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Partial Differential Equations — The “ergodic limit” for a viscous Hamilton-
Jacobi equation with Dirichlet conditions, by ALESSIO PORRETTA.

Dedicated to the memory of Renato Caccioppoli

ABSTRACT. — We study the limit, when A tends to 0, of the solutions u, of the Dirichlet problem
{fAu+/1u+\Vu|q:f(x) in Q,
u=20 on 0Q,

when 1 < ¢ <2 and f is bounded. In case the limit problem does not have any solution, we prove
that u; has a complete blow-up (1, — —o0) and its behaviour is described in terms of the corre-
sponding ergodic problem with state constraint conditions. In particular, Au; converges to the ergo-
dic constant ¢y and u; + |u;|,, converges to the boundary blow-up solution vy of the ergodic prob-
lem associated to the stochastic optimal control with state constraint.

KEey worDps:  Ergodic limit, blow-up, viscous Hamilton—Jacobi equations.

AMS SuBJECT CLASSIFICATION:  35J60 (35J25, 35B30)

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let Q = RY be a C?, bounded domain, and let f belong to L= (Q). It is well-
known that, when ¢ > 1, the problem

(1.1) {—A¢+|Vsolq=f(x) in Q,

=0 ondQ,

may have no solution. One way to realize that is to look at the case ¢ = 2.
Through a standard change of unknown, that case can be reduced to a linear
problem, and the existence of solutions is related to eigenvalues. Therefore there
are simple situations when existence fails, as in the following classical example
suggested in [17].

EXAMPLE 1.1. When q =2, ¢ € H}(Q) n L*(Q) is a solution of (1.1) if and only
if = e ? —1is a solution of

(1.2) {—A¢+f‘(x)(w+1) =0 inQ,

Y e H} (Q) N L™ (Q).
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If we have f(x) < —21(—A, Q) (first eigenvalue of —A in Q), then ¢ is negative and
then \y would be a positive supersolution of —Ay = Ay + Ay, which is impossible.

We will come back later (see Remark 1.1) to this special case ¢ = 2 to give a
more precise statement whether there exist solutions or not (see also [1], [3], [17]).
However, even if the case ¢ = 2 is simpler because of the change of unknown,
the possible failure of existence of solutions of (1.1) is a general fact due to the
superlinear character of the lower order term. As soon as g > 1, it is necessary
that f* satisfies some smallness condition in order that problem (1.1) may admit
a solution, see e.g. [2], [16]. In this last paper, as well as in [3], [12], [13], [15], [17],
[20], the existence is proved when f is sufficiently small in some suitable norm.
On the other hand, for any 4 > 0 and ¢ < 2 there exists a solution to the
problem
13 —Au+ Ju+ |Vul! = f(x) in Q,
) e @y L@

by classical results (see e.g. [4], [11], [17]). It is then a natural question to under-
stand what happens to the solutions of (1.3) when 1 goes to zero, especially when
the limit problem does not have any solution.

The aim of this paper is to answer this question and in particular to describe
the possibly singular behaviour of u; in case there is no solution of (1.1). It is a
minor problem in which sense a solution of (1.1) should be considered and here
we deal with weak solutions belonging to H} (Q) n L*(Q). Moreover, we assume
in all the paper that Q = R" is a bounded connected open set of class C>. The
main result that we prove is the following

THEOREM 1.1. Assume that 1 < q <2, and f € L*(Q). For 1 >0, let u; be the
solution of (1.3). Then we have

(i) If problem (1.1) has a solution ¢ e H}(Q)NL*(Q), then u;, — ¢ in
H Q)N L*(Q) as A — 0.
(ii) 1f problem (1.1) has no solution ¢ € H}(Q) n L*(Q), then we have, as /. — 0,
uy(x) — —oo  for every x € Q,

Auy — co locally uniformly in Q,

where ¢ is the unique constant such that the problem

{—Av+ [Vol"+ ¢y = f(x) inQ,

(1.4) ‘lirpQ v(x) =+

admits a solution v € W}f;p(Q) for every p < oo.
Moreover, if we set v) = u, + |u;|,, then

v, — v locally uniformly in Q,
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where vy is the unique solution of (1.4) (in Wlsép(Q) Vp < o) such that
rrgn vo(x) = 0.

The above result shows that when there is no solution of (1.1) then u; blows-
up completely and its behaviour is described in terms of the couple (¢, vy) solu-
tion of (1.4). This latter problem is usually called an ergodic problem: the un-
knowns are both the constant ¢y and the solution v. As far as this problem is
concerned, we rely on a fundamental result proved by J. M. Lasry and P. L.
Lions:

Thm ([18], Theorem VII): Let 1 <q <2 and f € L*(Q). There exists a
unique constant cy such that (1.4) has a solution v € Wliip (Q) (Vp < o0),; moreover,
v is unique up to an additive constant.

