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Calculus of Variations — Multiplicity of global minima for parametrized func-
tions, by Biagio Ricceri.

Dedicated to the memory of Renato Caccioppoli

Abstract. — Let X be a topological space, I a real interval and C a real-valued function on

X � I . In this paper, we prove that if C is lower semicontinuous and inf-compact in X , quasi-

concave and continuous in I and satisfies supI infX C < infX supI C, then there exists l� a I such
that Cð�; l�Þ has at least two global minima. An application involving the integral functional of

the calculus of variations is also presented.
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1. Introduction

If we wished to summarize with a few words the object of this paper, we could
say that it deals with eigenvalues for global minima.

To explain this, let us introduce the notion of an eigenvalue in the most gen-
eral setting.

So, let X , Y , L be three non-empty sets, y a point of Y , and G : X �L ! Y a
function such that, for each l a L, the equation

Gðx; lÞ ¼ y

has at least one solution in X .
We then call eigenvalue for this equation any l� a L for which the equation

Gðx; l�Þ ¼ y

has at least two solutions in X .
Clearly, the most classical particular case of this general scheme is when X , Y

are two vector spaces, L ¼ C (or L ¼ R), y ¼ 0 and

Gðx; lÞ ¼ T1ðxÞ þ lT2ðxÞ;

where T1, T2 are two linear operators. The general theory coming out in that case
is one of the milestones in both linear algebra and analysis.



In recent years, much work has also been done in the nonlinear case. In this
connection, an account can be found, for instance, in [1]. However, it seems that,
among the various research directions, the one followed in the present paper has
not been explored yet.

Actually, our aim is to give a contribution to the study of the above eigenvalue
problem in the case where Y ¼ R, y ¼ 0, L is a real interval and

Gðx; lÞ ¼ Cðx; lÞ � inf
u AX

Cðu; lÞ;

for a given C : X �L ! R.
Our main result is Theorem 1. It ensures the existence of an eigenvalue pro-

vided that C is lower semicontinuous and inf-compact in X , quasi-concave and
continuous in L and satisfies supL infX C < infX supL C. We then reformulate
Theorem 1 in the case where C is a‰ne in l and L ¼ �0;þl½, so obtaining The-
orem 2. Finally, we present two applications of Theorem 2 the last of which deals
with the integral functional of the calculus of variations.

2. Results

For a generic function f : X ! R, the sets of the type f �1ð��l; r�Þ ðr a RÞ are
called sub-level sets. If X is a convex set in a vector space, f is said to be quasi-
concave if f �1ð½r;þl½Þ is convex for all r a R.

For reader’s convenience, we now recall a result from [4] that will be used
later.

For a generic set SJX � I , for each ðx; lÞ a X � I , we set

Sx ¼ fm a I : ðx; mÞ a Sg

and

S l ¼ fu a X : ðu; lÞ a Sg:

Theorem A ([4], Theorem 2.3). Let X be a topological space, I JR a compact
interval and S;T JX � I . Assume that S is connected and S lA j for all l a I ,
while Tx is non-empty and connected for all x a X, and T l is open for all l a I .

Then, one has SBTA j.

Our main result reads as follows:

Theorem 1. Let X be a topological space, I JR an open interval and
C : X � I ! R a function satisfying the following conditions:

(a) for each x a X, the function Cðx; �Þ is quasi-concave and continuous;
(b) for each l a I , the function Cð�; lÞ has compact and closed sub-level sets;
(c) one has

48 b. ricceri



sup
l A I

inf
x AX

Cðx; lÞ < inf
x AX

sup
l A I

Cðx; lÞ:

Under such hypotheses, there exists l� a I such that the function Cð�; l�Þ has at
least two global minima.

