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Abstract. — We consider the elliptic equation lj� Lj ¼ f where l > 0, f is y-Hölder continu-

ous and L is an Ornstein-Uhlenbeck operator in a Hilbert space H. We show that the mapping D2j

(with values in the space of Hilbert–Schmidt operators on H) is y-Hölder continuous.
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1. Introduction and setting of the problem

Let H be a separable real Hilbert space (norm j � j, inner product 3� ; �4). We are
given a linear operator A : DðAÞHH ! H such that

Hypothesis 1.1.

(i) A is self–adjoint and there exists o > 0 such that

3Ax; x4a�ojxj2; x a DðAÞ:ð1:1Þ

(ii) A�1 is of trace class.

As well known, Hypothesis 1.1 implies that there exists a complete orthonormal
system ðekÞ in H and a sequence of real numbers ðakÞ greater than o such that

Aek ¼ �akek; Ek a Nð1:2Þ

and

Tr½�A�1� ¼
Xl
k¼1

1

ak
< þl:



Under Hypothesis 1.1 we can consider the Ornstein–Uhlenbeck semigroup de-
fined by (see [6])

RtjðxÞ ¼
Z
H

jðetAxþ yÞNQt
ðdyÞ; Et > 0; x a H:ð1:3Þ

Here j : H ! R is any continuous function with e.g. polynomial growth (that is
such that jjðxÞjaMð1þ jxjnÞ for all x a H and some M > 0, n a N) and NQt

is
the Gaussian measure in H with mean 0 and covariance operator Qt given by

Qt ¼ � 1

2
A�1ð1� e2tAÞ; Etb 0:

Note that the Gaussian measure NQt
is well defined since A�1, and consequently

Qt, is of trace class.
Let us define the infinitesimal generator L of Rt through its Laplace transform

(as in [2]) setting for any l > 0 and for any continuous function f : H ! R with
polynomial growth

ðl� LÞ�1
f ðxÞ ¼

Z l

0

e�ltRt f ðxÞ dt; Ex a H:ð1:4Þ

The operator L acts as a concrete di¤erential operator on the space EAðHÞ of all
exponential functions defined as the linear span of all real parts of functions jh of
the form

jhðxÞ ¼ ei3x;h4; Ex a H;ð1:5Þ

where h varies in DðAÞ. It is not di‰cult in fact to check that

Lj ¼ 1

2
Tr½D2j� þ 3x;ADj4; Ej a EAðHÞ:ð1:6Þ

This paper is devoted to the study of the elliptic equation

lj� Lj ¼ f ;ð1:7Þ

where l > 0 is a given number and f is a given function in a suitable functional
space. As we shall see there is a dramatic di¤erence between the case when H is
finite or infinite dimensional. In order to better illustrate this di¤erence it is con-
venient to recall what happens when f belongs to L2ðH; mÞ where m is the unique
invariant measure of Rt, tb 0. The short Section 2 is devoted to recall the main
results in this case. Finally, Section 3 is devoted to study (1.7) in spaces of Hölder
continuous functions. We first recall previous optimal regularity result proved in
[1] and [3] and then we present a new optimal regularity result. This last result
will allow us to take into account a new kind of perturbations of the Ornstein–
Uhlenbeck di¤usion process for which it is will possible to prove existence and
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uniqueness of an associated martingale problems, arguing as in [13]. These facts
will be the object of a future paper.

Remark 1.2. Rt is the transition semigroup of the di¤usion process X ðtÞ, tb 0,
the solution to the di¤erential stochastic equation

dXðtÞ ¼ AXðtÞ dtþ dWðtÞ; tb 0;

X ð0Þ ¼ x a H;

�
ð1:8Þ

where W ðtÞ is a cylindrical Wiener process in some probability space ðW;F;PÞ
taking values in H. We can take W ðtÞ as

3WðtÞ; z4 ¼
Xl
k¼0

bk3z; ek4; Ez a H;

where ðbkÞ is a family of mutually independent standard Brownian motions on
ðW;F;PÞ. Then we have

RtjðxÞ ¼ E½jðXðt; xÞÞ�; tb 0; x a H; j a CbðHÞ;

where E denotes the expectation.