The full comprehension of Theorem 1.1, as well as of the role of problem
(1.4), goes back to the stochastic interpretation of (1.3). Let us recall that if X, is
a stochastic process solution of the SDE

dX, = a(X,)dt+V2dB;, Xp=x¢€Q,

where B, is a standard Brownian motion, then, thanks to the dynamic program-
ming principle, the solution u, of (1.3) can be represented as the value function of
an optimal control problem:

. Tx q—l _ )
(1.5) ua(x):;gg/Ex{/o {f(XMWm(X,)W ”}e ’dz},

where E, is the conditional expectation with respect to Xy = x, 7, is the first exit
time from Q and «a(-) belongs to a set .7 of admissible control laws (or, otherwise
said, @, = a(X,) is an admissible control).

The limit of Zu; when A — 0 is usually called the ergodic limit, as it is related
to the properties of ergodicity of the process X; and to the large time behaviour
of the corresponding evolution problem (see e.g. [5], [9], [10]). This is well known
and extensively studied in case of periodic boundary conditions or in the whole
space R, which of course are natural settings to study ergodicity.

In case of the exit time problem (corresponding to Dirichlet boundary condi-
tions), formula (1.5) suggests that when A — 0 the function u; should remain
bounded unless the exit time t, — +o00. This case corresponds to the so-called
state constraint problem. In the case of Brownian motion, the state constraint
problem was studied by J. M. Lasry and P. L. Lions in [18], where in particular
they prove the above mentioned ergodic result, i.e. the existence and uniqueness
of the couple (cy, v) solution of (1.4).

Therefore, in view of the stochastic interpretation of (1.3), there is no surprise
that the singular behaviour of u; is described by the couple (co,vy) of the state
constraint problem. Indeed, formula (1.5) suggests the following: when the func-
tion f is strongly negative inside Q, then the minimizing control will tend to keep



62 A. PORRETTA

the process in the interior preventing it from reaching the boundary and this leads
the exit time problem to a state constraint condition.

From a purely PDE point of view, the behaviour described in (ii) of Theorem
1.1 is a consequence of interior gradient bounds; Vu; remains uniformly bounded
in the interior independently of the boundary condition and of the L* bound of
uy. This explains why Au, converges to a constant. It is remarkable to note that
the existence of solutions of (1.1) depends itself on this constant, which is the
unique ergodic constant ¢y of problem (1.4) (note that ¢y depends on f). Indeed,
we have

ProPOSITION 1.1. Assume that 1 < g <2, and f € L*(Q). Then problem (1.1)
has a solution ¢ € H}(Q) n L*(Q) if and only if ¢y > 0.
Moreover, in the case co > 0, ¢ is the unique solution in HJ(Q) n L (Q).

In Section 2 we give a proof of Proposition 1.1 which follows from the stabil-
ity result of Theorem 1.1. The same conclusion of Proposition 1.1 is proved in [§]
for viscosity solutions, using a slightly different argument. Let us stress that this
kind of result is strongly related to the basic principle (already stated in [19]) that
a solution of (1.1) exists if and only if there exists a subsolution and to the fact
that ¢o = sup{c:dp: —Ap + [Vo|? + ¢ < f(x)} (see Corollary 2.2). It is not diffi-
cult from this characterization to recognize that ¢y plays the role of an eigenvalue,
which is exactly the case when ¢ = 2.

REMARK 1.1. In the case ¢ =2 we have ¢y = 41 (—A+ f,Q), i.e. it turns out
that the ergodic constant is nothing but the first eigenvalue of the operator
—A + f. In particular, when ¢ = 2 it is easy to prove that there exists a solution
of (1.1) if and only if A;(—A + f,Q) > 0, just by using the linear theory. Indeed,
if there exists ¢ solution of (1.1), then ¥y = ¢~ 7 is a positive solution of

and therefore 0 < A;. On the other hand we cannot have /; = 0; otherwise this
means that the first positive eigenfunction y, satisfies

—Apy +f(x)Y; =0 inQ,
{% € Hy(Q) N L*(Q),

hence / S dx = / O do < 0. In particular f is not orthogonal to y,
Q Q

and no solution can exist of (1.2). Therefore, if problem (1.1) has a solution
one has necessarily 1;(—A + f,Q) > 0. The converse is also obviously true; if
li(=A+ f,Q) > 0 then  — —Ay + f defines a coercive bilinear form and a
solution of (1.2) exists by Lax-Milgram theorem. 0

As a consequence of Proposition 1.1, we can rephrase the result of Theorem
1.1 in the following way.
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COROLLARY 1.1. Assume that 1 < q <2, and f € L*(Q). Let u; be the solution
of (1.3), and ¢ the ergodic constant of problem (1.4). Then we have

(i) If co > 0 then u; — ¢ in Hy (Q) L™ (Q) as 1 — 0, where ¢ is the unique solu-
tion of (1.1) in H}(Q) n L*(Q).
(1) If ¢o <0, then we have, as A — 0,
u)(x) — —oo  for every x € Q,

Auy; — co  locally uniformly in Q,
and if we set v; = u; + |u;|., then
v, — vy locally uniformly in Q,

where vy is the unique solution of (1.4) such that m&n vp(x) = 0.

