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Abstract. — The goal of this paper is to describe some new results concerning entire solutions of

semilinear elliptic equations in Rn with non trivial asymptotic behavior at infinity. We describe in

particular the (focusing, subcritical) nonlinear Schrödinger equation and the Allen-Cahn equation,
which enjoy some common features but also present rather di¤erent aspects.
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1. Introduction

In this paper we discuss some recent existence theorems for semilinear elliptic
equations in Rn, with the feature that the solutions considered here have a non
trivial behavior at infinity. We are going to focus in particular on a couple of
well studied equations, the elliptic Nonlinear Schrödinger and the Allen-Cahn.

We begin by considering the following equation

�Duþ u ¼ up in Rn;ðEpÞ

where p is greater than 1 and subcritical with respect to the Sobolev embedding
of H 1ðRnÞ into Lpþ1ðRnÞ, namely p a

�
1; nþ2

n�2

�
, and with no upper bound for

n ¼ 2. Equation ðEpÞ arises when considering the (focusing) Nonlinear Schrö-
dinger equation

i�h
q ~cc

qt
¼ ��h2D ~cc� j ~ccjp�1 ~cc in Rn � Rþ:

The latter equation admits a special class of solutions called standing waves,
which are complex-valued functions cðx; tÞ of the form cðx; tÞ ¼ e�iotuðxÞ, where
o is a real constant and u : Rn ! R a real-valued function satisfying

��h2Duþ ðVðxÞ þ oÞu ¼ up in Rn;ð1Þ



which corresponds to ðEpÞ in the case when V þ oC 1 and �h ¼ 1. Apart from
this particular case, ðEpÞ is useful to understand the properties of (1) though con-
centration-compactness arguments and especially the limit profiles of solutions,
as we will see in more detail, in the semiclassical limit.

Other motivations for considering ðEpÞ arise in the study of models from biol-
ogy: for example, the Gierer-Meinhardt system

Ut ¼ d1DU�Uþ Up

Vq in W� ð0;þlÞ;
Vt ¼ d2DV�Vþ U r

V s in W� ð0;þlÞ;
qU
qn

¼ qV
qn

¼ 0 on qW� ð0;þlÞ:

8><
>:ðGMÞ

The functions U, V represent the densities of a slowly-di¤using chemical activa-
tor and of a fast-di¤using inhibitor respectively. Under suitable assumptions on
the numbers p, q, r, s, in the limits d1 ¼ e ! 0 and d2 ! þl, the function V is
close to a constant (in the stationary case) and U is, with a good approximation,
a solution of

�e2Duþ u ¼ up in W;
qu
qn
¼ 0 on qW;

u > 0 in W;

8<
:ðPeÞ

which is nothing but ðEpÞ in W with Neumann boundary conditions.
Equation ðEpÞ is well known to posses a radial solution U which decays to

zero exponentially fast, see [5], [29]. This ground state soliton gives rise, via a scal-
ing in all variables, to a family of solutions of both (1) and the Neumann problem
corresponding to ðGMÞ which are called spike layers and which have been inten-
sively studied in the literature, see for example [1], [27] and references therein.
Typically, for (1), as �h ! 0, solutions tend to concentrate near stationary points
of the potential, while for ðPeÞ they concentrate at the boundary of the domain or
in the interior, respectively at critical points of the mean curvature or at singular
points of the distance from qW. These kinds of solutions are produced either via
variational and penalization techniques, or via finite-dimensional Lyapunov-
Schmidt reductions.

Recently, a di¤erent kind of solutions (whose existence has been conjectured
for some time, see [27]) has been shown to exist, either for (1) or for ðPeÞ. These
have a di¤erent profile and scale only in one direction (or, more generally, in k
directions, with k a f1; . . . ; n� 1g), corresponding to solutions of the equation
in ðEpÞ which are independent of some of the variables, see [2], [3], [4], [8], [11],
[18], [20], [21], [26]. Apart from some special cases, when some symmetry is pres-
ent, these results asserts that concentration occurs provided we choose suitable
values of e tending to zero. The reason is that these solutions have an increasing
Morse index, and therefore resonance occurs. As a consequence, if one wishes to
employ local inversion arguments, it is necessary to avoid some values of the
parameter e, so that the linearized equation is invertible. This resonance is also
underlying when considering the model problem ðEpÞ. For example, one can start
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from entire (decaying) solutions in lower dimension, say in Rn�1, and extend
them (with obvious notation) to the whole Rn by setting ~UUðx1; x 0Þ ¼ Un�1ðx 0Þ.
Restricting ourselves to the strip DL :¼

�
� L

2 a x1 a
L
2

�
, and imposing Neumann

conditions at the boundary: by iterative reflections, each solution can be extended
to all of Rn. However, it is possible to prove that the Morse index of solutions
in DL diverges as L ! þl. In [7], N. Dancer showed that whenever the Morse
index changes bifurcation of non-cylindrical solutions from ~UU occurs, and these
new solutions are periodic in x1.

