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Abstract. — In the first part of the paper we give a short review of our recent results concerning

the relationship between conditional and unconditional stability properties of time dependent sets,
under smooth di¤erential systems in Rn. More precisely, let M be an ‘‘s-compact’’ invariant set in

R� Rn and let F be a smooth invariant set in R� Rn containing M. It is assumed that M is uni-
formly asymptotically stable with respect to the perturbations lying on F. The unconditional stabil-

ity properties of M depend on the stability properties of F ‘‘near M’’. This dependence has been
analyzed in general, and, in the periodic case, complete characterizations are obtained. In the second

part, the above results have been applied to bifurcation problems for periodic di¤erential systems.
Some our previous statements on the matter are revisited and enriched.
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1. Introduction

Let M be a time dependent set in R� Rn. M is said to be s-compact if for any
t a R the section MðtÞ is nonempty, compact, and contained in a fixed set Q
in Rn. Let S be a smooth di¤erential system in Rn, _xx ¼ f ðt; xÞ, and let M be
an s-compact set, invariant under S, and contained in a suitable invariant set
F. The first part of the present paper is a review of some our recent results
[11] concerning the unconditional stability properties of M when M is uniformly
asymptotically stable on F (that is with respect to the initial perturbations
ðt0; x0Þ a F).

The stability problem of M involves the stability of F ‘‘near M’’ in the sense
recalled in Sec. 2. The connection betweeen the stability properties of F near M
and the (unconditional) stability properties of M is analyzed in Sec. 3. One finds
that M is stable (asymptotically stable) if F is stable (asymptotically stable) near
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M. These statements are not completely invertible. Precisely we need that the
stability or the asymptotic stability of M is uniform in order to obtain the same
property of F near M.

In the case that f , M are both periodic in t for the same constant o > 0
(in particular f or M, or both t-independent), the stability and the asymptotic
stability of M, F, when occurring, are uniform. Then we obtain in this case a
complete characterization of the above stability properties of M, that is M is
stable (asymptotically stable) if and only if F is stable (asymptotically stable)
near M (Sec. 4).

It is useful to compare these latter results with some classical results (Liapu-
nov [5], Pliss [9], Kelley [4]). In [4] M ¼ R� C, where C is an equilibrium, or
the orbit of a periodic solution, or a periodic surface. Moreover S is autonomous
and (by a suitable modification near C) admits in Rn an invariant center manifold
C containing C and exponentially asymptotically stable near C. It was found that
the unconditional stability properties of C are completely determined by the
stability properties of C on C: if C is stable (asymptotically stable, unstable)
on C, then C is stable (asymptotically stable, unstable). If C is asymptotically
stable on C, the unconditional asymptotic stability of C follows immediately
from our results with F ¼ R�C and M ¼ R� C. Similarly it may be treated
the known result (see for instance Chow and Hale [3]) concerning the asymptotic
stability problem of a o-periodic solution xðtÞ to a o-periodic di¤erential system.
In this case F and M are o-periodic subsets of R� Rn and M ¼ fðt; xÞ : t a R;
x ¼ xðtÞg. It has to be noticed that the exponential character in [4] of the asymp-
totic stability of C near C does not play any role. This has been the motivation
to analyze in general the influence that the stability properties of F near M have
on the corresponding unconditional stability properties of M. We do not have
discussed the extendibility to our general setup of the result in [4] relative to the
case that M is nonasymptotically stable on C. We only remark that for this
extension the assumption that the asymptotic stability of F is exponential cannot
be in general avoided.

The second part of the paper is devoted to revisit and enrich the results in [12]
on the bifurcation problems for a smooth periodic di¤erential system (Sm) de-
pending on a scalar parameter mb 0. The following conditions are satisfied: ðiÞ
there exists E a Rn such that E is an equilibrium for any mb 0; ðiiÞ (Sm) admits
a suitable invariant manifold Fm containing M0 ¼ R� fEg and asymptotically
stable near M0; ðiiiÞ M0 is asymptotically stable on Fm for m ¼ 0 and completely
unstable on Fm for m > 0 small.

Preliminarily we have treated the case that FmCR� Rn for any mb 0. In the
case that each Fm is a proper manifold of R� Rn, by a change of the spatial
variables depending on t, m, any system (Sm) is transformed into a new system
(Sm) and any Fm is transformed in a unique set F containing M0. The change
of variables is such that for each mb 0 small all the properties of stability and
invariance are not modified and the bifurcation problem is the same unless a ho-
meomorphism of the bifurcating sets. One finds that m ¼ 0 is a bifurcation value
on the right and that the bifurcating sets are s-compact subsets of F, invariant,
and asymptotically stable. Moreover each bifurcating set is the largest invariant
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compact set disjoint from M0 contained in a fixed compact s-neighborhood of M0

in R� Rn.
The proofs are obtained by an application of the results in Sec. 4 and by using

for any initial time t0 and any small m > 0, an appropriate autonomous discrete
dynamical system associated to (Sm) or (Sm) respectively.

2. Preliminaries

Denote by jj � jj the Euclidean norm in Rn and by r the induced distance. Denote
by LðxÞ the class of functions f : R� Rn ! Rn, ðt; xÞ ! f ðt; xÞ, which are
locally Lipschitzian in x. Moreover, we will write f a LuðxÞ if f satisfies the
condition that for every compact set KHRn there exists a constant LðKÞ > 0
such that jj f ðt; xÞ � f ðt; yÞjjaLðKÞjjx� yjj for all x, y in K and t in R, and write
f a LubðxÞ if in addition for every compact K HRn the function f is bounded.

Consider the system of di¤erential equations

_xx ¼ f ðt; xÞ; ð_Þ ¼ d

dt
ð2:1Þ

where f a CðR� Rn;RnÞ and f a LðxÞ. For any ðt0; x0Þ a R� Rn let us denote
by xðt; t0; x0Þ the solution through ðt0; x0Þ and by jðt0; x0Þ its maximal interval
of existence. Moreover we denote by jþðt0; x0Þ, j�ðt0; x0Þ the intersections of
jðt0; x0Þ with ½t0;þlÞ and ð�l; t0� respectively. The sets fðt; xÞ : t a jðt0; x0Þ;
x ¼ xðt; t0; x0Þg and fx ¼ xðt; t0; x0Þ : t a jðt0; x0Þg will be called the trajectory
and the orbit of xðt; t0; x0Þ respectively.

We first wish to recall a resut concerning the case that: ðiÞ f ðt; 0ÞC 0 and f is
periodic in t for some constant o > 0; ðiiÞ (2:1) admits a first integral F a
CðR� Rn;RþÞ, with F ðt; 0ÞC 0 and such that the origin is uniformly asymptoti-
cally stable with respect to the initial perturbations ðt0; x0Þ a ker F . The following
theorem holds.

Theorem 2.1. Under the assumptions ðiÞ, ðiiÞ, the origin is (unconditionally) sta-
ble if and only if F is continuous at x ¼ 0 uniformly in t on R�C ð�l; 0�.

The su‰ciency was proved by K. Pei¤er in [8]. The proof of necessity is trivial
and was given in [10]. Theorem 2:1 has been the source of our analysis, addressed
to di¤erential systems nonnecessarily periodic for which the origin and ker F are
replaced respectively by two appropriate invariant sets M, F in R� Rn, with F
containing M and nonnecessarily the kernel of a first integral.

