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Partial Di¤erential Equations — The ‘‘ergodic limit’’ for a viscous Hamilton-
Jacobi equation with Dirichlet conditions, by Alessio Porretta.

Dedicated to the memory of Renato Caccioppoli

Abstract. — We study the limit, when l tends to 0, of the solutions ul of the Dirichlet problem

�Duþ luþ j‘ujq ¼ f ðxÞ in W;

u ¼ 0 on qW;

�

when 1 < qa 2 and f is bounded. In case the limit problem does not have any solution, we prove

that ul has a complete blow-up (ul ! �l) and its behaviour is described in terms of the corre-
sponding ergodic problem with state constraint conditions. In particular, lul converges to the ergo-

dic constant c0 and ul þ jjuljjl converges to the boundary blow-up solution v0 of the ergodic prob-
lem associated to the stochastic optimal control with state constraint.
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1. Introduction and statement of the results

Let WHRN be a C2, bounded domain, and let f belong to LlðWÞ. It is well-
known that, when q > 1, the problem

�Djþ j‘jjq ¼ f ðxÞ in W;

j ¼ 0 on qW;

�
ð1:1Þ

may have no solution. One way to realize that is to look at the case q ¼ 2.
Through a standard change of unknown, that case can be reduced to a linear
problem, and the existence of solutions is related to eigenvalues. Therefore there
are simple situations when existence fails, as in the following classical example
suggested in [17].

Example 1.1. When q ¼ 2, j a H 1
0 ðWÞBLlðWÞ is a solution of (1.1) if and only

if c ¼ e�j � 1 is a solution of

�Dcþ f ðxÞðcþ 1Þ ¼ 0 in W;

c a H 1
0 ðWÞBLlðWÞ:

�
ð1:2Þ



If we have f ðxÞa�l1ð�D;WÞ ( first eigenvalue of �D in W), then j is negative and
then c would be a positive supersolution of �Dc ¼ l1cþ l1, which is impossible.

We will come back later (see Remark 1.1) to this special case q ¼ 2 to give a
more precise statement whether there exist solutions or not (see also [1], [3], [17]).

However, even if the case q ¼ 2 is simpler because of the change of unknown,
the possible failure of existence of solutions of (1.1) is a general fact due to the
superlinear character of the lower order term. As soon as q > 1, it is necessary
that f satisfies some smallness condition in order that problem (1.1) may admit
a solution, see e.g. [2], [16]. In this last paper, as well as in [3], [12], [13], [15], [17],
[20], the existence is proved when f is su‰ciently small in some suitable norm.

On the other hand, for any l > 0 and qa 2 there exists a solution to the
problem

�Duþ luþ j‘ujq ¼ f ðxÞ in W;

u a H 1
0 ðWÞBLlðWÞ;

�
ð1:3Þ

by classical results (see e.g. [4], [11], [17]). It is then a natural question to under-
stand what happens to the solutions of (1.3) when l goes to zero, especially when
the limit problem does not have any solution.

The aim of this paper is to answer this question and in particular to describe
the possibly singular behaviour of ul in case there is no solution of (1.1). It is a
minor problem in which sense a solution of (1.1) should be considered and here
we deal with weak solutions belonging to H 1

0 ðWÞBLlðWÞ. Moreover, we assume
in all the paper that WHRN is a bounded connected open set of class C2. The
main result that we prove is the following

Theorem 1.1. Assume that 1 < qa 2, and f a LlðWÞ. For l > 0, let ul be the
solution of (1.3). Then we have

(i) If problem (1.1) has a solution j a H 1
0 ðWÞBLlðWÞ, then ul ! j in

H 1
0 ðWÞBLlðWÞ as l ! 0.

(ii) If problem (1.1) has no solution j a H 1
0 ðWÞBLlðWÞ, then we have, as l ! 0,

ulðxÞ ! �l for every x a W;

lul ! c0 locally uniformly in W;

where c0 is the unique constant such that the problem

�Dvþ j‘vjq þ c0 ¼ f ðxÞ in W;

lim
x!qW

vðxÞ ¼ þl

(
ð1:4Þ

admits a solution v a W
2;p
loc ðWÞ for every p < l.

Moreover, if we set vl ¼ ul þ jjuljjl, then

vl ! v0 locally uniformly in W;
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where v0 is the unique solution of (1.4) (in W
2;p
loc ðWÞ Ep < l) such that

min
W

v0ðxÞ ¼ 0.

The above result shows that when there is no solution of (1.1) then ul blows-
up completely and its behaviour is described in terms of the couple ðc0; v0Þ solu-
tion of (1.4). This latter problem is usually called an ergodic problem: the un-
knowns are both the constant c0 and the solution v. As far as this problem is
concerned, we rely on a fundamental result proved by J. M. Lasry and P. L.
Lions:

Thm ([18], Theorem VI.I ): Let 1 < qa 2 and f a LlðWÞ. There exists a
unique constant c0 such that (1.4) has a solution v a W

2;p
loc ðWÞ ðEp < lÞ; moreover,

v is unique up to an additive constant.

The full comprehension of Theorem 1.1, as well as of the role of problem
(1.4), goes back to the stochastic interpretation of (1.3). Let us recall that if Xt is
a stochastic process solution of the SDE

dXt ¼ aðXtÞ dtþ
ffiffiffi
2

p
dBt; X0 ¼ x a W;

where Bt is a standard Brownian motion, then, thanks to the dynamic program-
ming principle, the solution ul of (1.3) can be represented as the value function of
an optimal control problem:

ulðxÞ ¼ inf
a AA

Ex

Z tx

0

f ðXtÞ þ
q� 1

qq=ðq�1Þ jaðXtÞjq=ðq�1Þ
� �

e�lt dt

� �
;ð1:5Þ

where Ex is the conditional expectation with respect to X0 ¼ x, tx is the first exit
time from W and að�Þ belongs to a set A of admissible control laws (or, otherwise
said, at ¼ aðXtÞ is an admissible control).