When f e W *(Q), we also give estimates on the rate of convergence of Au;
to co, or equivalently, on the growth of u; — <. The expert reader will recognize
that this step is strictly related to the so-called corrector problem in homogeniza-
tion or to the large time profile of the solutions of the evolution problem. Indeed,
the following result follows the ideas introduced in [8] to estimate the blow-up
rate, when ¢t — 4o, of the solutions of the evolution problem. It is interesting
to note how the blow-up rate changes in the borderline case ¢y = 0.

THEOREM 1.2. Assume that 1 < ¢ <2, and [ € W (Q). Let u; be the solution
of (1.3), and ¢y the ergodic constant of problem (1.4). Then, for any compact set
K < Q there exists a constant Cx such that, as A — 0:

(i) if co <O then

(1.6) {Mm — ol x) < CxA when 3 < ¢ <2

Uy — Collyopy < CxrA T B wnen 1 < g <3
y) L) < C Aa=1/C=a)  ron 1 3
(i) if ¢co = 0 then

amn {||/1u;,||L%(K) < Cglllogh| when g =2

| Aua] e gy < Cgrd™! when1 < g <2
REMARK 1.2. If ¢y > 0, then by Corollary 1.1 u; is bounded and converges to

the unique solution of (1.1), then of course Au; — 0 in this case and, trivially,
we have [Auy] ;- q) < CA.

Let us conclude this introduction with a few more comments. First of all, an
obvious remark is that the study of the limit of

—Au+ Ju=|Vul!+ f(x) inQ,
ue Hj(Q)nL*(Q),
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is contained in the previous statements up to replacing u with —u. In this case, the
singular behaviour means that u;(x) — +oco everywhere.

We also stress that the above results still hold for any Dirichlet condition
u = g on 0Q, at least if ¢ is a continuous function. In this case, a suitable setting
seems to be that of viscosity solutions (see Theorem 2.1). On the other hand, the
extension of such results to more general f and/or to more general operators is
more delicate and will be dealt with in a next work. Of course, some of the above
results can be extended without problems to more general situations (e.g. inho-
mogeneous diffusions), but a complete description as it is given in Theorem 1.1
is not obvious (unless for smooth diffusions) and needs in any case a more general
version of the ergodic theorem of [18]. Actually, the aim of the present paper is
to make it completely clear what happens in the model case (i.e. for the Laplace
operator) in order to serve as a guideline for the study of more general situations.
Finally, let us point out that the present study is motivated and closely related to
the study of large time behaviour of solutions of the time-dependent version of
(1.1), which is treated in [8].

2. PROOF OF THE RESULTS
2.1. Proof of Theorem 1.1 and Proposition 1.1

Let us recall that a comparison principle holds for weak subsolutions and super-
solutions belonging to H'(Q) n L*(Q) of the problem

{iv—Av+\VU\q:f(x) inQ,
v=0 ondQ,

when / > 0 and f € L*(Q). We warn the reader that this is no longer true for
simply Hg(Q) solutions, and we refer to [6], [7] for comparison principle and
uniqueness results for weak solutions. Such uniqueness results are more delicate
when A = 0, but we will see later that the comparison principle holds in that case
too. Moreover, we stress that it is possible to use different formulations of such
problems (solutions in W?2?(Q), or viscosity solutions), but clearly all formula-
tions ensuring the validity of weak maximum principle eventually coincide.

In particular, problem (1.3) admits a unique solution, which is actually more
regular and satisfies the following gradient bound, which is an essential tool in the
study of the ergodic limit.

LEMMA 2.1. Let g > 1, and let u; € H} (Q) N L*(Q) be the solution of (1.3).
Then u; € WP (Q) for every p < oo and we have, for every x € Q,
K

Vi (x)] < 20D

where K depends only on | [ q). 4, Q, and d(x) denotes the distance of x from
the boundary.
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ProOOF. The uniqueness of u; implies that it coincides with the unique solution
in W2P(Q) (Vp < o), whose existence is proved e.g. in [4], [17]. Moreover, we
have Alu;|,, < |f|, by the weak maximum principle. Then we apply Theorem
IV.Iin [18] to deduce the gradient bound. O

As a consequence of the above estimate we have the following

PROPOSITION 2.1. Let uy be the solution of (1.3), and set
v =y + Juz],-

Then v, is bounded in W;>* (Q).

loc

PROOF.
Step 1. We claim that for any 0 € (0, 1) there exists dy, depending only on @, ¢,
Q, | f]., such that, for every 4 > 0,

(2.1) u;(x) > —d(x)" = sup u;  Vx:d(x) <dp.
{d(x)=do}

Indeed, take y(x) = —d (x)g, with 6 € (0, 1) and 0y sufficiently small so that d(x)
is smooth when d(x) < dy. Then

=AY+ 4+ VY| = (%)
= —0(1 — 0)d"? + 0d"'Ad — 7d’ + 09d"*"D7 — f(x)
< —0d"[(1 - 0) — dAd — 07> 10D | 7],