We need some preliminaries. Let C be a nonempty set in Rn and for a > 0 let
BnðC; aÞ ¼ fx a Rn : rðx;CÞ < ag, Bn½C; a� ¼ fx a Rn : rðx;CÞa ag. Consider
a set A in R� Rn. We say that A is s-nonempty if for any t in R the section
AðtÞ ¼ fx a Rn : ðt; xÞ a Ag is nonempty. If A is s-nonempty and there exists a
compact set Q in Rn such that AðtÞJQ for all t a R, then A is said to be s-
bounded. In this case the intersection of all these sets Q will be denoted by Q�.
If A is s-bounded and each AðtÞ is compact, we say that A is s-compact. A set N
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in R� Rn is said to be a compact (an open) s-neighborhood of an s-nonnempy
set A, if for any t a R the section NðtÞ is a compact (an open) neighborhood of
AðtÞ. When the mapping t ! AðtÞ is o-periodic for some o > 0, or in particular
t-independent, we say that A is o-periodic or t-independent respectively.

Let A be an s-nonempty positively invariant set in R� Rn. The stability con-
cepts of A are derived from the usual concepts concerning the stability of a single
trajectory. For instance A is said to be: ðiÞ stable if for any t0 in R and e > 0 there
exists d ¼ dðt0; eÞ > 0 such that rðx0;Aðt0ÞÞ < d implies jþðt0; x0Þ ¼ ½t0;þlÞ
and rðxðt; t0; x0Þ;AðtÞÞ < e for all tb t0; ðiiÞ uniformly stable if it is stable and
d may be chosen independent of t0; ðiiiÞ attracting if for any t0 in R there
exists s ¼ sðt0Þ > 0 such that rðx0;Aðt0ÞÞa s implies jþðt0; x0Þ ¼ ½t0;þlÞ and
rðxðt; t0; x0Þ;AðtÞÞ ! 0 as t ! þl; ðivÞ uniformly attracting if it is attracting, s
may be chosen independent of t0, and rðxðt; t0; x0Þ;AðtÞÞ ! 0 as t ! þl uni-
formly in t0 a R, x0 a Bn½Aðt0Þ; s�; ðvÞ asymptotically stable if it is stable and
attracting. Similarly one proceeds for the concepts of the weak attractivity and
the uniform asymptotic stability of A. When A is t-independent, AðtÞCD, it is
customary to replace A by D and then look at the stability properties of A as
stability properties of D.

Let M be a positively invariant s-compact set in R� Rn and let
F a CðR� Rn;RþÞ be such that the set F ¼ ker F is positively invariant and con-
tains M. We need some definitions concerning properties of F and F ‘‘near’’ M.

Definition 2.1. We will say that F has a stability or an attractivity property
near M if there exists g > 0 such that the property is satisfied with respect to the
initial perturbations ðt0; x0Þ for which t0 a R and x0 a Bn½Mðt0Þ; g�.

For instance F is said to be: ðiÞ stable near M if there exists g > 0 such that
for any t0 a R and e > 0 one may find d ¼ dðt0; eÞ > 0 with the condition
that x0 a Bn½Mðt0Þ; g� and rðx0;Fðt0ÞÞ < d imply jþðt0; x0Þ ¼ ½t0;þlÞ and
rðxðt; t0; x0Þ;FðtÞÞ < e for all tb t0; ðiiÞ attracting near M if there exists g > 0
such that for any t0 a R one may find m ¼ mðt0Þ > 0 for which x0 a Bn½Mðt0Þ; g�
and rðx0;Fðt0ÞÞa m imply jþðt0; x0Þ ¼ ½t0;þlÞ and rðxðt; t0; x0Þ;FðtÞÞ ! 0 as
t ! þl. Similarly we may proceed for the other stability and attractivity proper-
ties near M.

Remark 2.1. Since M is contained in F, and then rðx0;Fðt0ÞÞa rðx0;Mðt0ÞÞ
for any ðt0; x0Þ a R� Rn, the uniform attractivity of F near M may be defined
as follows: there exists a constant s > 0 such that t0 a R and x0 a Bn½Mðt0Þ; s�
implies that xðt; t0; x0Þ exists for all tb t0 and satisfies rðxðt; t0; x0Þ;FðtÞÞ ! 0 as
t ! þl, uniformly in ðt0; x0Þ.

We give now a concept of positive definitiveness of F in terms of M and F.

Definition 2.2. The function F is said to be F-positive definite near M if for
some g > 0 and for any t0 a R, a > 0 there exists b ¼ bðt0; aÞ > 0 such that if
tb t0, x a Bn½MðtÞ; g�, and rðx;FðtÞÞb a, then Fðt; xÞb b.
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We observe that because of the continuity of F we have that if the above
bðt0; aÞ exists for a fixed t0, it exists for any t0 and for t 00 > t0 one may assume
bðt 00; aÞ ¼ bðt0; aÞ. If FðtÞCMðtÞCD, this definition reduces to the usual con-
cept of positive definitiveness of F with respect to D. We also need a weaker
property which involves the solutions of (2:1). For g > 0, t0 a R, consider the
following set

Pðt0; gÞ ¼ fðt; xÞ : tb t0; x a Bn½MðtÞ; g�; t0 a j�ðt; xÞ; xðt0; t; xÞ a Bn½Mðt0Þ; g�g:

Definition 2.3. The function F is said to be weakly F-positive definite near M
if for some g > 0 and for any t0 a R and a > 0, there exists b ¼ bðt0; aÞ > 0 such
that if ðt; xÞ a Pðt0; gÞ and rðx;FðtÞÞb a, then F ðt; xÞb b.

The property in Definition 2:3 is connected to the stability of F near M. A first
connection is given by the following lemma.

Lemma 2.1. Suppose that F is a first integral. Then the stability of F near M
implies that F is weakly F-positive definite near M.

Proof. For some fixed g > 0 and for any t0 a R, a > 0, there exists
h ¼ hðt0; aÞ > 0 such that if x0 is in Bn½Mðt0Þ; g� and rðx0;Fðt0ÞÞ < h then
jþðt0; x0Þ ¼ ½t0;þlÞ and rðxðt; t0; x0Þ;FðtÞÞ < a for all tb t0. For fixed t0 let
us consider the function F ðt0; �Þ. One has F ðt0; x0Þ > 0 for any x0 B Fðt0Þ and
Fðt0; x0Þ ¼ 0 for x0 a Fðt0Þ. By setting

bðt0; aÞ ¼ minfF ðt0; x0Þ : x0 a Bn½Mðt0Þ; g�; rðx0;Fðt0ÞÞb hðt0; aÞg;

we easily obtain

ð2:2Þ
x0 a Bn½Mðt0Þ; g�; F ðt0; x0Þ < bðt0; aÞ imply rðxðt; t0; x0Þ;FðtÞÞ < a Etb t0:

Given any ðt; xÞ a Pðt0; gÞ, let x0 ¼ xðt0; t; xÞ. By definition x0 a Bn½Mðt0Þ; g�.
Hence from (2:2) it follows

rðx;FðtÞÞb a ) F ðt0; xðt0; t; xÞÞb bðt0; aÞ:

In conclusion, since F is a first integral and then F ðt; xÞ ¼ Fðt0; xðt0; t; xÞÞ, we
have

ðt; xÞ a Pðt0; gÞ and rðx;FðtÞÞb a imply F ðt; xÞb bðt0; aÞ:

The proof is complete. r

3. Conditional and unconditional stability properties

Consider again system (2:1). Let M be an invariant s-compact set in R� Rn. We
assume from now on the existence of an invariant set F in R� Rn containing M
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which is the kernel of a function F a CðR� Rn;RþÞ and satisfies the condition
that

ðACÞ M is uniformly asymptotically stable for perturbations ðt0; x0Þ a F:

We will denote by ðhÞF the set of such functions. Moreover we will write F a ðHÞF
if F a ðhÞF and F is a first integral. The present section is devoted to the analysis
of the unconditional stability properties of M under further requirements. Pre-
cisely we suppose that one of the following additional conditions is satisfied:

ðuÞ f a LuðxÞ (instead of f a LðxÞ) and the set ðHÞF is nonempty;
ðvÞ f a LubðxÞ and F ¼ R� ker j, where j a C1ðRn;RqÞ, 1a qa n, and

rank½qj=qx� ¼ q for any x a ker j;
ðwÞ f a LubðxÞ and F ¼ fðt; y; zÞ : z ¼ gðt; yÞg, where ðy; zÞ ¼ x,

g a C1ðR� Rm;Rn�mÞ, g a L 0
ubðyÞ. Here by g a L 0

ubðyÞ we want to mean
that g belongs to LubðyÞ together with its partial derivatives.

Theorem 3.1. Assume ðACÞ and ðuÞ or ðvÞ or ðwÞ. Then M is stable if F is
stable near M.

Proof (Outline). Case (u). Because of the condition ðACÞ, for any e > 0 there
exists d ¼ dðeÞ a ð0; eÞ such that if t0 a R, y0 a Fðt0Þ, and rðy0;Mðt0ÞÞ < d, then
jþðt0; y0Þ ¼ ½t0;þlÞ and rðxðt; t0; y0Þ;MðtÞÞ < e for all tb t0. Moreover, given
any g > 0 there exists s a ð0; dðgÞÞ satisfying the condition that for each n > 0 one
can find a number T ¼ TðnÞ > 0 such that if y0 a Fðt0Þ and rðy0;Mðt0ÞÞa s,
then rðxðt; t0; y0Þ;MðtÞÞ < n for all tb t0 þ T .

Let now F a ðHÞF. Since F is stable near M, by virtue of Lemma 2:1, F
is weakly F-positive definite near M. Choose the above number g as in Defi-
nition 2:3. Moreover let e a ð0; sÞ, d1 ¼ d1ðeÞ ¼ ð1=2Þdðe=2Þ, t ¼ Tðð1=2Þd1Þ and
d ¼ ð1=2Þd1 expð�ktÞ where k ¼ LðBn½Q�ðMÞ; g�Þ. By Definition 2:3 there exists
b ¼ bðt0; dÞ such that for any t0 a R one has

ðt; xÞ a Pðt0; gÞ and F ðt; xÞ < b imply rðx;FðtÞÞ < d:ð3:1Þ

Fix t0 and assume x0 a BnðMðt0Þ; d1Þ, F ðt0; x0Þ < b. Since d1 < g and then trivi-
ally ðt0; x0Þ a Pðt0; gÞ, from (3:1) it follows rðx0;Fðt0ÞÞ < d. Hence there exists
y0 a Fðt0Þ with jjx0 � y0jj < d. Comparing the solutions through ðt0; x0Þ and
ðt0; y0Þ in the interval ½t0; t0 þ t�, by Gronwall’s lemma we obtain

jjxðt; t0; x0Þ � xðt; t0; y0Þjj <
d1

2
:

It easily follows:

rðxðt; t0; x0Þ;MðtÞÞ < e Et a ½t0; t0 þ t�;ð3:2Þ
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and

rðxðt0 þ t; t0; x0Þ;Mðt0 þ tÞÞ < d1:ð3:3Þ

Setting now t1 ¼ t0 þ t and x1 ¼ xðt1; t0; x0Þ, and taking into account that F is a
first integral, we then recognize that x1 a BnðMðt1Þ; d1Þ and F ðt1; x1Þ < b. Since
clearly ðt1; x1Þ a Pðt0; gÞ, by virtue of (3:1) we still have rðx1;Fðt1ÞÞ < d. There-
fore the result expressed by (3:2), (3:3) holds with ðt0; x0Þ replaced by ðt1; x1Þ, and
so on. In other words for any e a ð0; sÞ and t0 a R there exist two positive num-
bers d1 and b such that if x0 a BnðMðt0Þ; d1Þ and F ðt0; x0Þ < b, then

rðxðt; t0; x0Þ;MðtÞÞ < e; Etb t0:ð3:4Þ

Let now lðt0; eÞ be a number in the interval ð0; d1Þ such that F ðt0; xÞ < b for any
x a BnðMðt0Þ; lÞ. Then (3:4) holds for each x0 in BnðMðt0Þ; lÞ and this proves
that M is stable.

Case (v). Let B, B 0 be two bounded open sets in Rn with clBHB 0 and
Q�ðMÞHB. Consider the system

_xx ¼ f ðt; xÞaðxÞ;ð3:5Þ

where a a ClðRn; ½0; 1�Þ is such that aðxÞ ¼ 1 for x a B and aðxÞ ¼ 0 for x B B 0.
Because of the local character of our stability problems near s-compact sets,
system (3:5) may replace the original system (2:1). For any ðt0; x0Þ we denote by
xð3:5Þðt; t0; x0Þ the solution of (3:5) through ðt0; x0Þ. These solutions clearly exists
for all t a R. The proof is divided into two steps.

ðaÞ Let us prove that F is invariant even for (3:5). The derivative of j along the
solutions of (3:5),

dj

dt
ðt; xÞ ¼ aðxÞ qj

qx
ðxÞ; f ðt; xÞ

� �
;

satisfies the condition

dj

dt
ðt; xÞ ¼ 0 Eðt; xÞ a F;ð3:6Þ

because F is invariant under (2:1). To complete the proof, let

u ¼ jðxÞð3:7Þ

and consider any x0 a ker j. Equation (3:7) is satisfied for x ¼ x0 and u ¼ 0.
Moreover the determinant of at least one, say s, of the q� q matrices contained
in the q� n matrix ½qj=qx�ðx0Þ is di¤erent from zero. Suppose for instance that
s is that contained in the first q columns of ½qj=qx�ðx0Þ and set x ¼ ðy; zÞ,
x0 ¼ ðy0; z0Þ, with y ¼ ðx1; x2; . . . ; xqÞ, z ¼ ðxqþ1; xqþ2; . . . ; xnÞ. Then (3:7)
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defines in a neighborhood N of z ¼ z0, u ¼ 0 an implicit function y ¼ yðz; uÞ,
yðz0; 0Þ ¼ y0. Hence the restriction of equation (3:5) to N in terms of z, u may
be written as

_zz ¼ Zðt; z; uÞ
_uu ¼ Uðt; z; uÞ;

ð3:8Þ

where Uðt; z; 0ÞC 0 by virtue of (3:6), (3:7). For any t0 in R, let ðzðtÞ; uðtÞÞ be the
solution of (3:8) such that zðt0Þ ¼ z0, uðt0Þ ¼ 0. As long as this solution exists in
N, one has uðtÞC 0, that is ðzðtÞ; uðtÞÞ a ker j. Indeed (3:8)2 is satisfied by as-
suming uðtÞC 0, while (3:8)1 for u ¼ 0 admits one and only one solution such
that zðt0Þ ¼ z0. Hence, since ðt0; x0Þ is any point of F ¼ R� ker j, the invariance
of F under (3:5) is now proved.