The limit of lul when l ! 0 is usually called the ergodic limit, as it is related
to the properties of ergodicity of the process Xt and to the large time behaviour
of the corresponding evolution problem (see e.g. [5], [9], [10]). This is well known
and extensively studied in case of periodic boundary conditions or in the whole
space RN , which of course are natural settings to study ergodicity.

In case of the exit time problem (corresponding to Dirichlet boundary condi-
tions), formula (1.5) suggests that when l ! 0 the function ul should remain
bounded unless the exit time tx ! þl. This case corresponds to the so-called
state constraint problem. In the case of Brownian motion, the state constraint
problem was studied by J. M. Lasry and P. L. Lions in [18], where in particular
they prove the above mentioned ergodic result, i.e. the existence and uniqueness
of the couple ðc0; vÞ solution of (1.4).

Therefore, in view of the stochastic interpretation of (1.3), there is no surprise
that the singular behaviour of ul is described by the couple ðc0; v0Þ of the state
constraint problem. Indeed, formula (1.5) suggests the following: when the func-
tion f is strongly negative inside W, then the minimizing control will tend to keep
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the process in the interior preventing it from reaching the boundary and this leads
the exit time problem to a state constraint condition.

From a purely PDE point of view, the behaviour described in (ii) of Theorem
1.1 is a consequence of interior gradient bounds; ‘ul remains uniformly bounded
in the interior independently of the boundary condition and of the Ll bound of
ul. This explains why lul converges to a constant. It is remarkable to note that
the existence of solutions of (1.1) depends itself on this constant, which is the
unique ergodic constant c0 of problem (1.4) (note that c0 depends on f ). Indeed,
we have

Proposition 1.1. Assume that 1 < qa 2, and f a LlðWÞ. Then problem (1.1)
has a solution j a H 1

0 ðWÞBLlðWÞ if and only if c0 > 0.
Moreover, in the case c0 > 0, j is the unique solution in H 1

0 ðWÞBLlðWÞ.

In Section 2 we give a proof of Proposition 1.1 which follows from the stabil-
ity result of Theorem 1.1. The same conclusion of Proposition 1.1 is proved in [8]
for viscosity solutions, using a slightly di¤erent argument. Let us stress that this
kind of result is strongly related to the basic principle (already stated in [19]) that
a solution of (1.1) exists if and only if there exists a subsolution and to the fact
that c0 ¼ supfc : bj : �Djþ j‘jjq þ ca f ðxÞg (see Corollary 2.2). It is not di‰-
cult from this characterization to recognize that c0 plays the role of an eigenvalue,
which is exactly the case when q ¼ 2.

Remark 1.1. In the case q ¼ 2 we have c0 ¼ l1ð�Dþ f ;WÞ, i.e. it turns out
that the ergodic constant is nothing but the first eigenvalue of the operator
�Dþ f . In particular, when q ¼ 2 it is easy to prove that there exists a solution
of (1.1) if and only if l1ð�Dþ f ;WÞ > 0, just by using the linear theory. Indeed,
if there exists j solution of (1.1), then ~cc ¼ e�j is a positive solution of

�D ~ccþ f ~cc ¼ 0;

and therefore 0a l1. On the other hand we cannot have l1 ¼ 0; otherwise this
means that the first positive eigenfunction c1 satisfies

�Dc1 þ f ðxÞc1 ¼ 0 in W;

c1 a H 1
0 ðWÞBLlðWÞ;

�

hence

Z
W

fc1 dx ¼
Z
W

qnc1 ds < 0. In particular f is not orthogonal to c1

and no solution can exist of (1.2). Therefore, if problem (1.1) has a solution
one has necessarily l1ð�Dþ f ;WÞ > 0. The converse is also obviously true; if
l1ð�Dþ f ;WÞ > 0 then c 7! �Dcþ fc defines a coercive bilinear form and a
solution of (1.2) exists by Lax-Milgram theorem. r

As a consequence of Proposition 1.1, we can rephrase the result of Theorem
1.1 in the following way.
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Corollary 1.1. Assume that 1 < qa 2, and f a LlðWÞ. Let ul be the solution
of (1.3), and c0 the ergodic constant of problem (1.4). Then we have

(i) If c0 > 0 then ul ! j in H 1
0 ðWÞBLlðWÞ as l ! 0, where j is the unique solu-

tion of (1.1) in H 1
0 ðWÞBLlðWÞ.

(ii) If c0 a 0, then we have, as l ! 0,

ulðxÞ ! �l for every x a W;

lul ! c0 locally uniformly in W;

and if we set vl ¼ ul þ jjuljjl then

vl ! v0 locally uniformly in W;

where v0 is the unique solution of (1.4) such that min
W

v0ðxÞ ¼ 0.

When f a W 1;lðWÞ, we also give estimates on the rate of convergence of lul
to c0, or equivalently, on the growth of ul � c0

l
. The expert reader will recognize

that this step is strictly related to the so-called corrector problem in homogeniza-
tion or to the large time profile of the solutions of the evolution problem. Indeed,
the following result follows the ideas introduced in [8] to estimate the blow-up
rate, when t ! þl, of the solutions of the evolution problem. It is interesting
to note how the blow-up rate changes in the borderline case c0 ¼ 0.