A similar method has been previously used by R. Schoen to prove multiplicity
of solutions for the Yamabe problem, see [28]. Indeed, other geometric problems
exhibit this kind of phenomenon, like that of finding surfaces in R3 with constant
mean curvature (shortly, CMC). Considering for example axially-symmetric
objects, it turns out that from the cylinder bifurcates a family of surfaces, the
Delaunay unduloids, which are periodic along the axis of the cylinder.

Delaunay unduloids have been used as building blocks to produce complete
surfaces in R3 with constant mean curvature which are union of a compact set
and a finite number of ends, namely subsets with the topology of the cylinder
which are asymptotically close to Delaunay surfaces. We refer for example to
[13], [14], [15], [22], [23] and [24] for details. Analogous constructions can be
done with Yamabe metrics which are defined on domains of Rn with a finite
number of points removed, and which are singular at these points, see e.g. [16],
[25].

In [19] it was shown that a similar structure is present for solutions to ðEpÞ:
to our knowledge there were no previous examples which raised in a pure PDE
context, see also the comments below. Denoting points of Rn by couples
ðx1; x 0Þ a R� Rn�1, we consider first a family of solutions uL to ðEpÞ which are
periodic in the x1 variable and which decay to zero at an exponential rate away
from x 0 ¼ 0, counterparts of the Delaunay surfaces. We focus on the case of
large period L, which allows to construct the solutions of [7] using perturba-
tive methods. In fact, setting zi ¼ ðiL; 0; . . . ; 0Þ and considering the function
u0;L ¼

P
i AN Uð� � ziÞ, this satisfies the Neumann boundary conditions on qDL

and is an approximate solution of ðEpÞ for L large. Using the implicit function
theorem, one can add a correction wL to u0;L so that uL ¼ u0;L þ wL solves ðEpÞ
exactly. To state the next result, we need to introduce some extra notation: set
P ¼ fðz1; z2; 0; . . . ; 0Þ : ðz1; z2Þ a R2gJRn and also, given y a Sn�1ðJRnÞBP,
we define the ray ly ¼ fty : tb 0g. We also let Ry denote the rotation in the
plane P (extended naturally to all of Rn) of the angle y. The distance function
between two points (or between two sets) of Rn is denoted by distð� ; �Þ. In the
statement of Theorem 1.1 uL stands for the solution of ðEpÞ periodic in x1 just
described.

Theorem 1.1 ([19]). Problem ðEpÞ admits a three-dimensional (up to rotations
and translations) family of solutions which decay exponentially away from three
rays originating from the origin, and which have an asymptotic periodic profile
along the rays. More precisely, there exist a positive constant C, a neighborhood
U of 0 in R3, smooth functions y1; y2; y3 : U ! Sn�1BP, L1;L2;L3 : U ! R,
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y1; y2; y3 : U ! P and a map from U into LlðRnÞ, z a U 7! uz, such that the fol-
lowing properties hold

(i) uz is a positive solution of ðEpÞ;
(ii) if ly1 , ly2 , ly3 are the rays corresponding to the directions y1, y2 and y3 respec-

tively, then

uzðxÞaCe�ð1=CÞ distðx; ðly1Aly2Aly3 ÞÞ for every x a Rn;

(iii) for any ti ! þl, given any compact set K of Rn one has

jjuð� � tiyaÞ � uLa
ðRyað� � yaÞÞjjC 2ðKÞ aCKe

ð1=CÞjti j; for a ¼ 1; 2; 3:

It is possible to characterize with more precision these solutions in terms of their
asymptotic behavior at infinity. In the above construction the values of the num-
bers La, a ¼ 1; 2; 3, can be chosen arbitrarily large, but the di¤erences jLa � Lbj,
with aA b, stay uniformly bounded. Also, we have yaJyb >

p
3 for every aA b,

where yaJyb stands for the angle between the two versors ya and yb. Let us now
consider the following function, which can be proven to be positive and mono-
tone decreasing in L ðLg 1Þ

GðLÞ :¼ 1

4

Z
qDL

ðj‘uLj2 þ u2LÞ ds� 1

2ðpþ 1Þ

Z
qDL

juLjpþ1
ds;

and that it determines uniquely the asymptotic period and profile of the functions
uL. In analogy with a balance condition for the CMC surfaces or the singular
Yamabe metrics one has the following result.