2. Optimal regularity results for f a L2ðH; mÞ

By (1.3) it follows easily that m ¼ NQl , where

Ql ¼ � 1

2
A�1;

is the unique invariant measure for Rt, tb 0, that isZ
H

RtjðxÞmðdxÞ ¼
Z
H

jðxÞmðdxÞ;

for all j : H ! R continuous and bounded. So, Rt can be uniquely extended to
L2ðH; mÞ (even to LpðH; mÞ for any pb 1) which we shall denote by R2

t . The in-
finitesimal generator of R2

t will be denoted by L2.
The following result can be found in [7], see also [4, (10.55)].

Proposition 2.1. Let l > 0 and f a L2ðH; mÞ. Then equation (1.8) has a unique
solution j a DðL2Þ with the following properties

j a W 2;2ðH; mÞ;ð2:1Þ

ð�AÞ1=2Dj a L2ðH; m;HÞ:ð2:2Þ
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Moreover the following identity holds.Z
H

ðL2jÞ2 dm ¼ 1

2

Z
H

Tr½ðD2jÞ2� dmþ
Z
H

jð�AÞ1=2Djj2 dm:ð2:3Þ

Notice that if the dimension of H is finite, equation (1.8) reduces to

lj� 1

2
Dj� 3x;ADj4 ¼ f ;

so that, by (2.1) it follows that both terms

Dj; 3x;ADj4

belong to L2ðH; mÞ: Nothing similar happens if the dimension of H is infinite. In
this case we have no information on the terms

1

2
Tr½D2j�; 3x;ADj4;

we know only that the sum of these two terms is meaningful. However, the
weaker informations (2.1) and (2.2) are available. When H is infinite dimensional
A is unbounded and so, identity (2.3) shows that they are in a sense optimal.

3. Optimal regularity results in space of

Hölder continuous functions

3.1. Introduction

Here we consider equation (1.8) when f belongs to the space of all y-Hölder con-
tinuous and bounded real functions on H, which we denote by C y

b ðHÞ.
We start by recalling some known results.

Theorem 3.1. Assume that Hypothesis 1.1 holds. Let y a ð0; 1Þ, f a C y
b ðHÞ,

l > 0 and let j ¼ ðl� LÞ�1
f be the solution to (1.8). Then the following statements

hold.

(i) j belongs to C2þy
b ðHÞ and there exists M > 0 (independent on l and on f ) such

that

jjjjjC 2þy
b

ðHÞ aMjj f jjC y
b
ðHÞ:ð3:1Þ

(ii) For all x a H we have DjðxÞ a Dðð�AÞ1=2Þ and ð�AÞ1=2Dj a C y
b ðHÞ: More-

over, there exists M1 > 0 (independent on l and on f ) such that

jjð�AÞ1=2DjjjC y
b
ðHÞ aM1jj f jjC y

b
ðHÞ:ð3:2Þ
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For a precise definition of C y
b ðHÞ and C2þy

b ðHÞ see the end of this subsection.
The Schauder estimate (i) was proved in [1] whereas (ii) was proved in [3]. Clearly
(ii) is a counterpart of (2.2) in the Hölder setting. The main result of this paper is
the proof of a counterpart of (2.1), namely that if f a C y

b ðHÞ then

(iii) D2j a C y
b ðH;L2ðHÞÞ and there exists M3 > 0 (independent on l and on f )

such that

jjD2jjjC y
b
ðH;L2ðHÞÞ aM3jj f jjC y

b
ðHÞ:ð3:3Þ

Remark 3.2. When H is finite-dimensional, the Schauder estimates (3.1) were
proved in [5]. Even in this case they are not consequence of the general results in
[8] because the Ornstein–Uhlenbeck operator has unbounded coe‰cients.

Remark 3.3. A result similar to (iii) was proved for the Gross Laplacian by
[11].

Let us finish this section by giving some notation and by recalling the defini-
tion of interpolation spaces needed in what follows.

3.1.1 Notations. In all the paper H is a separable Hilbert space, A : DðAÞH
H ! H is a linear operator fulfilling Hypothesis 1.1 and ðehÞ is an orthonormal
basis defined by (1.2). For each x a H and any h a N we set xh ¼ 3x; eh4.