ðbÞ Since any solution of (3:5) exists for all t in R, we may define a function
G a CðR� Rn;RþÞ by assuming

Gðt; xÞC jjjðxð3:5Þð0; t; xÞÞjj:

Let us prove that kerG ¼ F. Indeed ðt; xÞ a kerG implies ð0; x0Þ a F, with
x0 ¼ xð3:5Þð0; t; xÞ. The invariance of F under (3:5) then implies ðt; xÞ a F. Simi-
larly one can prove that ðt; xÞ a F implies ðt; xÞ a kerG. Since G is a first integral
for (3:5), for this equation we have G a ðHÞF. Moreover F is stable near M even
for (3:5). Finally we observe that since f a LubðxÞ and a is t-independent, one has
that the r.h.s. of (3:5) belongs to LuðxÞ. Hence from the statement in case ðuÞ, it
follows that M is stable for (3:5) and then stable for the original equation (2:1).
The proof is complete.

Case (w). Letting u ¼ z� gðt; yÞ, system (2:1) in terms of the variables y, u be-
comes

_yy ¼ Y ðt; y; uÞ
_uu ¼ Uðt; y; uÞ;

ð3:9Þ

where Y , U are continuous functions such that Y ;U a Luðy; uÞ and
Uðt; y; 0ÞC 0, while F becomes the set ~FF ¼ fðt; y; uÞ : u ¼ 0g and M becomes a
set ~MM. It is easy to see that since g belongs to Luðy; uÞ, the stability problems of
M and F near M for (2:1) are respectively equivalent to the stability problems of
~MM and ~FF near ~MM for (3:9). Setting jðy; uÞC u we have ~FF ¼ R� ker j and clearly
j satisfies for (3:9) the conditions in the case ðvÞ with q ¼ n�m. Since ~FF is stable
near ~MM, the result follows from the statement relative to the case ðvÞ. The proof is
complete. r

Theorem 3:1 does not appear in general invertible. However it may be proven
that the uniform stability of M implies the stability of F near M. This implica-
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tion does not require any of the restrictions on F in ðuÞ; ðvÞ; ðwÞ. Precisely the fol-
lowing theorem holds.

Theorem 3.2. Assume ðACÞ. If f a LuðxÞ and M is uniformly stable, then F is
uniformly stable near M.

Proof. For any e > 0 let dðeÞ > 0 be the number associated with e in the defini-
tion of the uniform stability of M. Let s > 0 be such that rðxðt; t0; y0Þ;MðtÞÞ ! 0
as t ! þl, uniformly in fðt0; y0Þ : t0 a R; y0 a Fðt0ÞBBn½Mðt0Þ; s�g. Thus
if t0 a R and y0 a Fðt0ÞBBn½Mðt0Þ; dðsÞ� we have: ðiÞ rðxðt; t0; y0Þ;MðtÞÞ < s
for all tb t0; ðiiÞ for any n > 0, there exists T ¼ TðnÞ > 0 such that
rðxðt; t0; y0Þ;MðtÞÞ < n for all tb t0 þ T . Let g a ð0; dðsÞ=2Þ. Fixing now
e a ð0; gÞ and n a ð0; dðeÞÞ, choose a number h ¼ hðeÞ > 0 with the condition

0 < h <
dðeÞ � n

expðkTÞ ; k ¼ LðBn½Q�ðMÞ; s�Þ:

Let t0 a R. Assume x0 a Bn½Mðt0Þ; g� and y0 a Fðt0Þ such that rðx0;Fðt0ÞÞ < h
and jjx0 � y0jj < h. Since

jjxðt; t0; x0Þ � xðt; t0; y0Þjj < h expðkTÞ < dðeÞ � n < e Et a ½t0; t0 þ T �;ð3:10Þ

and F is an invariant set, one has

rðxðt; t0; x0Þ;FðtÞÞ < e Et a ½t0; t0 þ T �:ð3:11Þ

We also have

rðy0;Mðt0ÞÞa jjx0 � y0jj þ rðx0;Mðt0ÞÞ < hþ g < 2g < dðsÞ

from which it follows by virtue of ðiiÞ

rðxðt; t0; y0Þ;MðtÞÞ < n Etb t0 þ T :ð3:12Þ

Consequently by virtue of (3:10), (3:12), it easily follows (for details see [11])

rðxðt; t0; x0Þ;MðtÞÞ < e Etb t0 þ T :

Hence, since MðtÞJFðtÞ for every t, the inequality (3:11) is satisfied even
for t > t0 þ T . In conclusion for each e a ð0; gÞ there exists h > 0 such that if
ðt0; x0Þ a R� Bn½Mðt0Þ; g� and rðx0;Fðt0ÞÞ < h then

rðxðt; t0; x0Þ;FðtÞÞ < e Etb t0:

The proof is complete. r

Analogous theorems are obtained for asymptotic stability. The proofs are similar
and they will be completely omitted (for details see [11]). Precisely the following
theorems hold.
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Theorem 3.3. Assume ðACÞ and ðuÞ or ðvÞ or ðwÞ. Then M is asymptotically
stable if F is asymptotically stable near M.

Theorem 3.4. Assume ðACÞ. If f a LuðxÞ and M is uniformly asymptotically
stable, then F is uniformly asymptotically stable near M.

4. The periodic case

The case in which f and M are both o-periodic in t for the same constant
o > 0 will be specified as the periodic case. In this case the properties f a LðxÞ,
f a LuðxÞ, f a LubðxÞ are equivalent. Moreover in the periodic case, the stability
and the asymptotic stability of M when occurring are uniform. This is obtained
by the same arguments as those used in [13] (Theorems 7.3 and 7.4) to prove the
statements when M ¼ R� fEg and E is an equilibrium. Under the conditions ðuÞ
or ðvÞ or ðwÞ (which are now only reduced to restrictions on F) even the stability
and the asymptotic stability of F near M when occurring are uniform. Indeed if
F is stable near M, M is (uniformly) stable by virtue of Theorem 3:1 and then F
is uniformly stable near M by virtue of Theorem 3:2. Similarly one may proceed
for asymptotic stability by the aid of Theorems 3:3, 3:4. Then in the periodic case
Theorems 3:1 and 3:3 are invertible. In other words the following theorem holds.

Theorem 4.1. Suppose that f and M are both o-periodic in t for the same con-
stant o > 0. Then, under condition ðACÞ and the restrictions on F in ðuÞ or ðvÞ or
ðwÞ, M is stable (asymptotically stable) if and only if F is stable (asymptotically
stable) near M.