Theorem 1.2 ([19]). Let u be a function satisfying the properties (i)–(iii) in
Theorem 1.1, and let ya, La, a ¼ 1; 2; 3, be the corresponding quantities. Assume
that the angles yaJyb between any two di¤erent y’s are greater than p

3 . ThenP
a¼1;2;3 yaGðLaÞ ¼ 0.

Existence of solutions of semilinear elliptic equations with infinitely-many bumps
has been considered in other works, but in a di¤erent spirit. For example, in [6],
similar equations in the presence of a slowly-oscillating potential have been con-
sidered. While in that paper it is the potential which mainly determines the loca-
tions of the bumps, here are precisely their mutual interactions which allow us
to perform the construction of Theorem 1.1. We will see in the next section that
these interactions are governed by a discrete Toda system, which plays a role in
the study of particles distributed over lattices.

Concerning the Neumann problem mentioned above, we believe that the func-
tions constructed in Theorem 1.1, scaled in e, might lead to the existence of solu-
tions concentrating at a singular set in W, with a triple point. This would be a new
type of phenomenon, since so far concentration at sets of dimension greater than
zero has been proved for smooth curves or manifolds only.
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A result somehow related to Theorem 1.1 was proven in [9], where some other
solutions to ðEpÞ were constructed, with a di¤erent profile. In fact, the limit shape
of these solutions is nearly cylindrical and more precisely it is given by the solu-
tions constructed by Dancer in [7]. To state the result, we need to introduce some
more notation. We use a parameter d (real, close to zero) to describe the bifurca-
tion branch of solutions close to the cylindrical ones. It is possible to prove that
the following formula holds, in cylindrical coordinates ðx; zÞ

udðx; zÞ ¼ u0ðxÞ þ dZðxÞ cosðl1zÞ þOðd2Þe�jxj;

where l1 is the square root of the inverse of the limit period of the solutions, and
ZðxÞ is an exponentially decaying axially symmetric function.

The solutions produced in [9] are defied for n ¼ 2 and are of the form

uðx; zÞU
Xk
j¼0

udj ðx� fjðzÞ; zÞ;

for some small numbers dj and some even functions f1ðzÞf f2ðzÞf � � �f fkðzÞ.
The authors showed that the fi’s should approximately satisfy a second order sys-
tem of di¤erential equations, the Toda system, given by

c0 f
00
j ¼ e fj�1� fj � e fj� fjþ1 ; i ¼ 1; . . . ; k;ð2Þ

for some positive constant c0 and with the conventions f0 ¼ �l and fkþ1 ¼ þl.
It can be shown that the fj’s are asymptotically a‰ne near plus or minus infinity,
see the last section for more details.

Theorem 1.3 ([9]). Assume that n ¼ 2 and that p > 2. Given kb 2 there exist
numbers bi, i ¼ 1; . . . ; k, with jbi � bjj large for iA j and solutions of (2) with
fjð0Þ ¼ bj and f 0

j ð0Þ ¼ 0 such that ðEpÞ has solutions of the form

uðx; zÞ ¼ ð1þ oð1ÞÞ
Xk
j¼0

udjðx� fjðzÞ; zÞ;ð3Þ

where oð1Þ, dj ! 0 as jbi � bjj tend to þl.

A similar kind of solutions was found in [10] for the Allen-Cahn equation

Du ¼ u3 � u in Rn;ð4Þ

which has been the subject of several works, mostly for its role in the theory of
phase transitions. For reasons of brevity we do not recall here the main features
of the equations, and the contributions which can be found in the literature: we
simply refer the interested reader to the introductions of [10] and [12].
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In one dimension equation (4) possesses a hetheroclinic solution H such that

HðtÞ !e1 as t !el;

and which converge toe1 exponentially fast. The function H has indeed the ex-
plicit expression tanhððt� t0Þ=

ffiffiffi
2

p
Þ, where t0 is real and arbitrary. The function

H, in the singularly perturbed version of (4), gives the profile of the transition
layers from one state of the physical system to another.