Proof. Fix r satisfying

sup
l A I

inf
x AX

Cðx; lÞ < r < inf
x AX

sup
l A I

Cðx; lÞ:ð1Þ

Arguing by contradiction, assume that, for each l a I , the function Cð�; lÞ has a
unique global minimum, say x̂xl. Let us show that the map l ! x̂xl is continuous.
To this end, it is clearly enough to show that if flng is a sequence in I converging
to l̂l a I , then x̂x

l̂l
is a cluster point of fx̂xlng. Fix a compact interval ½a; b�H I such

that ln a ½a; b� for all n a N. From (a) it easily follows that[
l A ½a;b�

fx a X : Cðx; lÞa rgð2Þ

¼ fx a X : Cðx; aÞa rgA fx a X : Cðx; bÞa rg:

Note that, by (1), the sequence fx̂xlng lies in the set on the left-hand side of (2)
which, by (b), is compact. As a consequence, this sequence admits a cluster point
ŷy a X . Thus, ð ŷy; l̂lÞ is a cluster point in X � I for the sequence fðx̂xln ; lnÞg. Now,
observe that, by (a), (b) and Lemma 4 of [6], the function C turns out to be lower
semicontinuous in X � I . We claim that

Cð ŷy; l̂lÞa lim sup
n!l

Cðx̂xln ; lnÞ:ð3Þ

Assume the contrary. Fix h satisfying

lim sup
n!l

Cðx̂xln ; lnÞ < h < Cð ŷy; l̂lÞ:

Then, there are a neighbourhood U of ð ŷy; l̂lÞ and n a N such that

Cðx̂xln ; lnÞ < h < Cðx; lÞð4Þ

for all n > n and all ðx; lÞ a U . But, since ð ŷy; l̂lÞ is a cluster point of fðx̂xln ; lnÞg,
there is n1 > n such that ðx̂xln1 ; ln1Þ a U , against (4). Now, fix x a X . Taking (3)
into account, we have

Cð ŷy; l̂lÞa lim sup
n!l

Cðx̂xln ; lnÞa lim
n!l

Cðx; lnÞ ¼ Cðx; l̂lÞ:

That is, ŷy is a global minimum of Cð�; l̂lÞ, and so we have ŷy ¼ x̂x
l̂l
. Thus, x̂x

l̂l
is a

cluster point of fx̂xlng, as desired. Now, let fIng be an increasing sequence of com-
pact intervals such that I ¼

S
n AN In. We claim that there is n a N such that
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sup
l A In

inf
x AX

Cðx; lÞ < inf
x AX

sup
l A In

Cðx; lÞ:ð5Þ

Assume the contrary, that is

sup
l A In

inf
x AX

Cðx; lÞ ¼ inf
x AX

sup
l A In

Cðx; lÞ

for all n a N. For each n a N, put

Cn ¼ x a X : sup
l A In

Cðx; lÞa r

( )
:

Note that CnA j. Indeed, otherwise, we would have

ra inf
x AX

sup
l A In

Cðx; lÞ ¼ sup
l A In

inf
x AX

Cðx; lÞa sup
l A I

inf
x AX

Cðx; lÞ;

against (1). Consequently, fCng is a non-increasing sequence of non-empty
compact and closed subsets of X . Therefore, one has

T
n AN CnA j. Let x� aT

n AN Cn. Then, one has

sup
l A I

Cðx�; lÞ ¼ sup
n AN

sup
l A In

Cðx�; lÞa r

and so

inf
x AX

sup
l A I

Cðx; lÞa r;

against (1). So, fix n a N for which (5) holds and fix also r so that

sup
l A In

inf
x AX

Cðx; lÞ < r < inf
x AX

sup
l A In

Cðx; lÞ:ð6Þ

Set

S ¼ fðx̂xl; lÞ : l a Ing

and

T ¼ fðx; lÞ a X � In : Cðx; lÞ > rg:

Since the map l ! x̂xl is continuous, the set S is connected. By (6), we also have
Cðx̂xl; lÞ < r for all l a In, and so SBT ¼ j. By (a), (b) and (6) again, it follows
that Tx is non-empty and connected for all x a X , while T l is open for all l a In.
Thus, S and T satisfy the assumptions of Theorem A, and hence it should be
SBTA j. This contradiction ends the proof. r
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Remark 1. Essentially the same proof as the one above shows that Theorem 1
is still true if, in (c), we replace ‘‘compact and closed’’ with ‘‘sequentially compact
and sequentially closed’’.