Theorem 1.2. Assume that 1 < qa 2, and f a W 1;lðWÞ. Let ul be the solution
of (1.3), and c0 the ergodic constant of problem (1.4). Then, for any compact set
KHW there exists a constant CK such that, as l ! 0:

(i) if c0 < 0 then

jjlul � c0jjLlðKÞ aCKl when 3
2 a qa 2

jjlul � c0jjLlðKÞ aCKl
ðq�1Þ=ð2�qÞ when 1 < q < 3

2

(
ð1:6Þ

(ii) if c0 ¼ 0 then

jjluljjLlðKÞ aCKljlog lj when q ¼ 2

jjluljjLlðKÞ aCKl
q�1 when 1 < q < 2

(
ð1:7Þ

Remark 1.2. If c0 > 0, then by Corollary 1.1 ul is bounded and converges to
the unique solution of (1.1), then of course lul ! 0 in this case and, trivially,
we have jjluljjLlðWÞ aCl.

Let us conclude this introduction with a few more comments. First of all, an
obvious remark is that the study of the limit of

�Duþ lu ¼ j‘ujq þ f ðxÞ in W;

u a H 1
0 ðWÞBLlðWÞ;

�

63the ‘‘ergodic limit’’ for a viscous hamilton-jacobi equation



is contained in the previous statements up to replacing u with �u. In this case, the
singular behaviour means that ulðxÞ ! þl everywhere.

We also stress that the above results still hold for any Dirichlet condition
u ¼ g on qW, at least if g is a continuous function. In this case, a suitable setting
seems to be that of viscosity solutions (see Theorem 2.1). On the other hand, the
extension of such results to more general f and/or to more general operators is
more delicate and will be dealt with in a next work. Of course, some of the above
results can be extended without problems to more general situations (e.g. inho-
mogeneous di¤usions), but a complete description as it is given in Theorem 1.1
is not obvious (unless for smooth di¤usions) and needs in any case a more general
version of the ergodic theorem of [18]. Actually, the aim of the present paper is
to make it completely clear what happens in the model case (i.e. for the Laplace
operator) in order to serve as a guideline for the study of more general situations.
Finally, let us point out that the present study is motivated and closely related to
the study of large time behaviour of solutions of the time-dependent version of
(1.1), which is treated in [8].

2. Proof of the results

2.1. Proof of Theorem 1.1 and Proposition 1.1

Let us recall that a comparison principle holds for weak subsolutions and super-
solutions belonging to H 1ðWÞBLlðWÞ of the problem

lv� Dvþ j‘vjq ¼ f ðxÞ in W;

v ¼ 0 on qW;

�

when l > 0 and f a LlðWÞ. We warn the reader that this is no longer true for
simply H 1

0 ðWÞ solutions, and we refer to [6], [7] for comparison principle and
uniqueness results for weak solutions. Such uniqueness results are more delicate
when l ¼ 0, but we will see later that the comparison principle holds in that case
too. Moreover, we stress that it is possible to use di¤erent formulations of such
problems (solutions in W 2;pðWÞ, or viscosity solutions), but clearly all formula-
tions ensuring the validity of weak maximum principle eventually coincide.

In particular, problem (1.3) admits a unique solution, which is actually more
regular and satisfies the following gradient bound, which is an essential tool in the
study of the ergodic limit.

Lemma 2.1. Let q > 1, and let ul a H 1
0 ðWÞBLlðWÞ be the solution of (1.3).

Then ul a W 2;pðWÞ for every p < l and we have, for every x a W,

j‘ulðxÞja
K

dðxÞ1=ðq�1Þ

where K depends only on jj f jjLlðWÞ, q, W, and dðxÞ denotes the distance of x from
the boundary.
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Proof. The uniqueness of ul implies that it coincides with the unique solution
in W 2;pðWÞ ðEp < lÞ, whose existence is proved e.g. in [4], [17]. Moreover, we
have ljjuljjl a jj f jjl by the weak maximum principle. Then we apply Theorem
IV.I in [18] to deduce the gradient bound. r

As a consequence of the above estimate we have the following

Proposition 2.1. Let ul be the solution of (1.3), and set

vl ¼ ul þ jjuljjl:

Then vl is bounded in W
1;l
loc ðWÞ.

Proof.

Step 1. We claim that for any y a ð0; 1Þ there exists d0, depending only on y, q,
W, jj f jjl such that, for every l > 0,

ulðxÞb�dðxÞy � sup
fdðxÞ¼d0g

u�l Ex : dðxÞa d0:ð2:1Þ

Indeed, take cðxÞ ¼ �dðxÞy, with y a ð0; 1Þ and d0 su‰ciently small so that dðxÞ
is smooth when dðxÞ < d0. Then

�Dcþ lcþ j‘cjq � f ðxÞ
¼ �yð1� yÞd y�2 þ yd y�1Dd � ld y þ yqdðy�1Þq � f ðxÞ
a�yd y�2½ð1� yÞ � dDd � yq�1d 2�qþyðq�1Þ� þ jj f jjl

Since 1 < qa 2, we have that c is a subsolution in the subset fx a W : dðxÞ < d0g,
for some d0 > 0 depending only on y, q, W, f . Since c� sup

fdðxÞ¼d0g
u�l is still a sub-

solution, we conclude by comparison that our claim holds true.
Step 2. First observe that ul is bounded from above; indeed, we have �Duþl a

j f ðxÞj, hence jjuþl jjla cjj f jjl. Therefore, we deduce from Step 1 that, for some
constant C0,

jjuljjl aC0 þ sup
fdðxÞbd0g

u�l

hence there exists xl such that dðxlÞb d0 such that

0a vlðxÞaC0 þ ulðxÞ � ulðxlÞ

Using Lemma 2.1 we deduce that vl is locally uniformly bounded. Since
‘vl ¼ ‘ul, again from Lemma 2.1 we deduce that j‘vlj is locally uniformly
bounded too, hence we conclude. r
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We are ready to prove our main result.