By L2ðHÞ we denote the Hilbert space of all Hilbert–Schmidt operators from
H into H endowed with the inner product

3T ;S4 ¼ Tr½TS ��; ET a L2ðHÞ

and the norm

jjT jj2L2ðHÞ ¼ Tr½TT �� ¼
Xl
h;k¼1

j3Teh; ek4j2; ET a L2ðHÞ:

Let E be a Banach space. We shall denote by CbðH;EÞ the Banach space of
all uniformly continuous and bounded functions from H into E endowed with
the norm jjjjj0 ¼ supx AH jjðxÞjE . For any k a N we denote by CkðH;EÞ the space
of all mappings j : H ! E which are uniformly continuous and bounded to-
gether with their derivatives up to the k-th order. CkðH;EÞ is a Banach space
with the norm

jjjjjk ¼
Xk

h¼1

sup
x AH

jjDhjðxÞjj:

Here DhjðxÞ is the derivative of j at x of order h and jjDhjðxÞjj is the usual norm
of the h-linear form DhjðxÞ.
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Finally, if y a ð0; 1Þ, we shall denote by C y
b ðH;EÞ (resp. Ckþy

b ðH;EÞ, k a N)
the subspace of CbðH;EÞ (resp. CkðH;EÞ) consisting of all functions j : H ! E
such that

½j�y :¼ sup
x;y aH
xAy

jjðxÞ � jðyÞj
jx� yjy

< þl;

(respectively,

½j�kþy :¼ sup
x;y aH
xAy

jjDkjðxÞ �DkjðyÞjj
jx� yjy

< þl:Þ

C y
b ðH;EÞ is a Banach space with the norm

jjjjjy :¼ jjjjj0 þ ½j�y; j a C y
b ðH;EÞ:

When E ¼ R we shall write Ck
b ðH;RÞ ¼ Ck

b ðHÞ and Ckþy
b ðH;RÞ ¼ Ckþy

b ðHÞ.

3.1.2 Interpolation spaces. We shall use the K method for real interpolation
spaces, see e.g. [12]. Let X and Y be Banach spaces such that Y HX with con-
tinuous embedding. For any t > 0 and any x a H define

Kðt; xÞ ¼ inffjjajjX þ tjjbjjY : x ¼ aþ b; a a X ; b a Yg:

Then, for arbitrary y a ð0; 1Þ, set

jjxjjðX ;Y Þy;l ¼ sup
t>0

t�yKðt; xÞ;

ðX ;Y Þy;l ¼ fx a X : jjxjjðX ;Y Þy;l < þlg:

As is easily seen ðX ;Y Þy;l, endowed with the norm

jjxjjðX ;Y Þy;l ;

is a Banach space.

Remark 3.4. It is not di‰cult to check that the following statement (i):
(i) For all t > 0 there exist at a X and bt a Y such that x ¼ at þ bt and

jjatjjX þ tjjbtjjY aLty;

implies that
(ii) x a ðX ;YÞy;l and jjxjjðX ;Y Þy;l aL:

Conversely, statement (ii) implies that Ee > 0, Et > 0 there exist at a X and
bt a Y such that x ¼ at þ bt and

jjatjjX þ tjjbtjjY a ðLþ eÞty:
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Let us recall the basic interpolation theorem, see e.g. [12].

Theorem 3.5. Let X, X1, Y , Y1 be Banach spaces such that Y HX, Y1 HX1

with continuous embeddings. Let moreover T be a linear mapping T : X ! X1,
T : Y ! Y1, such that for some M;N > 0

jjTxjjX1
aMjjxjjX ; jjTyjjY1

aNjjyjjY :

Then T maps ðX ;YÞy;l into ðX1;Y1Þy;l, and

jjTxjjðX1;Y1Þy;l aM 1�yN yjjxjjðX ;YÞy;l ; x a ðX ;YÞy;l:

We shall need also the following result, see [1].

Theorem 3.6. Let K be a separable Hilbert space. Then we have

ðCbðKÞ;C1
b ðKÞÞy;l ¼ C y

b ðKÞ; Ey a ð0; 1Þ:ð3:4Þ

Moreover there exists a positive constant ky such that

1

ky
jjjjjC y

b
ðKÞ a jjjjjðCbðKÞ;C 1

b
ðKÞÞy;l a kyjjjjjC y

b
ðKÞ:ð3:5Þ

Remark 3.7. Let j a CbðKÞ and let y a ð0; 1Þ. By Remark 3.4 to prove that
j a C y

b ðKÞ it is enough to prove that for any t a ð0; 1� there exist at a CbðKÞ and
bt a C1

b ðKÞ such that j ¼ at þ bt and

jjatjj0 a kty; jjbtjj1 a kty�1ð3:6Þ

for a suitable positive constant k:

3.2. Estimates

We assume here that Hypothesis 1.1 holds. Under this assumption for any t > 0
and any j a CbðHÞ we have that Rtj a Cl

b ðHÞ, see [7]. Moreover, the following
expressions hold for the three first derivatives of Rtj.