In the periodic case, under condition ðACÞ, Lemma 2:1 is invertible. Indeed as-
sume F a ðHÞF and F is weakly F-positive definite near M. From the proof of
Theorem 3:1, in case ðuÞ, it follows that M is stable. Hence, by virtue of Theorem
4:1, F is stable near M.

Moreover, from Theorem 4:1 we derive a statement which is equivalent to
Theorem 2:1. Precisely the following corollary holds.

Corollary 4.1. Under the conditions ðiÞ, ðiiÞ of Theorem 2:1, the origin is
stable if and only if ker F is stable near R� f0g.

Thus, if the conditions ðiÞ, ðiiÞ are satisfied, the property in Theorem 2:1 that F
is continuous at x ¼ 0 uniformly on R�, is equivalent to the property that
F ¼ ker F is stable near R� f0g (or also to the property that F is weakly F-
positive definite near R� f0g).

The asymptotic stability problems considered in [4] may be obtained by using
Theorem 4:1. For simplicity we consider the case that the origin 0 is an equilib-
rium and M ¼ R� f0g. Consider the autonomous system

_yy ¼ Ayþ uðy; zÞ;
_zz ¼ Bzþ vðy; zÞ;

ð4:1Þ
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y a Rm, z a Rn�m. Here A and B are square matrices, the eigenvalues of A have
zero real parts and the eigenvalues of B have negative real parts. Finally u and v
are C2 functions which vanish together with their derivatives at the origin. It
is known (see for instance [2], [3]) the existence of a di¤erential system S as-
sociated to (4:1) having the same regularity of (4:1) and such that: ð1Þ S co-
incides with (4:1) for jjyjj < d, d > 0 small; ð2Þ S admits an invariant manifold
in R� Rn, F ¼ fðt; y; zÞ : t a R; y a Rm; z ¼ gðyÞg g a C2, gð0Þ ¼ 0. Moreover
F is exponentially asymptotically stable for S near M ¼ R� f0g. The set
F� ¼ fðt; y; zÞ : t a R; jjyjj < d; z ¼ gðyÞg is locally invariant for (4:1). Clearly
the unconditional stability properties of M and the stability properties of M on
F� are preserved when the original system (4:1) is replaced by S and F� is
replaced by F. Thus the result in [4] relative to the asymptotic stability of equilib-
rium (expressed in terms of F� and system (4:1)) may be stated in terms of the
invariant manifold F and system S, by saying that for S the asymptotic stability
of M on F implies the asymptotic stability of M. Therefore the result is an imme-
diate consequence of Theorem 4:1.

Similarly it may be treated the asymptotic stability problem of a o-periodic
solution xðtÞ of a o-periodic di¤erential equation. In this case F and M are o-
periodic subsets of R� Rn and M ¼ fðt; xÞ : t a R; x ¼ xðtÞg.

In Section 3 and in the present one, condition ðACÞ has always been assumed.
It is natural to consider the problem of weaken condition ðACÞ. For example for
system (4:1) if M ¼ R� f0g is stable on F, then M is unconditionally stable [4].
This is due to the pecularity of system (4:1), in particular to the property that the
asymptotic stability of F near M is of exponential type. This last property cannot
be in general avoided. Indeed consider the system:

_yy ¼ yz2

_zz ¼ �z3;
ð4:2Þ

with y; z a R. The set F ¼ fðt; y; zÞ : z ¼ 0g is invariant and asymptotically
stable. With respect to the solutions lying on F the origin ð0; 0Þ is nonasymptoti-
cally stable. In contrast, ð0; 0Þ is unstable. Indeed (4:2)1 by means of (4:2)2 may
be written as

_yy ¼ yz20
1þ 2z20ðt� t0Þ

from which one has

yðt; t0; y0; z0Þ ¼ y0½1þ 2z20ðt� t0Þ�1=2:

Hence our assert follows.
In a forthcoming paper, still in progress, we are analyzing in the periodic case

the possibility to transfer the total stability properties from an invariant manifold
F to the whole space, provided that F is asymptotically stable near M.
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5. Bifurcation results for periodic differential equations

Up to now we have considered the problem of stability of s-compact sets by its
reduction to the problem of stability on an invariant manifold. Since the bifurca-
tion phenomena are normally connected to drastic changes of the stability prop-
erties under perturbations, it appears clearly the possibility to use the stability
results in Sections 3:4 in order to reduce even problems of existence and stability
of bifurcating sets to analogous problems on spaces with a smaller number of
dimensions. In the present section we restrict the analysis to cases in which the
unperturbed system as well as the perturbed one are all periodic with the same
period.

We need some preliminaries. Consider the di¤erential system

_xx ¼ f ðt; xÞ;ð5:1Þ

with f a CðR� Rn;RnÞ, f a LðxÞ, and periodic in t for some constant o > 0.
Without any loss of generality in the treatment of our local problems we may
and do assume the existence of the solutions for every t in R (see the proof of
Theorem 3:1 in the case ðvÞ).

Let Z be the set of all integers. For any fixed t0 a R consider the map
Pt0 : Z� Rn ! Rn defined by Pt0ði; xÞ ¼ xðt0 þ io; t0; xÞ. Clearly Pt0ð0; xÞ ¼ x
and Pt0ði1 þ i2; xÞ ¼ Pt0ði1;Pt0ði2; xÞÞ for any i1; i2 a Z and x a Rn. Hence Pt0

defines an autonomous discrete dynamical system.
These maps may be fruitfully used in the analysis of invariance, attractivity

and stability properties of o-periodic sets. In this line we give here some lemmas
which are preliminary to our treatment of the bifurcation problem for periodic
di¤erential systems from an equilibrium fEg. These lemmas do not appear in
[12]. Besides the interest in themselves, they are here employed in order to make
more clear the proofs of the bifurcations theorems in [12] and, mainly, to obtain
for the perturbed di¤erential systems an additional statement on the asymptotic
behavior of all the trajectories starting from a fixed s-neighborhood of R� fEg.
From now on, if P is any property which occurs with respect to Pt0 , the property
will be denoted by Pt0 � P.

Let M be an s-compact o-periodic set in in R� Rn and let N be an s-compact,
o-periodic, positively invariant s-neighborhood of M.

Lemma 5.1. The set M is the largest invariant set contained in N if and only if for
every t0 a R the section Mðt0Þ is the largest Pt0 -invariant set contained in Nðt0Þ.

