to
the finite-dimensional case, see [9].

THEOREM 3.15. Assume thal Hypothesis 1.1 holds. Let 0 € (0,1), f e C/(H),
A>0 and let 9 = (. —L)"'f be the solution to (1.8). Then we have D*p e
C/(H; Ly(H)) and there exists My > 0 (independent on /. and on f) such that
(3.32) ||Dz¢’||ch0<H;L2(H)) < Mi[fl o

PROOF. Let f € C{(H), . >0and ¢ = (A— L)"'f. Then for any s > 0,
+0o0
D2RS(/)(X) = / e_AS‘DzRSlf(x) ds;, xe€H.
0

Proceeding as in [2] it follows that the integral is well defined for each x € H. Fol-
lowing Remark 3.7 we shall look, given 7> 0, for a, € C,(H;L,(H)) and
b, € C}(H; Ly(H)) such that (3.6) holds. We shall set

t2
a,(x) = / e MD?R,f(x)ds, xeH,
0
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and
too
b/(x) = / e D*R,f(x)ds, xeH.
12
By arguing as in Lemma 3.9 we see that ¢, and b, are uniformly continuous.

Moreover, it is easy to check that

[2
la ()| Lyar) < /0 e PID*Ryf (x)| 1y ds,  x € H,
so, by (3.20) we deduce
g s 2
la:(x) "LZ(H) =< /o e “|D RSf||C;,(H;Lz(H)) ds, xeH.
Finally, taking the supremum in x yields

t2
_ 2
(3:33) lailcutaimy < eolfly | 5" ds = Seal ot

In the same way since
+00 )
Db,(x) = / e “DD?R,f(x)ds, x¢eH,
12
we deduce by (3.31) that

0 2¢19 _
(3.34) I Dbl ¢, ;L)) < 6’1,6||f||a/ sV ds = r’(g”f"eﬁ g

12

Therefore DR, belongs to (Cy(Ly(H)), CL(L2(H))), .. and so to C/(L,(H)) by
Theorem 3.6. ' ]
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