Remark 2. We also notice that the number l� in the conclusion of Theorem 1
can be unique. In this connection, the simplest example is as follows.

Let X ¼ fx0; x1g. Consider the function C : X � R ! R defined by

Cðx; lÞ ¼ �l if ðx; lÞ a fx0g � R

l otherwise:

�

Clearly, (a), (b) hold. Concerning (c), note that

sup
l AR

inf
x AX

Cðx; lÞ ¼ 0;

while

inf
x AX

sup
l AR

Cðx; lÞ ¼ þl:

So, the assumptions of Theorem 1 are satisfied. Finally, observe that, for any
lA 0, the function Cð�; lÞ has a unique global minimum (precisely, x0 if l > 0
and x1 if l < 0).

When the function C is a‰ne in l and I ¼ �0;þl½, Theorem 1 assumes the
following form.

Theorem 2. Let X be a topological space and J;F : X ! R two functions satis-
fying the following conditions:

(a1) for each l > 0, the function J þ lF has compact and closed sub-level sets;
(b1) there exist r a �infX F; supX F½ and u1; u2 a X such that

Fðu1Þ < r < Fðu2Þ

and

Jðu1Þ � infF�1ð��l;r�Þ J

r�Fðu1Þ
<

Jðu2Þ � infF�1ð��l;r�Þ J

r�Fðu2Þ
:

Under such hypotheses, there exists l� > 0 such that the function J þ l�F has at
least two global minima.

Proof. Observe that, in view of Theorem 1 of [2], condition (b1) is equivalent to
the inequality

sup
lb0

inf
x AX

ðJðxÞ þ lðFðxÞ � rÞÞ < inf
x AX

sup
lb0

ðJðxÞ þ lðFðxÞ � rÞÞ:
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On the other hand, since the function l ! infx AX ðJðxÞ þ lðFðxÞ � rÞÞ is concave
(and real-valued) in �0;þl½, it is lower semicontinuous in ½0;þl½ and so

sup
lb0

inf
x AX

ðJðxÞ þ lðFðxÞ � rÞÞ ¼ sup
l>0

inf
x AX

ðJðxÞ þ lðFðxÞ � rÞÞ:

Consequently, condition (b1) is equivalent to the inequality

sup
l>0

inf
x AX

ðJðxÞ þ lðFðxÞ � rÞÞ < inf
x AX

sup
l>0

ðJðxÞ þ lðFðxÞ � rÞÞ:

Now, we can apply Theorem 1 taking I ¼ �0;þl½ and

Cðx; lÞ ¼ JðxÞ þ lðFðxÞ � rÞ;

and the conclusion follows. r

A suitable application of Theorem 2 gives the following result:

Theorem 3. Let S be a topological space and F ;F : S ! R two lower semi-
continuous functions satisfying the following conditions:

(a2) the function F has compact sub-level sets;
(b2) for some a > 0, one has

inf
x AF�1ð�a;þl½Þ

FðxÞ
FðxÞ ¼ �l:

Under such hypotheses, for each r large enough, there exists l�
r > 0 such that

the restriction of the function F þ l�
rF to F�1ð��l; r�Þ has at least two global

minima.

Proof. Fix r0 > infX F, x0 a F�1ð��l; r0½Þ and l satisfying

l >
F ðx0Þ � infF�1ð��l;r0�Þ F

r0 �Fðx0Þ
:

Hence, one has

F ðx0Þ þ lFðx0Þ < lr0 þ inf
F�1ð��l;r0�Þ

F :ð7Þ

Since F�1ð��l; r0�Þ is compact, by lower semicontinuity, there is x̂x a
F�1ð��l; r0�Þ such that

Fðx̂xÞ þ lFðx̂xÞ ¼ inf
x AF�1ð��l;r0�Þ

ðFðxÞ þ lFðxÞÞ:ð8Þ
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We claim that Fðx̂xÞ < r0. Arguing by contradiction, assume that Fðx̂xÞb r0.
Then, in view of (7), we would have