The solutions to (4) constructed in [10] exhibit multiple transitions, which are
still related to a Toda system of the form (2) but with some di¤erence in the co-
e‰cients, precisely

c1 f
00
j ¼ e

ffiffi
2

p
ð fj�1� fjÞ � e

ffiffi
2

p
ð fj� fjþ1Þ; i ¼ 1; . . . ; k;ð5Þ

where c1 is another positive constant and where we kept the same notation for f0,
fkþ1 as in (2). The di¤erence in the coe‰cients with respect to the case of equa-
tion ðEpÞ is due to the factor

ffiffiffi
2

p
in the expression of H. In [10] the following re-

sult was proved.

Theorem 1.4 ([10]). Assume that n ¼ 2: given kb 2 there exist numbers bi,
i ¼ 1; . . . ; k, with jbi � bjj large for iA j and solutions of (5) with fjð0Þ ¼ bj and
f 0
j ð0Þ ¼ 0 such that (4) has solutions of the form

uðx; zÞ ¼
Xk
j¼1

Hðx� fjðzÞÞ þ sk þ jðx; zÞ; sk ¼ � 1

2
ð1þ ð�1ÞkÞ;

where j ! 0 uniformly in R2 as jbi � bjj tend to þl.

We remark that also for the solutions found in Theorems 1.3 and 1.4 (for k ¼ 2),
there are some counterparts for the CMC problem, see the above mentioned
references regarding this topic. It is also worth noticing that the Toda system,
but in its discrete form, appears also in the proof of Theorem 1.1. It would indeed
be interesting to see whether one could possibly relate the solutions constructed in
Theorem 1.1 and in Theorem 1.3, showing for example that they both belong to a
continuum of solutions.

The proofs of the above theorems (except for Theorem 1.2, which uses mostly
integration by parts) rely on infinite-dimensional Lyapunov-Schmidt reductions,
combined with analysis in weighted spaces. While Theorem 1.1 uses a discrete re-
duction, connected to the location of an infinite sequence of points, Theorems 1.3
and 1.4 use a continuous reduction, related to variations of the profiles normal to
a given surface. With the latter techniques, in [11] a long-standing conjecture by
De Giorgi was proved, regarding entire solutions of (4) which are monotone in
some direction. This is the main result in [12].

Theorem 1.5 ([12]). Suppose nb 9: then there is a minimal xn-graph F in Rn

which is not an a‰ne function and such that for all g > 0 su‰ciently small there
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exists a bounded solution ug of (4) such that ugð0Þ ¼ 0, such that qxnug > 0 every-
where and such that jugðxÞj ! 1 as distðx;GgÞ ! þl. Here Gg is the graph of the
function

Fgðx 0Þ :¼ g�1Fðgx 0Þ; x 0 a Rn�1:

In Section 2 we describe the main arguments in the proof of Theorem 1.1,
which relies on a discrete Lyapunov-Schmidt reduction. In Section 3 instead we
sketch the proofs of Theorems 1.3–1.5, which instead are based on continuous
Lyapunov-Schmidt reductions.

Acknowledgements. The author has been supported by M.U.R.S.T within the PRIN 2006

Variational methods and nonlinear di¤erential equations, and within the project FIRB IDEAS Anal-

ysis and Beyond.

2. Discrete infinite-dimensional L-S reductions

To begin, we recall some basic properties of the ground state solution U to ðEpÞ:
its asymptotic behavior is the following

lim
r!l

errðn�1Þ=2UðrÞ ¼ an;p; lim
r!l

U 0ðrÞ
UðrÞ ¼ �1 ðr ¼ jxjÞ:ð6Þ

Moreover, the kernel of the operator L0v :¼ �Dvþ v� pU p�1v (the linearization
of ðEpÞ at U) is spanned by qU

qx1
; . . . ; qU

qxn
. We will work within the space of func-

tions which are rotationally invariant in the last n� 2 variables, so under this
condition the elements of kerðL0Þ will be linear combinations of qU

qx1
, qU
qx2

.
Our strategy consists in starting with approximate solutions which have the

desired behavior at infinity, and to use then a Lyapunov-Schmidt reduction to
fully solve the equation.