3DRtjðxÞ; a4 ¼
Z
H

3Lta;Q
�1=2
t y4jðetAxþ yÞNQt

ðdyÞ; Ex; a a H;ð3:7Þ

3D2RtjðxÞ � a; b4 ¼
Z
H

3Lta;Q
�1=2
t y43Ltb;Q

�1=2
t y4jðetAxþ yÞNQt

ðdyÞð3:8Þ

� 3Lta;Ltb4RtjðxÞ; Ex; a; b a H:

and, for any x; a; b; g a H,
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D3RtjðxÞða; b; gÞð3:9Þ

¼
Z
H

3Lta;Q
�1=2
t y43Ltb;Q

�1=2
t y43Ltg;Q

�1=2
t y4jðetAxþ yÞNQt

ðdyÞ

� ð3Lta;Ltb4DgRtjðxÞ þ 3Lta;Ltg4DbRtjðxÞ
þ 3Ltb;Ltg4DaRtjðxÞÞ:

Here we have set

Lt ¼ Q
�1=2
t etA ¼

ffiffiffi
2

p
ð�AÞ1=2etAð1� e2tAÞ�1=2:ð3:10Þ

Lemma 3.8. There exist c1 > 0 such that

jjLtjja c1t
�1=2; Et > 0;ð3:11Þ

Proof. It is enough to notice that

jjLtjj ¼ sup
k AN

ffiffiffiffiffiffiffi
2ak

p
e�takð1� e�2takÞ�1=2

a t�1=2 sup
x>0

ffiffiffiffiffi
2x

p
e�xð1� e�2xÞ�1=2; t > 0: r

Lemma 3.9. Let j a CbðHÞ and t > 0. Then D2Rtj a CbðH;L2ðHÞÞ and there
exists d1 > 0 such that

jjD2RtjðxÞjjL2ðHÞ a d1t
�1jjjjj0; Et > 0; x a H:ð3:12Þ

Proof. By (3.8) we have for all h; k a N

3D2RtjðxÞ � eh; ek4 ¼
Z
H

3Lteh;Q
�1=2
t y43Ltek;Q

�1=2
t y4jðetAxþ yÞNQt

ðdyÞ

� 3Lteh;Ltek4RtjðxÞ;

which can be written as

3D2RtjðxÞ � eh; ek4 ¼ Lt;hLt;klhðtÞ�1=2lkðtÞ�1=2

Z
H

yhykjðetAxþ yÞNQt
ðdyÞ

�L2
t;hdh;k

Z
H

jðetAxþ yÞNQt
ðdyÞ;

where yk ¼ 3y; ek4 for all k a N and for t > 0, Lt;k, k a N, is the sequence of
eigenvalues of Lt defined by,

Ltek ¼ Lt;kek; Et > 0; k a N;ð3:13Þ
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whereas lkðtÞ, h a N, are the sequence of eigenvalues of Qt,

Qtek ¼ lkðtÞek; h a N:ð3:14Þ

In order to estimate jjD2RtjðxÞjjL2ðHÞ we proceed as in [7, Lemma 6.2.7], intro-
ducing a suitable orthonormal system in L2ðH;NQt

Þ. More precisely, for any
t > 0 we define

Fh;kðtÞ ¼
2�1=2ðl�1

h ðtÞy2h � 1Þ; if h ¼ k;

l
�1=2
h ðtÞl�1=2

k ðtÞyhyk if hAk:

(
ð3:15Þ

(It is not di‰cult to check that ðFh;kðtÞÞ is indeed orthonormal in L2ðH;NQt
Þ for

any t > 0.)
Now let h ¼ k a N and write

3D2RtjðxÞ � ek; ek4 ¼
ffiffiffi
2

p
L2

t;k

Z
H

Fk;kðtÞjðetAxþ yÞNQt
ðdyÞ

¼
ffiffiffi
2

p
L2

t;k3Fk;kðtÞ; jðetAxþ �Þ4L2ðH;NQt Þ:

Recalling that jL2
t;kja jjLtjj2 for all k a N and all t > 0 we have

j3D2RtjðxÞ � ek; ek4j2 a 2jjLtjj4j3Fk;kðtÞ; jðetAxþ �Þ4L2ðH;NQt Þj
2:

Summing up on k we deduce by the Parseval inequality that

Xl
k¼1

j3D2RtjðxÞ � ek; ek4j2 a 2jjLtjj4
Z
H

jjðetAxþ yÞj2NQt
ðdyÞ ¼ 2jjLtjj4jjjjj20:

Now from (3.11) we have

Xl
k¼1

j3D2RtjðxÞ � ek; ek4j2 a 2c41t
�2jjjjj20:ð3:16Þ

Let now hAk a N and write

3D2RtjðxÞ � eh; ek4 ¼ Lt;hLt;k

Z
H

Fh;kðtÞjðetAxþ yÞNQt
ðdyÞ

¼ Lt;hLt;k3Fh;kðtÞ; jðetAxþ �Þ4L2ðH;NQt Þ:

Proceeding as before we see that

j3D2RtjðxÞ � eh; ek4j2 a jjLtjj4j3Fh;kðtÞ; jðetAxþ �Þ4L2ðH;NQt Þj
2:

By the Parseval inequality we deduce that
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Xl
h;k¼1;hAk

j3D2RtjðxÞ � eh; ek4j2 a jjLtjj4jjjjj20:

Now from (3.11) we have

Xl
h;k¼1

j3D2RtjðxÞ � eh; ek4j2 a c41t
�2jjjjj20:ð3:17Þ

By (3.16) and (3.17) it follows that

Tr½ðD2RtjðxÞÞ2�a 2c41t
�2jjjjj20;ð3:18Þ

which proves the result with d1 ¼
ffiffiffi
2

p
c21 : However, it remains to show that

D2Rtj a CbðH;L2ðHÞÞ. To this purpose let us introduce a one-to-one mapping
c : N�N 7! N. For any x; y a H and any N a N we have

jjD2RtjðxÞ �D2RtjðyÞjj2L2ðHÞ ¼
XN

ðh;kÞ:cðh;kÞ¼1

ðDhDkRtjðxÞ �DhDkRtjðyÞÞ2

þ
Xl

ðh;kÞ:cðh;kÞ¼Nþ1

ðDhDkRtjðxÞ �DhDkRtjðyÞÞ2

:¼ I1 þ I2:

Now I2 can be made arbitrarily small by (3.18) choosing N su‰ciently large, then
I1 goes to zero when y is close to x because all partial derivatives of Rtj are Lip-
schitz continuous. The proof is complete. r

Now we prove

Lemma 3.10. Let j a C1
b ðHÞ and t > 0. Then D2Rtj a CbðH;L2ðHÞÞ and there

exists d2 > 0 such that

jjD2RtjðxÞjjL2ðHÞ a d2t
�1=2jjjjj1; Et > 0; x a H:ð3:19Þ

Proof. Let j a C1
b ðHÞ, t > 0. Then, di¤erentiating (1.3) with respect to x yields

3DRtjðxÞ; a4 ¼
Z
H

3DjðetAxþ yÞ; etAa4NQt
ðdyÞ; Et > 0; x; a a H:

Now, using (3.7) with 3DjðetAxþ �Þ; etAa4 replacing j, yields

3D2RtjðxÞa; b4 ¼
Z
H

3Ltb;Q
�1=2
t y43DjðetAxþ yÞ; etAa4NQt

ðdyÞ;

Et > 0; x; a; b a H:
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Consequently for any h; k a N

3D2RtjðxÞeh; ek4 ¼ Lt;ke
�tah

Z
H

lkðtÞ�1=2
ykDhjðetAxþ yÞNQt

ðdyÞ;

Et > 0; x a H;

where Lt;k were defined in (3.13). Setting

CkðtÞ ¼ lkðtÞ�1=2
yk; t > 0; k a N;

we can write the above identity as

3D2RtjðxÞeh; ek4 ¼ Lt;ke
�tah3CkðtÞ;DhjðetAxþ �Þ4L2ðH;NQt Þ:

It follows that

j3D2RtjðxÞeh; ek4j2 a jjLtjj2 j3ChðtÞ;DhjðetAxþ �Þ4j2L2ðH;NQt Þ:

Now, summing up on k and taking into account that the system ðChðtÞÞ is ortho-
normal on L2ðH;NQt

Þ, we see by the Parseval inequality and (3.11) that

Xl
k¼1

j3D2RtjðxÞeh; ek4j2 a c21t
�1

Z
H

jDhjðetAxþ yÞj2NQt
ðdyÞa c21t

�1jjjjj1:

Equation (3.19) follows summing up on h and taking d2 ¼ c1. r

Corollary 3.11. Let j a C y
b ðHÞ, y a ð0; 1Þ and t > 0. Then D2Rtj a

CbðH;L2ðHÞÞ and we have

jjD2RtjjjCbðH;L2ðHÞÞ a cyt
y=2�1jjjjjy; t > 0;ð3:20Þ

where cy ¼ d 1�y
1 d y

2 ky and ky is defined in (3.5).

Proof. Let t > 0 be fixed and denote by g the mapping

g : CbðHÞ ! CbðH;L2ðHÞÞ; j 7! D2Rtj:

From Lemmas 3.9 and 3.10 it follows that

(i) g maps CbðHÞ into CbðH;L2ðHÞÞ with norm less than d1t
�1,

(ii) g maps C1
b ðHÞ into CbðH;L2ðHÞÞ with norm less than d2t

�1=2:

Consequently, by Theorem 3.6, we have that g maps ðCbðHÞ;C1
b ðHÞÞy;l into

CbðH;L2ðHÞÞ with norm less than ðd1t�1Þ1�yðd2t�1=2Þy. Therefore

jjgðjÞjjCbðH;L2ðHÞÞ a ðd1t�1Þ1�yðd3t�1=2ÞyjjjjjðCbðHÞ;C 1
b
ðHÞÞy;l :
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On the other hand by Theorem 3.5 we have

ðCbðHÞ;C1
b ðHÞÞy;l ¼ C y

b ðHÞ;

and so the conclusion follows from (3.5). r

Lemma 3.12. Let j a CbðHÞ and t > 0. Then D2Rtj a C1
b ðH;L2ðHÞÞ and there

exists d3 > 0 such that

jjDD2RtjðxÞjjL2ðHÞ a d3t
�3=2jjjjj0; t > 0:ð3:21Þ

Proof. Let j a CbðHÞ: Then we have

jjDD2RtjðxÞjjL2ðHÞ ¼
Xl

h;k; l¼1

jD3RtjðxÞðeh; ek; elÞj2:ð3:22Þ

On the other hand, by (3.9) we have

D3RtjðxÞðeh; ek; elÞð3:23Þ

¼ Lt;hLt;kLt; l

Z
H

lhðtÞ�1=2
yhlkðtÞ�1=2

ykllðtÞ�1=2
yljðetAxþ yÞNQt

ðdyÞ

�L2
t;hLt; ldh;k

Z
H

llðtÞ�1=2
yljðetAxþ yÞNQt

ðdyÞ

�L2
t; lLt;kdh; l

Z
H

lkðtÞ�1=2
ykjðetAxþ yÞNQt

ðdyÞ

�L2
t;kLt; ldk; l

Z
H

lhðtÞ�1=2
yhjðetAxþ yÞNQt

ðdyÞ:

Now we define an orthonormal system on L2ðH;NQt
Þ setting

zh;k; l ¼

ðlhðtÞlkðtÞllðtÞÞ�1=2
yhykyl ; if hAkA l;

3�1=2ðl2hðtÞllðtÞÞ
�1=2

y2hyl � llðtÞ�1=2
yl ; if h ¼ kA l;

3�1=2ðl2hðtÞlkðtÞÞ
�1=2

y2hyk � lkðtÞ�1=2
yl ; if h ¼ lAk

3�1=2ðl2kðtÞlhðtÞÞ
�1=2

yhy
2
k � lhðtÞ�1=2

yl ; if k ¼ lA h

8>>>><
>>>>:

Assume first that hAkA l and write (3.23) as

D3RtjðxÞðeh; ek; elÞ ¼ Lt;hLt;kLt; l3zh;k; l ; jðetAxþ �Þ4L2ðH;NQt Þ;

which implies

jD3RtjðxÞðeh; ek; elÞj2 a c61t
�3j3zh;k; l ; jðetAxþ �Þ4L2ðH;NQt Þj

2:
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So, by the Parseval inequality

X
h;k; l;hAkAl

jD3RtjðxÞðeh; ek; elÞj2 a c61t
�3jjjjj20:ð3:24Þ

Let now h ¼ kA l and write (3.23) as

D3RtjðxÞðeh; ek; elÞ ¼ 31=2L2
t;hLt; l3zh;k; l ; jðetAxþ �Þ4L2ðH;NQt Þ;

which implies

jD3RtjðxÞðeh; ek; elÞj2 a 3c61t
�3j3zh;k; l ; jðetAxþ �Þ4L2ðH;NQt Þj

2:

So, by the Parseval inequalityX
h;k; l;h¼kAl

jD3RtjðxÞðeh; ek; elÞj2 a 3c61t
�3jjjjj20:ð3:25Þ

In a similar way we see that if h ¼ lAk we have

X
h;k; l;h¼lAk

jD3RtjðxÞðeh; ek; elÞj2 a 3c61t
�3jjjjj20:ð3:26Þ

and if k ¼ lA h we have

X
h;k; l;k¼lAh

jD3RtjðxÞðeh; ek; elÞj2 a 3c61t
�3jjjjj20:ð3:27Þ

Taking into account (3.25), (3.26) and (3.27) we end up with

Xl
h;k; l¼1

jD3RtjðxÞðeh; ek; elÞj2 a 3c31t
�3jjjjj20

and so, the conclusion follows since the fact that D2Rtj a CbðH;L2ðHÞÞ can be
proved as before. r

Lemma 3.13. Let j a C1
b ðHÞ and t > 0. Then D2Rtj a C1

b ðH;L2ðHÞÞ and there
exists d4 > 0 such that

jjDD2RtjðxÞjjL2ðHÞ a d4t
�1jjjjj0; t > 0:ð3:28Þ

Proof. Let j a C1
b ðHÞ and h; k a N. Then, di¤erentiating (1.3) with respect to x

in the direction eh yields

3DRtjðxÞ; eh4 ¼ e�tah

Z
H

DhjðetAxþ yÞNQt
ðdyÞ; Et > 0; x:
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Now, using (3.8) with DhjðetAxþ �Þ replacing j, yields

D3RtjðxÞðeh; ek; elÞ ¼
Z
H

3Ltek;Q
�1=2
t y43Ltel ;Q

�1=2
t y4DhjðetAxþ �ÞNQt

ðdyÞ

� 3Ltek;Ltel4RtDhjðxÞ;

which can be written as

D3RtjðxÞðeh; ek; elÞ

¼ e�takLt;kLt; l

Z
H

lkðtÞ�1=2llðtÞ�1=2
ykylDhjðetAxþ �ÞNQt

ðdyÞ

� e�takL2
t;kdk; l

Z
H

DhjðetAxþ �ÞNQt
ðdyÞ:

Let now k ¼ l. Then recalling (3.15) we have

D3RtjðxÞðeh; ek; elÞ ¼ 21=2e�tahL2
t;k3Fk;k;DhjðetAxþ �Þ4L2ðH;NQt Þ;

from which

jD3RtjðxÞðh; k; kÞj2 a 2c41t
2j3Fk;k;DhjðetAxþ �Þ4L2ðH;NQt Þj

2

and, summing up on k and h

Xl
h;k¼1

jD3RtjðxÞðeh; ek; elÞj2 a 2c41t
2jjjjj20 :ð3:29Þ

Finally, if kA l, then using again by (3.15) we have

D3RtjðxÞðeh; ek; elÞ ¼ e�tahL2
t;k3Fk; l ;DhjðetAxþ �Þ4L2ðH;NQt Þ;

from which

jD3RtjðxÞðeh; ek; elÞj2 a c21t
2j3Fk;k;DhjðetAxþ �Þ4L2ðH;NQt Þj

2

and, summing up on k, l and h

Xl
h;k; l¼1;kAl

jD3RtjðxÞðeh; ek; elÞj2 a c21t
2jjjjj20 :ð3:30Þ

Now the conclusion follows from (3.29) and (3.30). r

28 g. da prato



Finally we prove.