Fðx0Þ þ lFðx0Þ < F ðx̂xÞ þ lFðx̂xÞ

against (8). By (b2), there is a sequence fung in F�1ð�a;þl½Þ such that

lim
n!l

F ðunÞ
FðunÞ

¼ �l:

Now, set

g ¼ min 0; inf
x AF�1ð��l;r0�Þ

ðFðxÞ þ lFðxÞÞ
( )

and fix n̂n a N so that

F ðun̂nÞ
Fðun̂nÞ

< �lþ g

a
:

We then have

F ðun̂nÞ þ lFðun̂nÞ <
g

a
Fðun̂nÞa g:

Hence, if we put

r� ¼ Fðun̂nÞ;

we have

inf
x AF�1ð��l;r��Þ

ðF ðxÞ þ lFðxÞÞ < inf
x AF�1ð��l;r0�Þ

ðF ðxÞ þ lFðxÞÞ:

At this point, for each rb r�, we realize that it is possible to apply Theorem 2
taking X ¼ F�1ð��l; r�Þ and J ¼ F þ lF. Indeed, with these choices and taking
u1 ¼ x̂x, u2 ¼ un̂n, the left-hand side of the last inequality in (b1) is zero, while the
right-hand side is positive. Consequently, there exists l̂lr > 0 such that the restric-
tion of the function F þ lFþ l̂lrF to F�1ð��l; r�Þ has at least two global min-
ima. So, the conclusion follows taking l�

r ¼ lþ l̂lr. r

It is worth noticing the following consequence of Theorem 3.

Theorem 4. Let S be a cone in a real vector space equipped with a (not necessar-
ily vector) topology and let F ;F : S ! R be two lower semicontinuous functions
satisfying the following conditions:
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(a3) the function F is positively homogeneous of degree a and has compact sub-
level sets;

(b3) the function F is positively homogeneous of degree b > a and there is ~xx a S
such that Fð~xxÞ < 0 < Fð~xxÞ.

Under such hypotheses, there exists r� > infS F such that the restriction of the
function F þF to F�1ð��l; r��Þ has at least two global minima.

Proof. Clearly, we have

lim
l!þl

F ðl~xxÞ
Fðl~xxÞ ¼ lim

l!þl

Fð~xxÞ
Fð~xxÞ l

b�a ¼ �l:

So, the hypotheses of Theorem 3 are satisfied and hence there exist r > infS F
and l > 0 such that the restriction of the function F þ lF to F�1ð��l; r�Þ has
at least two global minima, say v1, v2. Now, observe that

lb=ða�bÞðF ðxÞ þ lFðxÞÞ ¼ F ðl1=ða�bÞxÞ þFðl1=ða�bÞxÞ

for all x a S. From this, it easily follows that the points l1=ða�bÞv1 and
l1=ða�bÞv2 are two global minima of the restriction of the function F þF to
F�1ð��l; la=ða�bÞr�Þ, that is the conclusion. r

Remark 3. Of course, due to Remark 1, Theorems 2, 3 and 4 are still valid if
instead of ‘‘closed’’, ‘‘compact’’, ‘‘lower semicontinuous’’ one assumes ‘‘sequen-
tially closed’’, ‘‘sequentially compact’’, ‘‘sequentially lower semicontinuous’’ re-
spectively.

Remark 4. We also remark that the number r� in the conclusion of Theorem 4
can be unique. In this connection, a very simple example is provided by taking
S ¼ R, FðxÞ ¼ x2 and F ðxÞ ¼ �x3. Actually, it is seen at once that, if r > 0, the
restriction of the function x ! x2 � x3 to ½�r; r� has a unique global minimum
when rA 1 and exactly two global minima when r ¼ 1.

We conclude by presenting an application of Theorem 2 involving the integral
functional of the calculus of variations.