Since 1 < ¢ < 2, we have that  is a subsolution in the subset {x € Q : d(x) < dy},

for some dp > 0 depending only on 0, ¢, Q, f. Since y — sup u; is still a sub-
{d(x)=do}
solution, we conclude by comparison that our claim holds true.0

Step 2. First observe that u; is bounded from above; indeed, we have —Aujf <
|/ (x)], hence |ul], < c|f].. Therefore, we deduce from Step 1 that, for some
constant Cp,

lus], < Co+ sup u;
{d(x)=do}

hence there exists x; such that d(x;) > Jy such that
0< U),(X) < Cy+ u;_(x) — u;,(xi)

Using Lemma 2.1 we deduce that v, is locally uniformly bounded. Since
Vv, = Vu,, again from Lemma 2.1 we deduce that |Vv,| is locally uniformly
bounded too, hence we conclude. O
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We are ready to prove our main result.
PrOOF OF THEOREM 1.1:

PROOF OF (i). We prove actually the following claim: if problem (1.1) admits
a subsolution in H} (Q) N L™ (Q), then a subsequence of u; converges in H}(Q) N
L*(Q) to a solution ¢ of (1.1).

Indeed, assume that there exists a subsolution ¥ € H}(Q) n L*(Q) of prob-
lem (1.1), then  — ||, is a subsolution of (1.3). Since the comparison principle
holds in H{(Q) nL*(Q), this implies that u; > — |¢],, > —2|¢]... On the
other hand since —Au; < |f|, we have |u]|,, < c|f].,, so that we conclude that
u; remains bounded in L*(Q). By standard results (see e.g. [11]), it follows that
u; is relatively compact in H{ (Q) hence it converges, up to a subsequence, to a
function ¢ € H}(Q) n L*(Q) solution of (1.1). Moreover, the convergence of
uy also holds in L™ (Q), since the uniform bound of u; also implies that u;
is bounded in W2?(Q) (Vp < o) by classical results (see e.g. [4], Proposition 2),
hex;ce u, is relatively compact in L*(Q). In particular, we also deduce that ¢ €
W=r(Q).

This proves our claim. To conclude the proof of part (i) we only need to know
that ¢ is the unique solution of (1.1) in H} (Q) n L*(Q), a fact that will be proved
in Proposition 1.1 below. The uniqueness of ¢ implies that the whole sequence u;,
converges.

PROOF OF (ii). First observe that, as 4 — 0, we have that |u,|,, — co; indeed,
any subsequence of {u;} cannot be bounded otherwise (up to a new subsequence)
it would converge to a solution of (1.1), a fact which contradicts our assumption.
Moreover, since |u] |, < c|f],, this implies that we have, for 4 small enough
and converging to zero:

luile = Ny |y — oo

Let us recall that in consequence of maximum principle we also have
(2.2) Azl < 1/ 1

Define now v; = u; + |u;,|,,, hence v; solves
(2.3) —Avj + Ao, + [Vos| T = f(x) + Az,
which implies because of (2.2)

—Av) + Av; + |Vu | = =2|f]..-

Now let ¢ < 2; in the domain {x € Q : d(x) < dyp}, consider the function =

o(d(x) +1)™" — M, where

1\~
o0=—, M:a(§o+—) + sup v,
n d(x)=0y
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and dy is to be chosen (sufficiently small so that d(x) is smooth in this domain).
Computing we have

—AY + A+ V| = oco-(d(x) + %)*H [(oc T+ (d(x) + %) Ad

1)2+a—(a+1)q ) (

+ (a0)i™! (d(x) +o +=(d(x)+ lf] — M

o n
where we used that |Vd(x)| =1. The value of « :% implies that 2+ o =
(o + 1)g hence we get

, p 1\—»2 1
—Aw—kmp+¢V¢|::aaQﬂx)+Z) —{a+1)+<dﬁj+—)Ad

n

+ (00)4”! +§ (d(x) + ,11)2] M

Choosing ¢ such that (oco")’%1 < a+ 1, then Jy and n sufficiently small, we obtain
that

=AY+ + VYT < =2 1],

in {d(x) < dy}. The value of M implies that y < v; on {d(x) =dy}, and, if 1 is
small, we have v; > on 0Q as well. We conclude that

v, =y in{d(x) <do}.

Observe that M depends on 4 (and 7) but is uniformly bounded, since v, is locally
uniformly bounded, hence there exists some constant K such that

v > a(d(x) +’1Z)7a — K in{d(x) <do}.

Now, by Proposition 2.1, there exists a subsequence of 4 (not relabeled) and a
(nonnegative) function v, € Wl(}f(Q) such that v; — vy locally uniformly in Q
as 4 — 0. We deduce that

0= o(d(x) + %)_ _K in {d(x) <),

which implies, after letting n — oo, that vo(x) — +o0 as x — 6Q. When ¢ = 2,
the same conclusion can be obtained using = —olog(d(x) + %) — M as a com-
parison function.