Proof of Theorem 1.1:

Proof of (i). We prove actually the following claim: if problem (1.1) admits
a subsolution in H 1

0 ðWÞBLlðWÞ, then a subsequence of ul converges in H 1
0 ðWÞB

LlðWÞ to a solution j of (1.1).
Indeed, assume that there exists a subsolution c a H 1

0 ðWÞBLlðWÞ of prob-
lem (1.1), then c� jjcjjl is a subsolution of (1.3). Since the comparison principle
holds in H 1

0 ðWÞBLlðWÞ, this implies that ul bc� jjcjjlb�2jjcjjl. On the
other hand since �Duþl a j f j, we have jjuþl jjla cjj f jjl, so that we conclude that
ul remains bounded in LlðWÞ. By standard results (see e.g. [11]), it follows that
ul is relatively compact in H 1

0 ðWÞ hence it converges, up to a subsequence, to a
function j a H 1

0 ðWÞBLlðWÞ solution of (1.1). Moreover, the convergence of
ul also holds in LlðWÞ, since the uniform bound of ul also implies that ul
is bounded in W 2;pðWÞ ðEp < lÞ by classical results (see e.g. [4], Proposition 2),
hence ul is relatively compact in LlðWÞ. In particular, we also deduce that j a
W 2;pðWÞ.

This proves our claim. To conclude the proof of part (i) we only need to know
that j is the unique solution of (1.1) in H 1

0 ðWÞBLlðWÞ, a fact that will be proved
in Proposition 1.1 below. The uniqueness of j implies that the whole sequence ul
converges.

Proof of (ii). First observe that, as l ! 0, we have that jjuljjl ! l; indeed,
any subsequence of fulg cannot be bounded otherwise (up to a new subsequence)
it would converge to a solution of (1.1), a fact which contradicts our assumption.
Moreover, since jjuþl jjl a cjj f jjl, this implies that we have, for l small enough
and converging to zero:

jjuljjl ¼ jju�l jjl ! l:

Let us recall that in consequence of maximum principle we also have

ljjuljjl a jj f jjl:ð2:2Þ

Define now vl ¼ ul þ jjuljjl, hence vl solves

�Dvl þ lvl þ j‘vljq ¼ f ðxÞ þ ljjuljjlð2:3Þ

which implies because of (2.2)

�Dvl þ lvl þ j‘vljq b�2jj f jjl:

Now let q < 2; in the domain fx a W : dðxÞ < d0g, consider the function c ¼
s
�
dðxÞ þ 1

n

��a �M, where

a ¼ 2� q

q� 1
; M ¼ s

�
d0 þ

1

n

	�a

þ sup
dðxÞ¼d0

vl
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and d0 is to be chosen (su‰ciently small so that dðxÞ is smooth in this domain).
Computing we have

�Dcþ lcþ j‘cjq ¼ as
�
dðxÞ þ 1

n

	�a�2
�
�ðaþ 1Þ þ

�
dðxÞ þ 1

n

	
Dd

þ ðasÞq�1
�
dðxÞ þ 1

n

	2þa�ðaþ1Þq
þ l

a

�
dðxÞ þ 1

n

	2�
� lM

where we used that j‘dðxÞj ¼ 1. The value of a ¼ 2�q

q�1 implies that 2þ a ¼
ðaþ 1Þq hence we get

�Dcþ lcþ j‘cjq ¼ as
�
dðxÞ þ 1

n

	�a�2
�
�ðaþ 1Þ þ

�
dðxÞ þ 1

n

	
Dd

þ ðasÞq�1 þ l

a

�
dðxÞ þ 1

n

	2�
� lM

Choosing s such that ðasÞq�1 < aþ 1, then d0 and n su‰ciently small, we obtain
that

�Dcþ lcþ j‘cjq a�2jj f jjl

in fdðxÞ < d0g. The value of M implies that ca vl on fdðxÞ ¼ d0g, and, if l is
small, we have vl bc on qW as well. We conclude that

vl bc in fdðxÞ < d0g:

Observe that M depends on l (and n) but is uniformly bounded, since vl is locally
uniformly bounded, hence there exists some constant K such that

vl b s
�
dðxÞ þ 1

n

	�a

� K in fdðxÞ < d0g:

Now, by Proposition 2.1, there exists a subsequence of l (not relabeled) and a
(nonnegative) function v0 a W

1;l
loc ðWÞ such that vl ! v0 locally uniformly in W

as l ! 0. We deduce that

v0 b s
�
dðxÞ þ 1

n

	�a

� K in fdðxÞ < d0g;

which implies, after letting n ! l, that v0ðxÞ ! þl as x ! qW. When q ¼ 2,
the same conclusion can be obtained using c ¼ �s log

�
dðxÞ þ 1

n

�
�M as a com-

parison function.
Moreover, by elliptic regularity, vl is bounded in W

2;p
loc ðWÞ, and standard com-

pactness results allow us to pass to the limit in the equation (2.3) satisfied by vl.
Finally, in view of (2.2) we have that, still up to subsequences,

ljjuljjl ! �c0
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for some constant c0 a 0, and we conclude that v0 satisfies (1.4). Note also that
lul itself converges to c0 locally uniformly, since lul ¼ lvl � ljjuljjl and lvl ! 0
because vl is locally bounded. Moreover, since ulðxÞ ¼ vlðxÞ � jjuljjl, we have
ulðxÞ ! �l for every x a W.