We introduce the three half-spaces Va ¼
�
x a Rn : 3x; ya4b L

2 � 1
�
, and also

caðxÞ ¼ cðdðx;VaÞÞ, where c is a fixed smooth cuto¤ function defined on R with
values into ½0; 1� such that cðtÞ ¼ 1 for ta 0, cðtÞ ¼ 0 for tb 1. Let y1, y2, y3 be
three unit vectors in P :¼ fðx1; x2; 0; . . . ; 0ÞgJRn which satisfy

y1Jy2 b
p

3
þ y0; y2Jy3 b

p

3
þ y0; y1Jy3 b

p

3
þ y0ð7Þ

for some y0 > 0, and for any a ¼ 1; 2; 3 recall that Rya stands for the rotation in
P by the angle ya. If wL is as above, we define next the function wLa;ya as Rya wL.
Next we choose three large numbers L1, L2, L3 (with jLa � Lbj þ jLa � Lj uni-
formly bounded by a fixed constant C), points ya, a ¼ 1; 2; 3 and ðPa; iÞa; i such
that

jyaja cy0 ; jPa; i � iyiLa � yajaCy0e
�tjPi j; a ¼ 1; 2; 3; i ¼ 1; 2; . . .ð8Þ
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for some constants cy0 , Cy0 and t (uniformly bounded in L). We set for simplicity
fPIg ¼ f0gAa; i fPa; ig, X ¼

S
IfPIgI , Y ¼ ðy1; y2; y3Þ and UI ð�Þ ¼ ð� � PI Þ for

any index I . We finally define

uX ;Y ðxÞ ¼
X
I

UI ðxÞ þ
X3

a¼1

caðxÞwLa;yaðx� yaÞ:ð9Þ

By our choice, this function is exponentially close to a rotation of uLa
along each

direction ya: indeed it is possible to prove the following quantitative estimate on
uX ;Y .

Lemma 2.1. Let S0ðuX ;Y Þ ¼ �DuX ;Y þ uX ;Y � u
p
X ;Y . Then, if ðyaÞa, ðPI ÞI satisfy

(8) and ðyaÞa (7), for any g a ð0; 1Þ we have the following estimate on S0ðuX ;Y Þ

jjS0ðuX ;Y ÞjjC gðB1ðxÞÞ aCe�ð1þxÞðL=2Þe�sdðx;S
i
xiÞ½e�hjxj þ Cy0e

�tjxj�; x a Rn;ð10Þ

where x, s and h are positive constants depending only on n, p and y0, but not on L,
and where C is a fixed constant (depending only on n, p, g and y0) also independent
of L.

The Lyapunov-Schmidt reduction consists in transferring problem ðEpÞ into
determining the appropriate location of the points fPIgI . For doing this we
can exploit the linear properties of L0, and as a first step solve the equation
up to, basically, a sequence of Lagrange multipliers in the kernel of LI :¼
�Dþ 1� pU

p�1
I . Precisely, one can prove the following result.

Proposition 2.2. Suppose ðyaÞa, ðPI ÞI satisfy (8), and let uX ;Y be as in (9).
Then, for L su‰ciently large, there exists a function wX ;Y and a sequence ðaI ÞI of
elements of R2, aI ¼ ðaI ; jÞj , j ¼ 1; 2, which satisfy the following two properties

(a) �DðuX ;Y þ wX ;Y Þ þ ðuX ;Y þ wX ;Y Þ � ðuX ;Y þ wX ;Y Þp ¼
P

I ; j a
I ; jU

p�1
I qjUI ;

(b)

Z
Rn

wX ;YU
p�1
I

qUI

qzj
¼ 0 for every I and for every j ¼ 1; 2.

