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1. Introduction

We consider the Hamilton-Jacobi equation

uþ gHðx;‘uÞ ¼ 0ð1:1Þ

where the Hamiltonian Hðx; pÞ : RN � RN ! R is not coercive in p. In some
cases the lack of coerciveness of the Hamiltonian can be overcome by chancing
the underlying geometry with a suitable family of vector fields. More precisely we
consider the case Hðx; t; qÞ ¼ Hðx; t; sðxÞpÞ where sðxÞ is a m�N matrix,
m < N and H is coercive in q ¼ sðxÞp. Here the rows of the matrix sðxÞ are con-
sidered as coe‰cients of vector fields satisfying the Hörmander condition, which
generate a Carnot group and are left translation invariant, therefore sðxÞ‘u is the
horizontal gradient in the Carnot group denoted in the following by Dhu, see sec-
tion 2.

Here we are interested in existence and uniqueness of viscosity solutions of
the problem ð1:1Þ and in their Lipschitz continuity (in the group). We recall
that the Lipschitz continuity in the group is the Lipschitz continuity for the right
translations with respect to the Carnot-Carathéodory (left translation invariant)
distance on the group and that the Lipschitz continuity is equivalent to the
boundness of the horizontal gradient. We observe that in the Euclidean case
(sðxÞ ¼ I ) with Hðx;‘uÞ ¼ Hð‘uÞ � f ðxÞ, where f ðxÞ is Lipschitz continuous,
the Lipschitz continuity of u may easily be deduced from comparison results;
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this proof can not be generalized to the case of Carnot groups, since the vector
fields and the Carnot-Carathéodory distance are left translation invariant and we
are interested in the Lipschitz continuity in the group (i.e. the Lipschitz continuity
for the right translations with respect to the Carnot-Carathéodory distance).

We recall that the notion of viscosity solution has been introduced by M. G.
Crandall, P. L. Lions, [8]; existence, uniqueness and comparison results for vis-
cosity solutions of (1.1) in the coercive Euclidean case have been summarized in
the paper [14] and in the books [1], [2]. We recall also the paper [9], where the
existence of viscosity solutions is proved using the Perron’s method.

Concerning the case of Carnot groups an existence and comparison result of
(Lipschitz continuous in the group) viscosity solutions has been proved in the
case of Heisenberg group by I. Birindelli, J. Wigniolle, [4], and in the general
case by B. Stro¤olini, [15], but, in the last paper, it seems that some commutativ-
ity conditions on the group are tacitly assumed. We recall also that in the evolu-
tion case Hopf-Lax-Oleinik type representation formulas has been proved in [12]
for the case of the Heisenberg group and in [5] for general Hörmander’s vector
fields (in this last paper a review of the result of Hopf-Lax-Oleinik type represen-
tation formulas in the subelliptic framework is given).

The method used to prove our result is founded on a careful choice of the pe-
nalization functions in the doubling variables method, which take into account
some suggestions of [4], and on the results on the Perron’s method given [9].

In section 2, we give the fundamental definitions concerning Carnot groups
and some examples of Carnot groups and in section 3 we give the notion of vis-
cosity solution in the framework of Carnot groups. In sections 4 and 5 we give
the results, which are the main goal of this paper, and their proofs.

2. Carnot groups

We consider RN as a Carnot group with a group operation (translation) denoted
by : and a family of dilations, compatible with the Lie structure.

A Carnot group G of step rb 1 is a simply connected nilpotent Lie group,
whose Lie algebra g is stratified. This means that g admits a decomposition as a
vector space sum

g ¼ g1 a g2 a � � �a gr

such that

½g1; gj� ¼ gjþ1

for j ¼ 1; . . . ; r where gk ¼ j when k > r. Let mj ¼ dim gj and denote by Xi; j a
basis of gj formed by left invariant vector fields. We observe that G considered
as a manifold has dimension N ¼ m1 þ � � � þmr.

For convenience we fix a Riemannian metric in g so that X ¼ fXi; jg is an
orthonormal frame and the Riemannian volume element coincides with the
Haar measure on G and then with the Lebesgue measure on RN .
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The horizontal tangent space at a point x a G is the m1 dimensional subspace
linearly spanned by X1;1ðxÞ; . . . ;Xm1;1ðxÞ. In the following we will denote by
X1; . . . ;Xm a frame of vector fields spanning the firs layer g1. The exponential co-
ordinates are given by the di¤eomorphism F : RN ! G defined by

F ðxÞ ¼ exp
�Xr

j¼1

Xmj

i¼1

xi; jXi; j

�

We denote xj ¼ ðxi; jÞi¼1;...;mj
, j ¼ 1; . . . ; r.