Finally, we claim that min
W

v0 ¼ 0. Indeed, since, for l small,

vl ¼ ul �min
W

ul

we clearly have min
W

vlðxÞ ¼ 0 ¼ vlðxlÞ for some point xl a W such that min
W

ul ¼
ulðxlÞ. If fxlg remains in a compact subset of W, we deduce that min

W
v0 ¼ 0 as

a consequence of the local uniform convergence of vl. Otherwise, (always up to
subsequences) we have dðxlÞ ! 0; however, from (2.1) this means that there exist
yl such that dðylÞ ¼ d0 and

ulðxlÞb�dðxlÞy � u�l ðylÞ:

Since ulðxÞ ! �l everywhere (and locally uniformly), we deduce that

vlðylÞ ¼ ulðylÞ � ulðxlÞa ulðylÞ þ dðxlÞy þ u�l ðylÞ ¼ dðxlÞy ! 0

which means that there exists a point y0 such that dðy0Þ ¼ d0 and v0ðy0Þ ¼ 0
(since v0 is nonnegative). This proves that min

W
v0 ¼ 0.

To conclude, we use Theorem VI.I in [18] which says that c0 is unique (i.e. the
unique constant such that (1.4) may have solution) and that problem (1.4) has a
unique solution up to addition of a constant. In particular, we deduce that v0 is
the unique solution such that min

W
v0 ¼ 0. The uniqueness of c0 and v0 implies that

the whole sequences vl and lul converge to v0 and to c0 respectively. r

Remark 2.1. In the proof of part (i) we actually proved that the existence of
a subsolution of (1.1) in H 1

0 ðWÞBLlðWÞ implies the existence of a solution. In
Proposition 1.1 we complete this argument showing that this also implies the
uniqueness in H 1

0 ðWÞBLlðWÞ.

Remark 2.2. With the same arguments as above, in the case (ii) of Theorem 1.1
we can prove that if we fix any point x0 a W, then ulðxÞ � ulðx0Þ converges to the
unique solution of (1.4) such that vðx0Þ ¼ 0. This is also a typical statement for
the ergodic limit. However, the convergence of ul þ jjuljjl seems more interesting
here since it better shows that the blow-up propagates from the interior.

We end this subsection by giving a simple proof of Proposition 1.1 in conse-
quence of the study of the ergodic limit. A di¤erent proof is given in [8], in the
framework of viscosity solutions.

Proof of Proposition 1.1:
Assume that there exists a solution j a H 1

0 ðWÞBLlðWÞ of (1.1), and let v be a
solution of (1.4). Assume by contradiction that c0 a 0, then v is a supersolution of
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(1.1) and j� v solves in the weak sense

�Dðj� vÞ þ qj‘vjq�2‘v‘ðj� vÞa 0:

Since v ! þl on the boundary, j� v has a maximum inside W, which we can
assume to be positive replacing v with v� k for a constant k. Using that v a
W 1;l

loc ðWÞ, we can apply the strong maximum principle (see [14], Theorem 8.19)
and we get that j� v is a constant, which is impossible. Therefore we must have
c0 > 0.

Conversely, assume that c0 > 0. We are going to prove not only that problem
(1.1) has a solution but actually that there exists a solution of

�Duþ j‘ujq ¼ f ðxÞð1þ dÞ in W;

u a H 1
0 ðWÞBLlðWÞ;

�
ð2:4Þ

for any d such that 0a d < c0
jj f jjl

. Indeed, for lb 0 consider the problem

�Dul þ lul þ j‘uljq ¼ f ðxÞ � djj f jjl in W;

ul ¼ 0 on qW:

�
ð2:5Þ

Assume that there is no solution when l ¼ 0: then applying Theorem 1.1 we
deduce that ulðxÞ ! �l for every x a W and that lul ! cd locally uniformly,
where cd is the unique constant such that the problem

�Dvþ j‘vjq þ cd ¼ f ðxÞ � djj f jjl in W;

v ! þl as x ! qW

�

admits a solution. The uniqueness of the ergodic constant implies cd ¼
c0 � djj f jjl. On the other hand, since ul ! �l, we deduce that cd a 0, hence
c0 a djj f jjl, which is not possible as soon as d < c0

jj f jjl
. Therefore, we proved

that there exists a solution to problem (2.5) when l ¼ 0, for any d a ½0; c0
jj f jjl

Þ.
Taking d ¼ 0, this already proves that (1.1) admits a solution. For d > 0, the so-
lution of (2.5) with l ¼ 0 is clearly a subsolution of problem (2.4), and then we
can deduce (see Remark 2.1) that problem (2.4) also admits a solution.

Observe now that, defining a new function z ¼ u
1þd

, the existence of a solution
of (2.4) implies the existence of a solution of problem

�Dzþ ð1þ mÞj‘zjq ¼ f ðxÞ in W;

z a H 1
0 ðWÞBLlðWÞ;

�

for m positive and su‰ciently small. By Theorem 2.5 in [7] we conclude that the
comparison principle holds for problem (1.1) in H 1

0 ðWÞBLlðWÞ and in particu-
lar that there exists a unique solution j of (1.1) in H 1

0 ðWÞBLlðWÞ. r

Note that, in the above analysis, we proved that c0 > 0 is necessary and suf-
ficient for the existence of weak subsolutions to problem (1.1), and by solving
problem (2.5) with l ¼ 0 we showed in that case the existence of a strict sub-
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solution. Applying Theorem 2.5 in [7], this implies that the comparison principle
holds for problem (1.1) in H 1

0 ðWÞBLlðWÞ. It could be useful to state explicitly
this result.

Corollary 2.1. Let 1 < qa 2 and f a LlðWÞ. If u1; u2 a H 1ðWÞBLlðWÞ are
respectively a weak subsolution and supersolution of problem (1.1), then we have
u1 a u2 a.e. in W.