Moreover, by elliptic regularity, v; is bounded in W,fc‘,” (Q), and standard com-
pactness results allow us to pass to the limit in the equation (2.3) satisfied by v;.
Finally, in view of (2.2) we have that, still up to subsequences,

Muile — —co



68 A. PORRETTA

for some constant ¢y < 0, and we conclude that v satisfies (1.4). Note also that
Juy, itself converges to ¢y locally uniformly, since Au;, = Av; — Au,|,, and Zv; — 0
because v; is locally bounded. Moreover, since u;(x) = v;(x) — |u,|.,, we have
u;(x) — —oo for every x € Q.

Finally, we claim that mg%n vg = 0. Indeed, since, for A small,

vgzm—ngnug

we clearly have min v;(x) = 0 = v;(x;) for some point x; € Q such that min u, =
u;(x;). If {x,} remains in a compact subset of Q, we deduce that min vy'= 0 as

Q
a consequence of the local uniform convergence of v;. Otherwise, (always up to
subsequences) we have d(x;) — 0; however, from (2.1) this means that there exist
v, such that d(y,) = oy and

w(x;) = =d(x3)" = u; (v3).
Since u;(x) — —oo everywhere (and locally uniformly), we deduce that
v(32) = wi(32) = wi(x) < wi(y2) + ()" + 0 (v2) = d(x)" =0

which means that there exists a point yo such that d(yy) =dy and vo(y9) =0
(since vy is nonnegative). This proves that inn vy = 0.

To conclude, we use Theorem VLI in [18] which says that ¢ is unique (i.e. the
unique constant such that (1.4) may have solution) and that problem (1.4) has a
unique solution up to addition of a constant. In particular, we deduce that v, is
the unique solution such that min vy = 0. The uniqueness of ¢y and vy implies that
the whole sequences v; and /lu,?converge to vy and to ¢y respectively. O

REMARK 2.1. In the proof of part (i) we actually proved that the existence of
a subsolution of (1.1) in HJ(Q) n L*(Q) implies the existence of a solution. In
Proposition 1.1 we complete this argument showing that this also implies the
uniqueness in H} (Q) N L*(Q).

REMARK 2.2. With the same arguments as above, in the case (ii) of Theorem 1.1
we can prove that if we fix any point xp € Q, then u;(x) — u;(xo) converges to the
unique solution of (1.4) such that v(xy) = 0. This is also a typical statement for
the ergodic limit. However, the convergence of u; + |u;|,, seems more interesting
here since it better shows that the blow-up propagates from the interior.

We end this subsection by giving a simple proof of Proposition 1.1 in conse-
quence of the study of the ergodic limit. A different proof is given in [8], in the
framework of viscosity solutions.

ProOF OF PrOPOSITION 1.1:
Assume that there exists a solution ¢ € H} (Q) n L*(Q) of (1.1), and let v be a
solution of (1.4). Assume by contradiction that ¢y < 0, then v is a supersolution of
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(1.1) and ¢ — v solves in the weak sense
—A(p — ) + q|Vv|"*VoV(p — ) <0.

Since v — +0c0 on the boundary, ¢ — v has a maximum inside Q, which we can
assume to be positive replacing v with v — k for a constant k. Using that v e
W,;;OC(Q), we can apply the strong ma?(im_urp prinqiple (see [14], Theorem 8.19)
and we get that ¢ — v is a constant, which is impossible. Therefore we must have
co > 0.

Conversely, assume that ¢y > 0. We are going to prove not only that problem
(1.1) has a solution but actually that there exists a solution of

{—Au—i— [Vul” = f(x)(1+5) inQ,

(24) ue H(Q)nL*(Q),

for any 0 such that 0 < < \I;(Ii . Indeed, for 4 > 0 consider the problem

{—Aul + 2w+ V| = f(x) =6l f],, inQ,

(2.5)
u, =0 on 0Q.

Assume that there is no solution when A = 0: then applying Theorem 1.1 we
deduce that u;(x) — —oo for every x € Q and that Au) — ¢; locally uniformly,
where ¢s 1s the unique constant such that the problem

{—Av—i— IVol|? +¢; = f(x) = 6| f], inQ,
v— 400 asx — 0Q

admits a solution. The uniqueness of the ergodic constant implies c¢; =
co — 0| f],,- On the other hand, since u; — —oo, we deduce that ¢; < 0, hence

co <9|f],, which is not possible as soon as J < W Therefore, we proved

that there exists a solution to problem (2.5) when 1 =0, for any J € [O,ﬁ)
Taking ¢ = 0, this already proves that (1.1) admits a solution. For é > 0, the so-
lution of (2.5) with A = 0 is clearly a subsolution of problem (2.4), and then we
can deduce (see Remark 2.1) that problem (2.4) also admits a solution.