Proof. The necessity is trivial. In order to prove the su‰ciency, we only need to
prove that, given any fixed t� in R and any t0 > t�, Mðt0Þ is the image of Mðt�Þ
under (5:1). Assume for instance t� ¼ 0. Letting G ¼ xðt0; 0;Mð0ÞÞ, we have

Pt0ði;GÞ ¼ xðt0 þ io; t0;GÞ ¼ xðt0 þ io; t0; xðt0; 0;Mð0ÞÞÞ
¼ xðt0 þ io; io; xðio; 0;Mð0ÞÞÞ ¼ xðt0 þ io; io;MðioÞÞ
¼ xðt0; 0;MðioÞÞ ¼ xðt0; 0;Mð0ÞÞ ¼ G:
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Thus G is Pt0 -positively invariant and GJNðt0Þ. Therefore GJMðt0Þ. Con-
sider the set W ¼ xð0; t0;Mðt0ÞÞ and replace Pt0 by P0. We obtain

P0ði;W Þ ¼ xðio; 0;WÞ ¼ xðio; 0; xð0; t0;Mðt0ÞÞÞ
¼ xðio; t0 þ io; xðt0 þ io; t0;Mðt0ÞÞÞ ¼ xðio; t0 þ io;Mðt0 þ ioÞÞ
¼ xð0; t0;Mðt0ÞÞ ¼ W :

Hence W JMð0ÞJNð0Þ. Since xðt0; 0;WÞ ¼ Mðt0Þ, it follows Mðt0ÞJG.
Hence G ¼ Mðt0Þ and the proof is complete. r

Even the attractivity or stability properties of M for system (5:1) may be reduced
to the same properties for each section Mðt0Þ under Pt0 .

Lemma 5.2. Suppose that M is invariant. Let ðt0; x0Þ a N, be such that
rðPt0ði; x0Þ;Mðt0ÞÞ ! 0 as i ! þl. Then

rðxðt; t0; x0Þ;MðtÞÞ ! 0 as t ! þl:

Proof. It is easy to see that given any b > 0 we can find dðbÞ a ð0; bÞ such that
rðx0;Mðt0ÞÞ < dðbÞ implies rðxðt; t0; x0Þ;MðtÞÞ < b for any t0 and for any
t a ½t0; t0 þ o�. This follows from the s-compactness and invariance of M,
and the uniform Lipschitz condition on f . Let k ¼ kðbÞb 0 be such that
rðPt0ði; x0Þ;Mðt0ÞÞ < dðbÞ for any ib k. Consider xðt; t0; x0Þ for tb t0 þ ko. In
particular for t a ½t0 þ ko; t0 þ ðk þ 1Þo� we have:

xðt; t0; x0Þ ¼ xðt; t0 þ ko; xðt0 þ ko; t0; x0ÞÞ ¼ xðt� ko; t0; x
�Þ;

x� ¼ xðt0 þ ko; t0; x0Þ ¼ Pt0ðk; x0Þ;

with t� ko a ½t0; t0 þ o� and x� a Bn½Mðt0Þ; dðbÞ�. Hence

rðxðt; t0; x0Þ;MðtÞÞ < b Et a ½t0 þ ko; t0 þ ðk þ 1Þo�:

Moreover xðt0 þ ðk þ 1Þo; t0; x0Þ ¼ Pt0ðk þ 1; x0Þ a Bn½Mðt0Þ; dðbÞ�: Then we
may proceed as before in any interval ½t0 þ io; t0 þ ðik þ 1Þo�, ib k. In conclu-
sion we obtain

rðxðt; t0; x0Þ;MðtÞÞ < b Etb t0 þ ko:

Since b > 0 is arbitrary, then rðxðt; t0; x0Þ;MðtÞÞ ! 0 as t ! þl. r

Lemma 5.3. Suppose that M is invariant. Then M is asymptotically stable under
(5:1) if and only if for every t0 the section Mðt0Þ is Pt0 -asymptotically stable.

Proof. The necessity is trivial because the application t ! MðtÞ is o-periodic.
Prove the su‰ciency. As in the proof of Lemma 5:2 we may associate with each
b > 0 a number dðbÞ a ð0; bÞ such that

rðx;Mðt0ÞÞ < dðbÞ implies rðxðt; t0; xÞ;MðtÞÞ < b Et a ½t0; t0 þ o�:ð5:2Þ
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Fix t0 and let s ¼ sðt0Þ denote any positive number such that the set
fx : rðx;Mðt0ÞÞa sg is contained in Nðt0Þ. Since the section Mðt0Þ is a Pt0 -
uniform attractor we have that relatively to dðbÞ there exists an integer
hðt0; bÞ > 0 such that rðx0;Mðt0ÞÞa s implies rðxðt0 þ jo; t0; x0Þ;MðtÞÞ < b for
all b a ð0; sÞ, and any integer j > hðt0; bÞ. Consequently by virtue of (5:2) it
follows

rðx0;Mðt0ÞÞa s implies rðxðt; t0; xÞ;MðtÞÞ < b Etb hðt0; bÞ:ð5:3Þ

Since b > 0 is arbitrary, then rðxðt; t0; xÞ;MðtÞÞ ! 0 as t ! þl. Therefore M is
attractive. Moreover there exists a number d�ðbÞ a ð0; dðbÞÞ such that

rðx0;Mðt0ÞÞ < d�ðbÞ implies rðxðt; t0; xÞ;MðtÞÞ < b Et a ½t0; hðt0; bÞ�

By virtue of (5:3) we conclude that M is even stable and then asymptotically
stable. The proof is complete. r

Consider now the family S of di¤erential systems, fðSmÞ : mb 0g, defined by

_xx ¼ f ðt; x; mÞ;ðSmÞ

with f a C1ðR� Rn � Rþ;RnÞ and periodic in t for some constant o > 0. We
assume f ðt; 0; mÞC 0 so that ðSmÞ admits the null solution for every mb 0. As
for equation (5:1) we assume the existence of the solutions for every t in R. Sys-
tem ðSmÞ will be specified as the unperturbed system if m ¼ 0 and as a perturbed
one if m > 0. We denote by M0 the so-called null set, M0 ¼ R� f0g, and by
xðt; t0; x0; mÞ the solution through ðt0; x0Þ. The case that we examine concerns
the bifurcation from M0 into invariant, o-periodic, s-compact sets in R� Rn,
through the value m ¼ 0 of the parameter. Exactly the following definition will
be assumed.

Definition 5.1. We say that m ¼ 0 is a bifurcation value (on the right) for the
family S at x ¼ 0 if there exist m� > 0 and a family fMmg, m a ð0; m�Þ, of s-
compact and o-periodic subsets of ðR� RnÞ �M0 having the following properties:

ðaÞ for each m a ð0; m�Þ, Mm is invariant under ðSmÞ;
ðbÞ MmðtÞ ! f0g as m ! 0 uniformly in t.

Firstly we prove the following theorem.

Theorem 5.1. Suppose that the origin x ¼ 0 is asymptotically stable for m ¼ 0
and completely unstable (i.e. asymptotically stable in the past) for m > 0. Then
m ¼ 0 is a bifurcation value on the right. Precisely there exist m� > 0 and a compact
s-neighborhood H of M0 such that for each m a ð0; m�Þ the largest s-compact invari-
ant set of ðSmÞ contained in H �M0, say Mm, is nonempty, o-periodic, and the fam-
ily fMmg satisfies ðbÞ in Definition 5:1. Moreover each Mm is asymptotically stable.
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Proof. ðiÞ Since the origin is asymptotically stable for m ¼ 0, there exist a
number g > 0 and a function V a C1ðR� Rn;RÞ, o-periodic in t, such that

aðjjxjjÞaVðt; xÞa bðjjxjjÞ;ð5:4Þ
_VVðS0Þðt; xÞa�cðjjxjjÞ;ð5:5Þ

for all t a R and x a BnðgÞ [6, 7]. Here a, b, c are continuous strictly increasing
functions from Rþ into Rþ with að0Þ ¼ bð0Þ ¼ cð0Þ ¼ 0, and the left hand side
of (5:5) is the derivative of V along the solutions of the unperturbed system.
Choose l a ð0; aðgÞÞ. From (5:5) by using continuity arguments it follows the
existence of m� > 0 such that for any m a ð0; m�Þ the derivative of V along the
solutions of the perturbed system ðSmÞ satisfies the condition