We state now another straightforward consequence of Proposition 1.1, which
gives a characterization of the ergodic constant c0.

Corollary 2.2. Let 1 < qa 2, f a LlðWÞ, and let c0 be the ergodic constant
(i.e. the unique constant such that (1.4) has a solution). Then we have

c0 ¼ supfc a R : bj a H 1ðWÞBLlðWÞ such that �Djþ j‘jjq þ ca f g
¼ supfc a R : bj a W 2;pðWÞ ðEp < lÞ such that �Djþ j‘jjq þ ca f g
¼ supfc a R : bj a CðWÞ such that �Djþ j‘jjq þ ca f in viscosity senseg

and moreover c0 is not attained.

Proof. Since the ergodic constant corresponding to f � c is c0 � c, we proved
in Proposition 1.1 that there exists a subsolution (or a solution) of

�Djþ j‘jjq þ c ¼ f ðxÞ in W;

j a H 1
0 ðWÞBLlðWÞ

�

if and only if c0 � c > 0, hence we conclude. The equivalence between all di¤er-
ent formulations is just a consequence of the comparison principle. The charac-
terization of c0 in terms of viscosity solutions is also proved in [8]. r

2.2. Rate of Convergence and Proof of Theorem 1.2

We give here an error estimate for the convergence of lul to c0. This will follow
from the next lemma, where we use the same ideas introduced in [8] for the
asymptotic behaviour of the evolution problem. Let us recall that we denote by
v0 the unique solution of (1.4) such that min

W
v0 ¼ 0.

Lemma 2.2. Let f a W 1;lðWÞ, and let ul be the solution of (1.3). Then we have:

(i) If c0 < 0, there exists a constant M > 0 such that

ul � c0
l
b gðlÞv0ðxþ mðlÞnðxÞÞ �M if 3

2 a qa 2;

ul � c0
l
b gðlÞv0ðxþ mðlÞnðxÞÞ �Ml�ð3�2qÞ=ð2�qÞ if 1 < q < 3

2

(
ð2:6Þ

where nðxÞ is a vector field such that nðxÞ � ‘dðxÞ > 0, and where gðlÞ ! 1,
mðlÞ ! 0 as l ! 0.
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(ii) If c0 ¼ 0, there exists a constant M > 0 such that

ul b gðlÞv0ðxþ mðlÞnðxÞÞ �Mjlog lj if q ¼ 2;

ul b gðlÞv0ðxþ mðlÞnðxÞÞ �Ml�ð2�qÞ if 1 < q < 2

�
ð2:7Þ

where gðlÞ ! 1, mðlÞ ! 0 as l ! 0.

Proof. Consider here dðxÞ to be the signed distance function, which is negative

when x B W. Let us fix a d > 0 such that dðxÞ is C2 in fx a RN : jdðxÞj < dg and

take a smooth function ~ddðxÞ such that ~ddðxÞ ¼ dðxÞ for jdðxÞj < d
2 and

~ddðxÞ is con-
stant for jdðxÞj > d. Consider now the vector field

nkðxÞ ¼
Z
RN

‘ ~ddðyÞrkðx� yÞ dy

where rk is a standard mollifying kernel (supported in the ball B1=kð0Þ). Of course
we have nk a Cl and, using the properties of dðxÞ and in particular that d a C2,
we have

jnkja 1; jDnkja jjD2djjl; jD2nkja kjjD2djjl:ð2:8Þ

Moreover nk is clearly an approximation of ‘ ~ddðxÞ, in particular

jnkðxÞ � ‘ ~ddðxÞja jjD2djjl
k

:ð2:9Þ

Then we consider the function

vðxÞ ¼ gðv0ðxþ mnkðxÞÞ � LÞ

where g; m a ð0; 1Þ will be fixed later suitably depending on l, and where L is an
additive constant to be chosen. Observe that since

dðxþ mnkðxÞÞ ¼ dðxÞ þ m‘dðxÞ � nkðxÞ þOðm2Þ

if we choose kb 2jjD2djjl we get using (2.9)

dðxÞ þ 1

2
mþOðm2Þa dðxþ mnkðxÞÞa dðxÞ þ 3

2
mþOðm2Þ

for any x: dðxÞa d
2 . In particular, we can take m small enough in a way that

xþ mnkðxÞ a W for every x a W. In the following, the value of k is fixed e.g. as
2jjD2djjl.

We compute now the equation for v. Since ‘v ¼ gðI þ mDnkðxÞÞ‘v0ðxþ
mnkðxÞÞ, using (2.8), and setting C0 ¼ jjD2djjl, we have
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�Dvþ j‘vjq a�gDv0 þ gqð1þ mC0Þqj‘v0jq

þ gmjDnkðxÞjð2þ mC0ÞjD2v0j þ gm trðD2nk‘v0Þ
a�gDv0 þ gqð1þ mC0Þqj‘v0jq

þ gmjDnkðxÞjð2þ mC0ÞjD2v0j þ gmkC0j‘v0j

where the argument of v0 is xþ mnkðxÞ. Since v0 is a solution of (1.4) we obtain

�Dvþ j‘vjq a gð f � c0Þ � gj‘v0jq þ gqð1þ mC0Þqj‘v0jq

þ gmjDnkðxÞjð2þ mC0ÞjD2v0j þ gmkC0j‘v0j

hence

lv� Dvþ j‘vjqð2:10Þ
a gð f � c0Þ � gj‘v0jq þ gqð1þ mC0Þqj‘v0jq

þ gmjDnkðxÞjð2þ mC0ÞjD2v0j þ gmkC0j‘v0j þ lgðv0 � LÞ

Let us now use the asymptotic behaviour near the boundary of the function v0;
indeed, from [18] we know that

v0ðxÞP�log dðxÞ; if q ¼ 2;

v0ðxÞPC �dðxÞ�a; if 1 < q < 2;