While this method is rather standard when dealing with a finite number of soli-
tons, some technical di‰culties arise when dealing with infinitely-many ones: the
proof uses crucially weighted spaces and Toepliz type operators. The final step of
the proof consists in adjusting the positions of the points ðPI ÞI in order to make
all the coe‰cients ðaI ÞI vanish. First of all, using Lemma 2.1 with Cy0 ¼ 0, one
can estimate the aI ’s corresponding to the function uXðY Þ;Y where X ðY Þ denotes
the special configuration of points satisfying

Pa; i ¼ ya þ iyaLa for every a ¼ 1; 2; 3 and every i a N;ð11Þ

and where the symbol Y stands for the triple ðy1; y2; y3Þ.
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Lemma 2.3. For X and Y satisfying (8) and (11) we have the following estimates

a0XðYÞ;Y ¼ �
X

a¼1;2;3

F1ðjPa;1jÞ
Pa;1

jPa;1j
þOðe�ð1þxÞLÞ;

aI
X ðY Þ;Y ¼ F1ðjPa;1jÞ

Pa;1

jPa;1j
þ F1ðjPa;1 � Pa;2jÞ

Pa;1 � Pa;2

jPa;1 � Pa;2j

� �
þOðe�ð1þxÞLÞ;

if Pi ¼ Pa;1; a ¼ 1; 2; 3;

jaI
XðYÞ;Y jaCe�ð1þxÞLe�hjPI j þ CCy0e

�tðjPa; h�1jÞF0ðLÞ;
if PI ¼ Pa;h for a ¼ 1; 2; 3; and h > 1;

where F1 satisfies F1ðtÞ ¼ ð1þ otð1ÞÞF0ðtÞ, and where C, h, x are constants depend-
ing on n and p.

From energetic expansions, one can think of the solitons UI as attracting each
other via a force which is proportional ti e�d , where d is the distance between
two neighboring ones, this factor is due to the decay rate in (6). The coe‰cients
aI represent the total forces acting on each soliton UI .

Next, we study the variation of the aI ’s depending on the points ðPI ÞI and
ðyaÞa. To understand this, looking at the expansions in Lemma 2.3, one can
imagine aI to behave like

aI U�
X
SAI

PS � PI

jPS � PI j
e�jPS�PI j:

By the presence of the exponential term, the main contribution to the above ex-
pression will be given by the points closest to PI : three when PI ¼ 0 and two for
PI A 0 (here condition (7) is also used). In particular, along each lya when the
configuration of points Pa; i is nearly periodic the linearization looks like a Toda
operator which, in matrix form with respect to the index i, qualitatively looks like

. .
.

� � � 0 �1 0 � � � � � � � � � ..
.

..

.
0 �1 2 �1 0 � � � � � � ..

.

..

.
� � � 0 �1 2 �1 0 � � � ..

.

..

.
� � � � � � 0 �1 2 �1 0 ..

.

� � � � � � � � � � � � � � � � � � � � � � � � � � �

0
BBBBBBBB@

1
CCCCCCCCA
:

The latter operator can be viewed as a discretization of the Laplacian in one di-
mension, and it is indeed possible to invert it via convolution with a kernel which
is piecewise a‰ne in the index i. If x, h are given by Lemmas 2.1 and 2.3, using
the above invertibility, one finds the following result.
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Proposition 2.4. Suppose y1, y2, y3 satisfy (7), and L1, L2, L3 jLa � Lbj þ
jLa � LjaC for C fixed and L su‰ciently large. Then, if we choose t <
min

�
x;

h

2

�
there exist ðyaÞa and ðPI ÞI ¼ ðPa; iÞa; i such that (8) hold true for some

uniformly bounded (in L) cy0 , Cy0 , and with aI ¼ 0 for all I A 0.

Notice that we have a six-dimensional family of configurations satisfying the
properties of Proposition 2.4. The final step consists in choosing the La’s and
the ya’s so that also a0 vanishes, which leaves four parameters free: taking the
quotient with respect to rotations in P, we obtain a genuine three-dimensional
family of solutions.

3. Continuous infinite-dimensional L-S reductions

In this section we give a brief sketch of the proofs of Theorems 1.3, 1.4 and 1.5,
which rely on continuous infinite-dimensional Lyapunov-Schmidt reductions.
For simplicity, we describe in some detail only the arguments needed for Theo-
rem 1.4: concerning the other results, we only give few ideas.