_VVðSmÞðt; xÞa� cðb�1ðlÞÞ
2

Et a R; Ex a BnðgÞ � Bnðb�1ðlÞÞ:ð5:6Þ

By (5:4), (5:5), (5:6), we easily see that the set

H ¼ fðt; xÞ : jjxjja g;Vðt; xÞa lg

has the following properties: ð1Þ each section HðtÞ is a compact neighborhood of
x ¼ 0 and is contained in the open ball BnðgÞ; ð2Þ for any m a ð0; m�Þ H is under
ðSmÞ asymptotically stable and invariant only in the future; ð3Þ the region of
attraction of H contains a fixed s-neighborhood H � of H and we will choose
H � ¼ fðt; xÞ : jjxjja g;Vðt; xÞa l�g, for some l� > l; ð4Þ H is o-periodic, that
is HðtÞ ¼ Hðtþ oÞ.

ðiiÞ For any fixed t0 a R and m a ð0; m�Þ consider the above autonomous
discrete dynamical system Pt0 ¼ Pt0m : Z� Rn ! Rn defined by Pt0ði; xÞ ¼
xðt0 þ io; t0; x; mÞ. Let Lþ

t0
ðxÞ ¼ Lþ

t0m
ðxÞ, L�

t0
ðxÞ ¼ L�

t0m
ðxÞ be the the positive and

the negative limit sets of x under Pt0 . Precisely:

Lþ
t0
ðxÞ ¼ fx a Rn : there exists a sequence ðinÞ; in ! þl;

with Pt0ðin; xÞ ! xg;
L�

t0
ðxÞ ¼ fx a Rn : there exists a sequence fing; in ! �l;

such that Pt0ðin; xÞ ! xg:

Moreover let Jþ
t0
ðxÞ ¼ Jþ

t0m
ðxÞ, J�

t0
ðxÞ ¼ J�

t0m
ðxÞ be the positive and the negative

prolongational limit set of x under Pt0 . Precisely:

Jþ
t0
ðxÞ ¼ fx a Rn : there exist two sequences fing; in ! þl; fxng; xn ! x;

such that pðin; xnÞ ! xg;
J�
t0
ðxÞ ¼ fx a Rn : there exist two sequences fing; in ! �l; fxng; xn ! x;

such that pðin; xnÞ ! xg:
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The Pt0 -attractivity and the Pt0 -uniform attractivity for compact sets in Rn may
be characterized by conditions on the above limit and prolongational limit sets,
see [1]. In [1] the proofs are given for ordinary autonomous dynamical systems,
but all the statements we employ here are valid even for autonomous discrete
dynamical systems and are obtained by the same arguments. The set Hðt0Þ is
a Pt0 -uniform attractor and its region of uniform attraction contains H �ðt0Þ.
Therefore x a H �ðt0Þ implies Jþ

t0
ðxÞA j and Jþ

t0
ðxÞJHðt0Þ. Let ft0 ¼ ft0m be

the largest Pt0 -invariant subset of Hðt0Þ. Since Jþ
t0
ðxÞ is Pt0 -invariant, then

Jþ
t0
ðxÞJ ft0 . Moreover ft0 contains the region A�

t0
ð0Þ ¼ A�

t0m
ð0Þ of negative attrac-

tion of the origin of Rn under Pt0 . Indeed even A�
t0
ð0Þ is Pt0 -invariant and is con-

tained in Hðt0Þ. Clearly the set Mmðt0Þ :¼ ft0 � A�
t0
ð0Þ is the largest Pt0 -invariant

compact set contained in Hðt0Þ � f0g. We prove that Mmðt0Þ is a Pt0 -uniform
attractor and the region of uniform attractivity contains H �ðt0Þ � f0g. Assume
x a H �ðt0Þ � f0g. Since Jþ

t0
ðxÞJ ft0 , it remains only to show that y a Jþ

t0
ðxÞ im-

plies y B A�
t0
ð0Þ. We have x a J�

t0
ðyÞ. Therefore if y a A�

t0
ð0Þ, then J�

t0
ðyÞ ¼ f0g

and consequently x ¼ 0. This is a contradiction and the assert is proved. Since
Hðt0Þ ¼ Hðt0 þ oÞ and Pt0 remains unchanged when t0 is replaced by t0 þ o,
we have Mmðt0Þ ¼ Mmðt0 þ oÞ.

For each m a ð0; m�Þ define now the set Mm with the condition that its section
at any time t0 a R isMmðt0Þ ¼ ft0 � A�

t0
ð0Þ. ThenMm is a o-periodic set in R� Rn.

It is immediate to recognize that Mm is s-compact and that MmðtÞ ! f0g as m ! 0
uniformly in t.

ðiiiÞ Since for any t0 in R, Mmðt0Þ is the largest Pt0 -invariant set, contained in
Hðt0Þ � f0g, by virtue of Lemma 5:1 it follows that Mm is the largest s-compact
invariant set under ðSmÞ contained in H �M0. Finally, since for any t0 in R,
Mmðt0Þ is a Pt0 -uniform attractor, and then Pt0 -asymptotically stable, by Lemma
5:3 we recognize that Mm is asymptotically stable. Thus Mm satisfies all the con-
ditions in Definition 5:1. The proof is complete. r

In the autonomous case the sets Mm are t-independent. Precisely one has:

Proposition 5.1. Let us assume that ðSmÞ is autonomous for each m > 0. Then
the bifurcating sets Mm are t-independent, that is Mm ¼ R� Cm, where Cm is the
largest compact invariant subset of Rn disjoint from the origin and contained in a
fixed positively invariant neighborhood of the origin.

Clearly, since in Proposition 5:1 MmðtÞCCm for any t, as observed before, we
may consider all the properties associated with Mm as properties of the sets Cm

of Rn. Precisely we may say that the sets Cm are asymptotically stable and that
Cm ! f0g as m ! 0.

We treat now the case that the bifurcating sets lie on an invariant manifold.
Consider again the above family of di¤erential systems and assume in addition
that each ðSmÞ admits a n-dimentional invariant manifold (0 < n < n)

Fm ¼ fðt; y; zÞ : t a R; y a Rn; z ¼ gðt; y; mÞg;
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where g a C1ðR� Rn � Rþ;Rn�nÞ, g is o-periodic in t, its partial derivatives are
locally Lipschitzian in y, and gðt; 0; mÞC 0. We notice that the above conditions
ensure g a L 0

ubðyÞ. Let u ¼ z� gðt; y; mÞ. In terms of y, u each ðSmÞ may be
written as

_yy ¼ Yðt; y; u; mÞ;
_uu ¼ Uðt; y; u; mÞ;

ðSmÞ

where Y , U are continuous and locally Lipschitzian in ðy; uÞ, Yðt; 0; 0; mÞC 0,
Uðt; y; 0; mÞC 0. Moreover in the ðt; y; uÞ-space the manifolds Fm coincide all
with the manifold F ¼ R�C with

C ¼ fðy; uÞ : u ¼ 0g:ð5:7Þ

The bifurcating sets of the family S ¼ fðSmÞ; mb 0g are homeomorphic to those
of the original family S while the stability properties involved are clearly the
same. Letting now M0 ¼ R� fð0; 0Þg and considering the di¤erential system of
the solutions of ðSmÞ lying on F,

_yy ¼ Yðt; y; 0; mÞ:ðSymÞ

we are at last in position to state the main theorem of the section.