�
ð2:11Þ

where a ¼ 2�q

q�1 and C � is a given positive constant. Moreover, from the asymp-

totic behaviour of ‘v0 given in [21], we can deduce (see also [8], Lemma 2.1) that

jD2v0jaKj‘v0jqð2:12Þ

in some neighborhood of qW and for some constant K > 0, while

jv0jaKðj‘v0j þ 1Þ in W:ð2:13Þ

Since nkðxÞ is supported in dðxÞ < dþ 1
k


 �
, without loss of generality we can sup-

pose that (2.12) holds true in the support of nkðxÞ. Therefore we can use (2.12)
and also (2.13) in the inequality (2.10), and we end up with

lv� Dvþ j‘vjq

a gð f � c0Þ � g½1� gq�1ð1þ mC0Þq � KmjDnkðxÞjð2þ mC0Þ�j‘v0jq

þ gmkC0j‘v0j þ lgðK j‘v0j þ K � LÞ

hence (using also (2.8)) there exists a constant C1, independent on g and m, such
that

lv� Dvþ j‘vjq a gð f � c0Þ � gð1� gq�1 � C1mÞj‘v0jq

þ gmkC0j‘v0j þ lgðK j‘v0j þ K � LÞ:
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Choosing L > K and using Young’s inequality we obtain,

lv� Dvþ j‘vjq a gð f � c0Þ � g
�1� gq�1

2
� C1m

	
j‘v0jq

þ Cgð1� gq�1Þ
� m

1� gq�1

	q=ðq�1Þ

þ Cgð1� gq�1Þ
� l

1� gq�1

	q=ðq�1Þ

for some constant C > 0. Moreover, since f is Lipschitz and jnkja 1 we have

gð f ðxþ mnkðxÞÞ � c0Þa f ðxÞ � c0 þ ð1� gÞjj f � c0jjl þ mjj‘f jjl

hence

lv� Dvþ j‘vjq a ð f � c0Þ þ ð1� gÞjj f � c0jjl þ mjj‘f jjl

� g
�1� gq�1

2
� C1m

	
j‘v0jq

þ Cgð1� gq�1Þ
� m

1� gq�1

	q=ðq�1Þ
þ
� l

1� gq�1

	q=ðq�1Þ
� �

Choose now g such that

1� gq�1 ¼ maxðð2C1 þ 1Þm; lÞ:ð2:14Þ

Note that 0 < g < 1 as soon as ð2C1 þ 1Þm < 1 and l < 1. Then we deduce

lv� Dvþ j‘vjq a ð f � c0Þ þ ð1� gÞjj f � c0jjl þ mjj‘f jjl þ 2Cð1� gq�1Þ

and since ma ð1� gq�1Þa ð1� gÞ we get

lv� Dvþ j‘vjq a ð f � c0Þ þ ~KKð1� gÞð2:15Þ

where ~KK ¼ jj f � c0jjl þ jj‘f jjl þ 2C. In particular, we have obtained that

vþ c0
l
� ~KK

ð1�gÞ
l

is a subsolution of the same equation of ul.
Moreover, for every x a qW we have

dðxþ mnkðxÞÞb
1

2
mþOðm2Þ;

hence, using (2.11), we deduce that there exists a constant K � such that

v0ðxþ mnkðxÞÞaK �ðm�a þ 1Þ Ex a qW

when a > 0 (i.e. q < 2). In particular we deduce, choosing L > K �, that
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vðxÞaK �m�a Ex a qW:ð2:16Þ

When q ¼ 2 we have

v0ðxþ mnkðxÞÞa�log mþ K �

and this time we have va�log m for L > K �.
We distinguish now two situations:

(i) if c0 < 0 and q < 2 we fix m so that

K �m�a ¼ � c0

l
:

Then (2.16) implies that vþ c0
l
� ~KK

ð1�gÞ
l

a 0 on the boundary, and then it is a
subsolution of problem (1.3) and by comparison we deduce that

ulðxÞb gðv0ðxþ mnkðxÞÞ � LÞ þ c0

l
� ~KK

ð1� gÞ
l

ð2:17Þ

where m ¼ Oðl1=aÞ and consequently, from (2.14), we have

1� g ¼
OðlÞ if aa 1

Oðl1=aÞ if a > 1

�

Recalling the value of a ¼ 2�q

q�1 we obtain (2.6) from (2.17). When q ¼ 2 we fix
m so that �log m ¼ � c0

l
, in a way that vþ c0

l
a 0 on the boundary; since this

implies m ¼ oðlÞ, by (2.14) we have 1� g ¼ OðlÞ and the conclusion follows
from (2.17).