In the sequel, WHRn is a bounded open set, with smooth boundary, and
p > n. Therefore, the Sobolev space W 1;pðWÞ, endowed with the norm

jjujj ¼
�Z

W

j‘uðxÞjp dxþ
Z
W

juðxÞjp dx
�1=p

;

is compactly embedded in C0ðWÞ and hence the constant

c ¼ sup
u AW 1; pðWÞnf0g

supx AWjuðxÞj
jjujjð9Þ

is finite.
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Recall that a function f : W� Rm ! ��l;þl� is said to be a normal inte-
grand ([5]) if it is LðWÞnBðRmÞ-measurable and f ðx; �Þ is lower semicontinuous
for a.e. x a W. Here LðWÞ and BðRmÞ denote the Lebesgue and the Borel
s-algebras of subsets of W and Rm, respectively.

Recall that if f is a normal integrand, then, for each measurable function
u : W ! Rm, the composite function x ! f ðx; uðxÞÞ is measurable ([5]).

If x a R, we continue to denote by x the constant function on W assuming the
value x.

Theorem 5. Let f : W� R ! ��l;þl� and j : W� R� Rn ! ½0;þl� be
two normal integrands satisfying the following conditions:

(i) there exist n > 0 such that

nðjxjp þ jhjpÞa jðx; x; hÞ

for all ðx; x; hÞ a W� R� Rn, and, for each ðx; xÞ a W� R, the function
jðx; x; �Þ is convex in Rn;

(ii) for each e > 0, there exists ge a L1ðWÞ such that

�ejxjp þ geðxÞa f ðx; xÞ

for all ðx; xÞ a W� R;
(iii) there exist x1; r a R such thatZ

W

jðx; x1; 0Þ dx < r;

Z
W

f ðx; x1Þ dx < þl

and

f ðx; x1Þ ¼ inf
jxjad

f ðx; xÞ

for all x a W, where

d ¼ c
�r
n

�1=p

and c is given in (9).

Under such hypotheses, for every sequentially weakly closed set V JW 1;pðWÞ
containing the constant x1 and a w for whichZ

W

jðx;wðxÞ;‘wðxÞÞ dx < þl

and
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Z
W

f ðx;wðxÞÞ dx <

Z
W

f ðx; x1Þ dx;

there exists l� > 0 such that the restriction to V of the functional

u !
Z
W

f ðx; uðxÞÞ dxþ l�
Z
W

jðx; uðxÞ;‘uðxÞÞ dx

has at least two global minima.

Proof. For each u a W 1;pðWÞ, set

~JJðuÞ ¼
Z
W

f ðx; uðxÞÞ dx

and

~FFðuÞ ¼
Z
W

jðx; uðxÞ;‘uðxÞÞ dx:

By a classical result ([3], Theorem 4.6.8), for each l > 0 the functional ~JJ þ l~FF is
sequentially weakly lower semicontinuous. On the other hand, for e a �0; ln½, by
(ii), we have

~JJðuÞ þ l~FFðuÞb ðln� eÞjjujjp þ
Z
W

geðxÞ dx:

Consequently, by reflexivity and Eberlein-Smulyan theorem, the sub-level sets of
~JJ þ l~FF are weakly compact. Now, let V JW 1;pðWÞ be as in the conclusion. Set

X ¼ fu a V : supf ~JJðuÞ; ~FFðuÞg < þlg:

Observe that x1;w a X and that

fu a X : ~JJðuÞ þ l~FFðuÞa rg ¼ fu a V : ~JJðuÞ þ l~FFðuÞa rgð10Þ

for all l > 0, r a R. Denote by J and F the restrictions to X of ~JJ and ~FF respec-
tively. We want to apply Theorem 2 considering X with the relative weak topol-
ogy. Clearly, in view of (10), (a1) holds. Concerning (b1), observe that for each
u a F�1ð��l; r�Þ, by (i), one has

njjujjp a r

and so

sup
W

juja c
�r
n

�1=p
;

56 b. ricceri



the above inequalities being strict if FðuÞ < r. Then, from this and from (iii), it
follows that

Jðx1Þ ¼ inf
F�1ð��l;r�Þ

J

and

Fðx1Þ < r

as well. Consequently, (b1) is satisfied taking u1 ¼ x1 and u2 ¼ w. So, the conclu-
sion follows directly from Theorem 2. r

Remark 5. We are not aware of known results close enough to Theorem 5 in
order to do a proper comparison.
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