Also in this case, one starts by constructing approximate solutions, which one
can defined by the formula

~uuðx; zÞ ¼
Xk

j¼1

Hðx� fjðzÞÞ þ sk; sk ¼ � 1

2
ð1þ ð�1ÞkÞ;ð12Þ

where the functions fj satisfy the system (5), with initial data fjð0Þ ¼ bj and
f 0
j ð0Þ ¼ 0. More specifically, it is possible to show that there exist families of so-
lutions with these asymptotics (a > 0 small)

fjðzÞ ¼ ~ffjðazÞ þ
ffiffiffi
2

p
j � k þ 1

2

� 	
log

1

a
; j ¼ 1; . . . ; k;ð13Þ

where

~ffjðzÞ ¼ ajjzj þ bj þ f̂fjðzÞ; jzjg 1;ð14Þ

where

aj � aj�1 > % > 0 and jj f̂fje%jzjjjC 4ðRÞ < C;

for some large constants C; % > 0.
One has then the following result (here in the definition of the approximate

solutions we are not completely precise for reasons of brevity, however the func-
tion ~uu gives an idea of how the approximate solutions in [9] look like).

Proposition 3.1. Suppose ~uu is defined as in (12), with fj as in (13) satisfying (5).
Let also

Sð~uuÞ ¼ D~uuþ ~uu� ~uu3:
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Then there exists positive constants C > 0 and s a
�
0;

ffiffi
2

p
�1ffiffi
2

p
�
such that

jjSð~uuÞjjs; %;a aCa2ð1�sÞ;

where the latter norm is defined as

jjjjjs; %;a ¼










�Xk

j¼1

e�sjx� fjaðzÞj�%ajzj
	�1

j











l

;

where % is as in (14).

We can give a heuristic explanation of why this configuration is a good candidate
for being an approximate solution. From energetic expansions similar to those as
for Lemma 2.3 one finds that two distant transition layers attract each other with
an intensity proportional to e�

ffiffi
2

p
d , where d stands for the distance between the

two layers. If the layers stay parallel, they would tend to collapse one onto each
other but if they are bent, closer points would fell stronger forces. On the other
hand, a curved transition layer would tend to move according to its curvature
vector, since this motion would tend to decrease locally the length of the layer,
and hence it would be energetically favorable. The above choice of the functions
fj gives a balance between the forces due to the curvature and the mutual inter-
actions. For this reason we see both the second derivatives and the exponential
terms appearing in formula (5).

To continue in the proof of the theorem one uses the following result, which
reduces the problem to determining k real functions only (also here we are not
completely precise, for reasons of brevity).

Proposition 3.2. There exist small numbers a0, s0 such that for a a ð0; a0Þ and
d a ð0; d0Þ, and any function satisfying (13) there exists a correction w to ~uu for
which

Sð~uuþ wÞ ¼
Xk

j¼1

cjðzÞH 0ðx� fjðzÞÞ;ð15Þ

and the orthogonality condition

Z
R

H 0ðx� fjðzÞÞwðx; zÞ dx ¼ 0; j ¼ 1; . . . ; k:ð16Þ

Similarly to Proposition 2.2, to prove this result one uses the fact that the hether-
oclinic H is a non degenerate solution of (4) in one dimension, except for the gen-
erators of translations in R. The functions cj in Proposition 3.2 play the role of
Lagrange multipliers once the constraint equation 16 is imposed. A similar pro-
cedure has also been used in [17], [18] (or in other papers regarding the Allen-
Cahn equations), but one of the di‰culties here is that the functions fj are defined
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on the whole real line, which requires introducing weighted norms in the variable
z as well.

To conclude the proof, one is then reduced to find functions fj for which all
the cj’s in (15) vanish. In this step, one shows that the changes of the cj’s with
respect to a variation of the fj’s are ruled at main order by the linearization of
the system (5). Since within a certain family of functions (which enjoy some sym-
metry properties) this linearization is invertible, one is then able to make all the
functions cj vanish, and hence to prove Theorem 1.4. The proof of Theorem 1.3 is
similar in spirit but slightly more di‰cult, because of the resonance phenomenon
described before. To tackle this di‰culty as well, one uses a modification of the
profile as (3), to control also the component of the equation along this extra de-
generate direction.

The proof of Theorem 1.5 uses a similar procedure, but the main issue there is
to prove that the sets Gg are non-degenerate except for the actions of translations,
rotations and dilations. To show this the authors derive (from a clever choice of
conformal coordinates) a refined asymptotic expansion of the functions Fg. Those
functions were constructed in 1969 by Bombieri, De Griogi and Giusti, and in
[12] their asymptotic behavior is improved passing from a polynomial control,
to an estimate of order oð1Þ near infinity. Once this is done, the Jacobi fields for
the minimal surface operator are classified, and one can use a reduction method
as in Proposition 3.2.
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