Theorem 5.2. Suppose that: ð1Þ the solution y ¼ 0 of ðSymÞ is asymptotically
stable if m ¼ 0 and completely unstable if m > 0 small; ð2Þ F is asymptotically
stable near M0 for all mb 0 small. Then m ¼ 0 is a bifurcation value on the right
for the family S. Precisely there exist m� > 0 and a compact s-neighborhood H of
M0 such that for each m a ð0; m�Þ the largest s-compact invariant set of ðSmÞ con-
tained in H �M0, say Mm, is nonempty, lies on F, is o-periodic, asymptotically
stable, and the family fMmg satisfies ðbÞ in Definition 5:1.

Proof. Assumption ð1Þ for the part relative to m ¼ 0 is equivalent to say that
the null set M0 is for m ¼ 0 asymptotically stable on F. Taking into account as-
sumption ð2Þ, we recognize then by virtue of Theorem 4:1 that M0 is for m ¼ 0
(unconditionally) asymptotically stable. Hence, as we have seen in the proof of
Theorem 5:1, if g > 0 and m� > 0 are small, there exists for any m a ð0; m�Þ a com-
pact s-neighborhood H of M0 which is o-periodic and asymptotically stable.
Moreover each section HðtÞ is contained in BnðgÞ. In the following we choose g
smaller than the number s in Remark 2:1.

By virtue of Theorem 5:1 applied to the restriction of system ðSmÞ to F (that
is to the subspace u ¼ 0), we recognize that if m� > 0 is su‰ciently small then
for each m a ð0; m�Þ there exists for system ðSmÞ a set Mm which has the following
properties: ðiÞ Mm is the largest s-compact invariant subset of F contained in
½HBF� �M0; ðiiÞ Mm is o-periodic, asymptotically stable with respect to the
initial perturbations lying on F; ðiiiÞ MmðtÞ ! fð0; 0Þg as m ! 0 uniformly in t.
Moreover, since for every t in R the section HðtÞ and then the section MmðtÞ
are contained in BnðgÞ, we see that for our choice of g the manifold F is
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asymptotically stable near each Mm. By virtue of Theorem 4:1 it follows that the
sets Mm are all unconditionally asymptotically stable.

In order to complete the proof, it only remains to prove that for any
m a ð0; m�Þ, Mm is the largest invariant s-compact subset of H �M0. Let cm be
any trajectory of ðSmÞ entirely contained in H and let t0, x0, x0 ¼ ðy0; u0Þ, be
any point of cm. Clearly by virtue of the above condition ðiÞ it is su‰cient to
prove that x0 a C. For this consider as in the proof of Theorem 5:1 the autono-
mous discrete dynamical system Pt0 ¼ Pt0m : Z� Rn ! Rn relative now to sys-
tem ðSmÞ. Because of the o-periodicity of H, it follows that the orbit of x0 under
Pt0 is entirely contained in Hðt0Þ. Suppose then x0 B C. The negative limit set of
x0 under Pt0 , L

�
t0
ðx0Þ, is nonempty, contained in Hðt0Þ, Pt0 -invariant, and com-

pact. One has L�ðx0ÞB ½CBHðt0Þ� ¼ j, otherwise x0 would be for ðSmÞ weakly
attracted to C in the past and then F could not be stable near M0. Let d > 0 be
the distance between the two compact sets L�

t0
ðx0Þ and CBHðt0Þ, and let x be

any point in L�
t0
ðx0Þ. Because of the Pt0 -invariance of L

�
t0
ðx0Þ, we have

rðPt0ði; xÞ;CBHðt0ÞÞ > d for every integer ib 0:ð5:8Þ

On the other hand x is attracted to C under Pt0 and then Lþ
t0
ðxÞJCBHðt0Þ.

Thus we get a contradiction and the proof is complete. r

We conclude by the statement announced before which completes, under the
assumptions of Theorem 5:2, the analysis, only partially carried out in [12],
of the asymptotic behavior in the future of the solutions xðt; t0; x0; mÞ, with
x0 ¼ ðy0; u0Þ, ðt0; x0Þ a H and m > 0 small. Incidentally we notice that this fur-
ther result has allowed us to recognize and correct an overview in the proof of
Theorem 3:2 in [12].

Theorem 5.3. Let ðt0; x0Þ a H, that is t0 a R and x0 a Hðt0Þ. Assume that, for a
given m a ð0; m�Þ, rðxðt; t0; x0; mÞ;MmðtÞÞ n 0 as t ! þl, then jjxðt; t0; x0; mÞjj ! 0
as t ! þl.

Proof. Let G ¼ fðt; xÞ : t a R; x a HðtÞ � AðMmðtÞÞBHðtÞg, where AðMmðtÞÞ
is the region of attraction of MmðtÞ under Pt. We observe that AðMmðtÞÞ is open
and Pt-invariant. Hence G is s-compact and Pt-positively invariant, and fð0; 0Þg
is the largest Pt-invariant set contained in GðtÞ. From our assumptions and by
virtue of Lemma 5:2, then it follows that rðPt0ði; x0Þ;Mmðt0ÞÞ n 0 as t ! þl.
Thus x0 B AðMmðt0ÞÞ and then x0 a Gðt0Þ. It follows that x0 is attracted to the
origin ð0; 0Þ under Pt0 . Indeed L�

t0
ðx0Þ is nonempty. Moreover it is Pt0 -invariant

and then it is contained in the largest Pt0 -invariant subset of Gðt0Þ), that is it
coincides with fð0; 0Þg. By virtue again of Lemma 5:2, now applied to the null
set M0 and for N ¼ G, we have rðxðt; t0; x0; mÞ;M0ðtÞÞ ! 0 as t ! þl. Since
M0ðtÞC fð0; 0Þg, the proof is complete. r

More detailed information on the structure of the bifurcating sets Mm may be
found in the cases n ¼ 1 and n ¼ 2 [12]. In the first case, for any t, FðtÞ is homeo-
morphic to a straigthline fðy; uÞ : u ¼ 0g passing through the origin. Each section
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MmðtÞ is homeomorphic to the union of two segments located in the regions y > 0
and y < 0 respectively. The end points are fixed with respect to the discrete dy-
namical system induced on F, while their motion with respect to the di¤erential
system is periodic with the same period o of the system. If n ¼ 2, in the autono-
mous case we find results already known in the usual treatment of Hopf bifurca-
tion although now the asymptotic stability of F near the origin is not necessarily
exponential. In the general periodic case instead, under some additional assump-
tion we find that the sections MmðtÞ are homeomorphic to Jordan curves and then
the sets Mm are homeomorphic to tori by interpreting t as an angular variable.
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