(ii) If c0 ¼ 0, and if q < 2, then we fix m so that

K �m�a ¼
~KKð2C1 þ 1Þm

l
;

which means m ¼
�

K �

~KKð2C1þ1Þ l
�1=ð1þaÞ

. Since a > 0 this implies that l ¼ oðmÞ,
and consequently, from (2.14), we get

1� gq�1 ¼ ð2C1 þ 1Þm;

hence K �m�a ¼ ~KK
ð1�gq�1Þ

l
a ~KK

ð1�gÞ
l

. We deduce from (2.16) that v� ~KK
ð1�gÞ
l

a 0 on the boundary, and since v� ~KK
ð1�gÞ
l

is a subsolution, we conclude
again by comparison that (2.17) holds true, where now c0 ¼ 0 and

1� g ¼ Oðl1=ð1þaÞÞ

Recalling the value of a we get (2.7). If q ¼ 2, now we fix m by the implicit
relation
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�log m ¼
~KKð2C1 þ 1Þm

l
;

which makes sense when l, m are small. This implies l ¼ oðmÞ, hence 1� gq�1

¼ ð2C1 þ 1Þm and the above relation gives as before that v� ~KK
ð1�gÞ
l

a 0 on

the boundary. We conclude again that ub vðxÞ � ~KK
ð1�gÞ
l

, and since
ð1�gÞ
l

¼
O
�m
l

�
¼ Oðjlog ljÞ, we get (2.7). r

We deduce from the above lemma the estimate for the corrector term ul � c0
l

and therefore the conclusion of Theorem 1.2.

Corollary 2.3. Assume that 1 < qa 2, and f a W 1;lðWÞ. Let ul be the solu-
tion of (1.3), and c0 the ergodic constant of problem (1.4). Then we have

(i) If c0 < 0 then

ul � c0
l
¼ Oð1Þ when 3

2 a qa 2

ul � c0
l
¼ Oðl�ð3�2qÞ=ð2�qÞÞ when 1 < q < 3

2

(
ð2:18Þ

(ii) If c0 ¼ 0 then

ul ¼ Oðjlog ljÞ when q ¼ 2

ul ¼ Oðl�ð2�qÞÞ when 1 < q < 2

�
ð2:19Þ

where the above bounds are to be meant as locally uniform.

In particular, the conclusions of Theorem 1.2 hold true.

Proof. The function vl ¼ ul � c0
l
solves

lvl � Dvl þ j‘vljq þ c0 ¼ f ðxÞ in W;

vl ¼ � c0
l

on qW:

�

Since v0 b 0, and since v0 ! þl on the boundary, we have that v0 is a super-
solution of the same problem, hence we deduce that ul � c0

l
a v0. Using Lemma

2.2 for the estimate from below we conclude the local uniform bounds stated in
(2.18) and (2.19). r

Remark 2.3. The error estimates of Corollary 2.3 (or Theorem 1.2) are optimal.
If either c0 ¼ 0 or c0 < 0 and q < 3

2 , it is possible that ul � c0
l
! �l locally uni-

formly with the rate given in (2.18) or (2.19). Such type of behaviours can be proved
e.g. in star-shaped domains in case that f ðxÞ � c0 < �d < 0 for some constant d,
a situation which can actually occurr. We refer the reader to [8] where similar ex-
amples are constructed for the solutions of evolution problems: the same construc-
tion would apply here to show the optimality of the previous bounds.
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2.3. General Dirichlet Conditions

The same results hold true for a nonhomogeneous Dirichlet condition, i.e. for the
problem

�Djþ j‘jjq ¼ f ðxÞ in W;

j ¼ g on qW;

�
ð2:20Þ

where g a CðqWÞ. In such a situation, it seems suitable to consider viscosity solu-
tions (since g may not be the trace of a H 1 function). It follows from [8] that this
problem has a viscosity solution if and only if c0 > 0 (see also Corollary 2.2). Ob-
serve that the constant c0 is independent from the Dirichlet data. Actually, the
same result of Theorem 1.1 holds true provided one considers simply viscosity so-
lutions. We obtain then the following result

Theorem 2.1. Assume that 1 < qa 2, and f a LlðWÞ. For l > 0, let ul be the
viscosity solution of

lul � Dul þ j‘uljq ¼ f ðxÞ in W;

ul ¼ g on qW:

�
ð2:21Þ

Then we have

(i) If problem (2.20) has a viscosity solution j, then ul ! j uniformly as l ! 0.
(ii) If problem (2.20) has no viscosity solution, then we have, as l ! 0,

ulðxÞ ! �l for every x a W;

lul ! c0 locally uniformly in W;

ul þ jjuljjl ! v0 locally uniformly in W;

where c0 is the unique constant such that problem (1.4) has a solution and v0 is
the unique solution of (1.4) (in W

2;p
loc ðWÞ Ep < l) such that min

W
v0ðxÞ ¼ 0.

Proof. The proof follows the same steps as Theorem 1.1. Since ljjuljjla

jj f jjl þ ljjgjjl, the interior gradient bound of Lemma 2.1 holds true; note in par-
ticular that the sequence ul locally belongs to W 2;p for any p < l. If problem
(2.20) admits a viscosity solution (or even merely a subsolution), using the com-
parison principle for viscosity solutions one has that ul remains uniformly
bounded. Thanks to standard stability results, one can conclude that (a subse-
quence of ) ul converges towards a viscosity solution of (2.20). In addition ul
will be locally bounded in W 2;p by elliptic regularity. The uniqueness of viscosity
solutions of (2.20) implies the convergence of the whole sequence.

If problem (2.20) does not have a viscosity solution, then jjuljjl ! þl. Prop-
osition 2.1 continues to hold with minor changes, in particular (2.1) is replaced by

ulðxÞb�dðxÞy � jjgjjl � sup
fdðxÞ¼d0g

u�l Ex : dðxÞa d0;ð2:22Þ
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which holds true for any d0 small enough (only depending on y, f , q, W). As in
Theorem 1.1 ul þ jjuljjl can be proved to be locally compact and converges to a
solution v0 of (1.4). In order to prove that min

W
v0 ¼ 0, one proceeds as in Theo-

rem 1.1 using now (2.22) instead of (2.1) to deduce that the minimum points xl of
ul cannot go to the boundary. r

Finally, let us observe that the error estimates of Theorem 1.2 hold for the so-
lutions of (2.21) as well, and can be proved in exactly the same way.
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