Observe now that, defining a new function z = {5, the existence of a solution
of (2.4) implies the existence of a solution of problem

{—Az—i— (1+u0)|Vz|? = f(x) inQ,
ze H} (Q)nL*(Q),

for u positive and sufficiently small. By Theorem 2.5 in [7] we conclude that the
comparison principle holds for problem (1.1) in H}(Q) n L*(Q) and in particu-
lar that there exists a unique solution ¢ of (1.1) in H{ (Q) N L*(Q). O

Note that, in the above analysis, we proved that ¢y > 0 is necessary and suf-
ficient for the existence of weak subsolutions to problem (1.1), and by solving
problem (2.5) with 2 =0 we showed in that case the existence of a strict sub-
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solution. Applying Theorem 2.5 in [7], this implies that the comparison principle
holds for problem (1.1) in H}(Q) n L*(Q). It could be useful to state explicitly
this result.

COROLLARY 2.1. Letl < g <2and f e L*(Q). If uj,us € H'(Q) n L*(Q) are
respectively a weak subsolution and supersolution of problem (1.1), then we have
uy <upae. in Q.

We state now another straightforward consequence of Proposition 1.1, which
gives a characterization of the ergodic constant cy.

COROLLARY 2.2, Let 1 < g <2, fe L*(Q), and let ¢y be the ergodic constant
(i.e. the unique constant such that (1.4) has a solution). Then we have

co =sup{ce R:3p e H(Q) nL*(Q) such that —Ap + |Vo|? + ¢ < f}
=sup{ce R:3p e W>?(Q) (Vp < ©) such that —Ap + |Vo|? + ¢ < f}
= sup{c € R: 3p € C(Q) such that —Ap + |Vo|? + ¢ < f in viscosity sense}
and moreover ¢ is not attained.

PrOOF. Since the ergodic constant corresponding to f — ¢ is ¢y — ¢, we proved
in Proposition 1.1 that there exists a subsolution (or a solution) of

—~Ap+ Vol +c= f(x) inQ,
{60 € Hy(Q)nL*(Q)

if and only if ¢y — ¢ > 0, hence we conclude. The equivalence between all differ-
ent formulations is just a consequence of the comparison principle. The charac-
terization of ¢( in terms of viscosity solutions is also proved in [8]. O

2.2. Rate of Convergence and Proof of Theorem 1.2

We give here an error estimate for the convergence of Adu; to ¢o. This will follow
from the next lemma, where we use the same ideas introduced in [8] for the
asymptotic behaviour of the evolution problem. Let us recall that we denote by
vp the unique solution of (1.4) such that n}gn vy = 0.

LEMMA 2.2. Let f € W*(Q), and let u; be the solution of (1.3). Then we have:
(i) If co < 0, there exists a constant M > 0 such that

u;, — 9 > y(A)vo(x + p(A)n(x)) — M if3<q<2,
26) w, — < > p(Do(x + p(An(x)) — MAC20/C0 jr ] <4 <3
“ L= 2

where n(x) is a vector field such that n(x) - Vd(x) > 0, and where y(1) — 1,
W) —=0as A —0.
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(ii) If co = 0, there exists a constant M > 0 such that

ay  [EEORC ) Moz g2
‘ w, = y(A)vo(x + u(A)n(x)) = M0 if 1< g <2

where y(A) — 1, u(A) — 0 as L — 0.

PRrOOF. Consider here d(x) to be the signed distance function, which is negative
when x ¢ Q. Let us fix a 6 > 0 such that d(x) is C? in {x € R" : |d(x)| <} and
take a smooth function d(x) such that d(x) = d(x) for |d(x)| < % and d(x) is con-
stant for |d(x)| > 0. Consider now the vector field

() = /R L Vd(y)pi(x = y)dy

where p, is a standard mollifying kernel (supported in the ball By (0)). Of course
we have n, € C* and, using the properties of d(x) and in particular that d € C?,
we have

(2.8) el <1, |Dn| < |D%d|.,, |D’m| < k|D%d].,.

Moreover ny is clearly an approximation of Vd(x), in particular

(2.9) i (x) — Vd(x)| < "Dsz"w.

Then we consider the function

o(x) = p(vo(x + pni(x)) — L)

where y, 1 € (0,1) will be fixed later suitably depending on 4, and where L is an
additive constant to be chosen. Observe that since

d(x + pny(x)) = d(x) + pVd(x) - nye(x) + O(p?)
if we choose k > 2|D?d|,, we get using (2.9)

A(x) + 30+ O() < d(x + i) < d(x) + 3+ O()

for any x: d(x) < % In particular, we can take x small enough in a way that
x + uni(x) € Q for every x € Q. In the following, the value of k is fixed e.g. as
2|p%d|.,.

We compute now the equation for v. Since Vv = (I + uDny(x))Vuo(x+
uni(x)), using (2.8), and setting Cy = |D?d|,,, we have
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—Av+ |Vo|? < —pAvg + y9(1 + uCo) |V |?