Corollary 3.14. Let j a C y
b ðHÞ, y a ð0; 1Þ and t > 0. Then D2Rtj a

C y
b ðH;L2ðHÞÞ and we have

jjD2RtjðxÞjjC 1
b
ðH;L2ðHÞÞ a c1;yt

ðy�3Þ=2jjjjjy; t > 0;ð3:31Þ

where cy;1 ¼ d 1�y
3 d y

4 ky:

Proof. Let t > 0 be fixed and denote by d the mapping

d : CbðHÞ ! CbðH;L2ðHÞÞ; j 7! D2Rtj:

From Lemmas 3.12 and 3.13 it follows that

(i) d maps CbðHÞ into C1
b ðH;L2ðHÞÞ with norm less than d3t

�3=2,
(ii) d maps C1

b ðHÞ into C1
b ðH;L2ðHÞÞ with norm less than d4t

�1:

Consequently, by Theorem 3.5, we have that d maps ðCbðHÞ;C1
b ðHÞÞy;l into

C1
b ðH;L2ðHÞÞ with norma ðd3t�3=2Þ1�yðd�1

4 Þy. Therefore

jjdðjÞjjC 1
b
ðH;L2ðHÞÞ a ðc4t�3=2Þ1�yðc5t�1ÞyjjjjjðCbðHÞ;C 1

b
ðHÞÞy;l :

Now the conclusion follows from Theorem 3.5. r

3.3. Proof of the Main Result

We are now ready to prove the main result of the paper. The proof is similar to
the finite-dimensional case, see [9].

Theorem 3.15. Assume that Hypothesis 1.1 holds. Let y a ð0; 1Þ, f a C y
b ðHÞ,

l > 0 and let j ¼ ðl� LÞ�1
f be the solution to (1.8). Then we have D2j a

C y
b ðH;L2ðHÞÞ and there exists M1 > 0 (independent on l and on f ) such that

jjD2jjjC y
b
ðH;L2ðHÞÞ aM1jj f jjC y

b
ðHÞ:ð3:32Þ

Proof. Let f a C y
b ðHÞ, l > 0 and j ¼ ðl� LÞ�1

f : Then for any sb 0,

D2RsjðxÞ ¼
Z þl

0

e�ls1D2Rs1 f ðxÞ ds1; x a H:

Proceeding as in [2] it follows that the integral is well defined for each x a H. Fol-
lowing Remark 3.7 we shall look, given t > 0, for at a CbðH;L2ðHÞÞ and
bt a C1

b ðH;L2ðHÞÞ such that (3.6) holds. We shall set

atðxÞ ¼
Z t2

0

e�lsD2Rs f ðxÞ ds; x a H;

29optimal regularity results in spaces of hölder continuous functions



and

btðxÞ ¼
Z þl

t2
e�lsD2Rs f ðxÞ ds; x a H:

By arguing as in Lemma 3.9 we see that at and bt are uniformly continuous.
Moreover, it is easy to check that

jjatðxÞjjL2ðHÞ a

Z t2

0

e�lsjjD2Rs f ðxÞjjL2ðHÞ ds; x a H;

so, by (3.20) we deduce

jjatðxÞjjL2ðHÞ a

Z t2

0

e�lsjjD2Rs f jjCbðH;L2ðHÞÞ ds; x a H:

Finally, taking the supremum in x yields

jjatjjCbðH;L2ðHÞÞ a cyjj f jjy
Z t2

0

sy=2�1 ds ¼ 2

y
cyjj f jjyty:ð3:33Þ

In the same way since

DbtðxÞ ¼
Z þl

t2
e�lsDD2Rs f ðxÞ ds; x a H;

we deduce by (3.31) that

jjDbtjjCbðH;L2ðHÞÞ a c1;yjj f jjy
Z þl

t2
sðy�3Þ=2 ds ¼ 2c1;y

1� y
jj f jjyty�1:ð3:34Þ

Therefore D2Rtj belongs to ðCbðL2ðHÞÞ;C1
b ðL2ðHÞÞÞy;l and so to C y

b ðL2ðHÞÞ by
Theorem 3.6. r
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