(
+ 71 D(x)| (2 + uCo) [ Dvo| + ypetr(D*mic Vo)
< —yAvg + 4(1 + uCo) | Voo |
+ I Dnie(x)|(2 + uCo) | D*vo| + puk Co | Vo)

where the argument of vy is x + uny(x). Since vy is a solution of (1.4) we obtain

—Av+ Vol < p(f = co) = 7|Vwo| T+ y4(1 + pCo)?|Vwo|*

+ 94| Dy (x)|(2 + 1 Co) [ D*vo| + 7k Co| Vo
hence
(2.10) v —Av+ Vol
<y(f = o) = 7[Vuol " + y7(1 + uCo)*|Vvo|*
+ 92t Dy (x)[ (2 + uCo) | Dvo| + yptke Co[Vvo| + 2y(vo — L)

Let us now use the asymptotic behaviour near the boundary of the function vy;
indeed, from [18] we know that

{vo(x) ~ —logd(x), if g =2,

2.11
211) vo(x) ~ C*d(x)™", if 1 <q<2,

where o = % and C* is a given positive constant. Moreover, from the asymp-
totic behaviour of Vuy given in [21], we can deduce (see also [§], Lemma 2.1) that
(2.12) |D*vo| < K|Vuo|?

in some neighborhood of 02 and for some constant K > 0, while

(2.13) lvo] < K(|[Vuo| +1) in Q.

Since nx(x) is supported in {d (x) <d+ 1}, without loss of generality we can sup-

pose that (2.12) holds true in the support of n;(x). Therefore we can use (2.12)
and also (2.13) in the inequality (2.10), and we end up with

v — Av + |Vul?
< p(f = co) = y[1 = y? ' (1 + pCo)? — Kpa| Dy (x)|(2 + uCo)] Vo !
+ yuk Co|Vuo| + 2y(K|Vuvo| + K — L)

hence (using also (2.8)) there exists a constant Cj, independent on y and x, such
that

Mo —Av+ Vol < p(f = eo) = p(1 = y7" = Cup)| Vol
+ yuk Co|Vuo| + 2y(K|Vuvo| + K — L).
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Choosing L > K and using Young’s inequality we obtain,

q 1 —yi! q
I = Ao+ Vel < 9(f = o) = 7 (———— Cuat) Vo)
g I q/(g=1)
A q/(q—1)
_ a1
+O0 =) (=)

for some constant C > 0. Moreover, since f is Lipschitz and |n;| < 1 we have

P (x+ () — o) < f(x) = o+ (1 =p)If = ol + VS,

hence

v —Av+ Vol < (f = co)+ (1 =)|f = col,. +ulVfl,

—y(l _qul —~ Clﬂ)|VUO|q

+Cy(l—yq1)[(1_/;q_1)4/<41>+<1_A‘yq_l>q/<q1>]

Choose now y such that

(2.14) 1 -y =max((2Cy + Dy, A).

Note that 0 < y < 1 as soon as (2C; + 1)u < 1 and 4 < 1. Then we deduce
Jo = Ao+ Vel ? < (f = o) + (1= If = coll, + VSl +2C(1 =)

and since u < (1 —y971) < (1 — y) we get

(2.15) Ao —Av+|Vo|! < (f —co) + K(1—7)

where K = [f — co|,, + |Vf],, +2C. In particular, we have obtained that

v+9-K @ is a subsolution of the same equation of u;.
Moreover, for every x € 0Q we have

A+ () = 3+ O,

hence, using (2.11), we deduce that there exists a constant K* such that
vo(x 4+ i (x)) < K* (0 *+1) Vx e 0Q

when o > 0 (i.e. ¢ < 2). In particular we deduce, choosing L > K*, that
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(2.16) o(x) < K" Vx e Q.

When ¢ = 2 we have

vo(x + pn(x)) < —logu+ K*

and this time we have v < —logu for L > K*.

(1)

We distinguish now two situations:

if co < 0 and ¢ < 2 we fix u so that

Kot
P

Then (2.16) implies that v + — g 1 2 <0 on the boundary, and then it is a
subsolution of problem (1.3) and by comparison we deduce that

(1-7y)

A

(2.17) szﬂ%@+mmm—m+%—k

where 1 = O(4"/*) and consequently, from (2.14), we have

O(A) if o<1
1—]/: 1/o .
o) ifax>1

Recalling the value of %= 2_1 we obtain (2. 6) from (2.17). When ¢ = 2 we fix
u so that —logu = —<, in'a way that v 4+ < < 0 on the boundary; since this
implies x4 = o(4), by (2 14) we have | —y = 0(/1) and the conclusion follows
from (2.17).

If ¢ = 0, and if ¢ < 2, then we fix u so that

KQ2C + p

K% =
H 7 )

K* /,L)l/(1+)

which means u = (- . Since « > 0 this implies that A = o(u),

K(2Ci+1)
and consequently, from (2.14), we get

L=y =(2C + )i,
hence K*u* = f((l_ﬁw) < K(l 2 We deduce from (2.16) that v — IN((IZW

< 0 on the boundary, and since v—K % is a subsolution, we conclude
again by comparison that (2.17) holds true, where now ¢y = 0 and

1— y = 0(/~L1/(l+o¢))

Recalling the value of o we get (2.7). If ¢ = 2, now we fix u by the implicit
relation
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—logpu =

)

K(2Ci + 1)
A
which makes sense when A, u are small. This implies 4 = o(u), hence 1 — ya1
= (2C; + 1)u and the above relation gives as before that v — K “);y) <0 on

o (1-7)

the boundary. We conclude again that u > v(x) — K-—*, and since “);’)
0(5) = O(|log ]), we get (2.7).

ol

We deduce from the above lemma the estimate for the corrector term u; — %
and therefore the conclusion of Theorem 1.2.

COROLLARY 2.3. Assume that 1 < g <2, and f € W' (Q). Let u; be the solu-
tion of (1.3), and ¢\ the ergodic constant of problem (1.4). Then we have

(1) If co < O then

u, — <L =0(1 when 3 <g<?2
(2.18) {* F=o 2 =4

u, — 9= O~ B20/C=0y ywhen 1 < g < 3

(ii) If co = 0 then
(2.19) {uz = O(|log2|)  when g =2
| u; = 02" F9) when1 < q<2

where the above bounds are to be meant as locally uniform.
In particular, the conclusions of Theorem 1.2 hold true.

PrOOF. The function v; = u; — % solves

v, =—% ondQ.

{lvx —Av; + [V T 4+ ¢o = f(x) inQ,
Since vy > 0, and since vy — +o0 on the boundary, we have that vy is a super-
solution of the same problem, hence we deduce that u; — ‘)—“ < vg. Using Lemma
2.2 for the estimate from below we conclude the local uniform bounds stated in
(2.18) and (2.19). O

REMARK 2.3. The error estimates of Corollary 2.3 (or Theorem 1.2) are optimal.
If either ¢y =0 or ¢y < 0 and q < %, it is possible that u; — 5 — —oo locally uni-
Sformly with the rate given in (2.18) or (2.19). Such type of behaviours can be proved
e.g. in star-shaped domains in case that f(x) —cy < —0 < 0 for some constant o,
a situation which can actually occurr. We refer the reader to (8] where similar ex-
amples are constructed for the solutions of evolution problems: the same construc-
tion would apply here to show the optimality of the previous bounds.
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2.3. General Dirichlet Conditions

The same results hold true for a nonhomogeneous Dirichlet condition, i.e. for the
problem

_ q_ i
2.20) { Ap+ Vol! = f(x) inQ,
p=g¢g ondQ,

where g € C(0Q). In such a situation, it seems suitable to consider viscosity solu-
tions (since g may not be the trace of a H' function). It follows from [8] that this
problem has a viscosity solution if and only if ¢y > 0 (see also Corollary 2.2). Ob-
serve that the constant ¢ is independent from the Dirichlet data. Actually, the
same result of Theorem 1.1 holds true provided one considers simply viscosity so-
lutions. We obtain then the following result

THEOREM 2.1. Assume that 1 < q <2, and f € L*(Q). For 1 > 0, let u; be the
viscosity solution of

N , 9 — i
(221) {xluA Auy + |Vu; " = f(x) inQ,

u;, =g on Q.
Then we have

(i) If problem (2.20) has a viscosity solution ¢, then u; — ¢ uniformly as A — 0.
(1) If problem (2.20) has no viscosity solution, then we have, as . — 0,

u,(x) — —oo  for every x € Q,
Auy; — co  locally uniformly in Q,
u, + |uyl,, — vo locally uniformly in Q,

where ¢y is the unique constant such that problem (1.4) has a solution and vy is
the unique solution of (1.4) (in W2F(Q) Vp < o) such that m&n vo(x) = 0.

loc

PrROOF. The proof follows the same steps as Theorem 1.1. Since A|u,|,, <
/1., + “lgl.,, the interior gradient bound of Lemma 2.1 holds true; note in par-
ticular that the sequence u; locally belongs to W?2” for any p < oo. If problem
(2.20) admits a viscosity solution (or even merely a subsolution), using the com-
parison principle for viscosity solutions one has that u; remains uniformly
bounded. Thanks to standard stability results, one can conclude that (a subse-
quence of) u, converges towards a viscosity solution of (2.20). In addition u;
will be locally bounded in W27 by elliptic regularity. The uniqueness of viscosity
solutions of (2.20) implies the convergence of the whole sequence.

If problem (2.20) does not have a viscosity solution, then |u,|,, — +o0. Prop-
osition 2.1 continues to hold with minor changes, in particular (2.1) is replaced by

(2.22) u(x) > —d(x)" — g, — {d(Sl)lp }u;f Vx : d(x) < oy,
X :(50
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which holds true for any dy small enough (only depending on @, f, ¢, Q). As in
Theorem 1.1 u; + |u,|,, can be proved to be locally compact and converges to a
solution vy of (1.4). In order to prove that ngn vp = 0, one proceeds as in Theo-

rem 1.1 using now (2.22) instead of (2.1) to deduce that the minimum points x; of
u; cannot go to the boundary. O

Finally, let us observe that the error estimates of Theorem 1.2 hold for the so-
lutions of (2.21) as well, and can be proved in exactly the same way.
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