In the following we consider G endowed with the exponential coordinates;
then the mapping ðx; hÞ ! x:h has polynomial entries.

If we use the exponential coordinates the following formula holds:

Xa ¼
q

qxa;1
þ
Xr
j¼2

Xms

i¼1

bi
j;aðx1ðxÞ; . . . ; xs�1ðxÞÞ

q

qxi; j
ð2:1Þ

a ¼ 1; . . . ;m, where each bi
j;a is a polynomial of weighted degree j � 1. By

weighted degree we mean that the layer gj in the stratification of g has degree j.
Then each homogeneous monomial xa1

1 . . . xar
r with multindices aj ¼ ða1; j; . . . ;

amj ; jÞ, j ¼ 1; . . . r has a weighted degree p if

Xr
j¼1

j
�Xmj

i¼1

ai; j

�
¼ p

There is a family of dilations compatible with the group operation:

dlðxÞ ¼ ðlx1;1; . . . ; lxm;1; l
2x1;2; . . . ; l

2xm2;2; . . . ; l
rxmr; rÞ

With the above notations the horizontal subspace in the point x can be identified
by the left translation by x of G1 (G1 denotes the subspace of RN corresponding
to g1).

A horizontal curve gðtÞ, t a ½0; 1�, is a piecewise smooth curve whose tangent
vector g 0ðtÞ, whenever it exists, is in the horizontal tangent space in gðtÞ.

Given two points x and h we consider the set

Gðx; hÞ ¼ fg horizontal curve: gð0Þ ¼ x; gð1Þ ¼ hg

By Chow’s accessibility theorem, [3], the above set is never empty.
The Carnot-Carathéodory distance is defined as the infimum of the length of

horizontal curves of the set G:

dCCðx; hÞ ¼ inf
Gðx;hÞ

Z 1

0

jg 0ðtÞj dt
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The Carnot-Carathéodory ball of radius R centered at x is given by

Bðx;RÞ ¼ fh a G : dCCðx; hÞ < Rg

The Carnot-Carathéodory gauge is defined by

jxjCC ¼ dCCð0; xÞ

We recall that dCCðx; hÞ is left translation invariant and gives a topology on G,
which is equivalent to the Euclidean one.

The important property that jxjCC is a viscosity and a.e. solution of the hori-
zontal eikonal equation in RNn0 has been proved by Monti and Serra-Cassano,
[13].

A smooth gauge in G is defined by

jxjG ¼
�Xr

j¼1

�Xmj

i¼1

jxi; jj2
�r!=j�1=2r!

The following result holds, [3]:

Theorem 2.1. We have

jxjCC U jxjG U
Xr
j¼1

Xmj

i¼1

jxi; jj1=j

measðBð0;RÞÞURQ

where Q ¼
Pr

j¼1 jmj is called the homogeneous dimension of G.

As a consequence of Theorem 2.1 we have that the Lipschitz continuity (for the
right translations) with respect to the Carnot-Carathéodory distance or with re-
spect to the smooth gauge are equivalent.

Examples of Carnot groups are the Heisenberg group and the Engel group.

2.1. The Heisenberg group

The Heisenberg group can be identified with R2Nþ1 endowed with the non com-
mutative group law

ðx; y; tÞ:ðx 0; y 0; t 0Þ ¼
�
xþ x 0; yþ y 0; tþ t 0 � 1

2
ð3x; y 04� 3x 0; y4Þ

�

where x; y a RN and t a R. The Heisenberg algebra is splitted in V1 aV2 where
V1 ¼ R2N � f0g and V2 ¼ f0g � R and it is generated by the vector fields
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Xj ¼
q

qxj
þ 1

2
yj

q

qt

Yj ¼
q

qyj
� 1

2
xj

q

qt

The only non trivial commutator is

½Xj;Yj� ¼
q

qt

and the homogeneous dimension is 2N þ 2.

2.2. The Engel group

The Engel group can be identified with R4 endowed with the non commutative
group law

ðx; y; t; sÞ:ðx 0; y 0; t 0; s 0Þ ¼ ðxþ x 0; yþ y 0; tþ t 0 þQ2; sþ s 0 þQ3Þ

where

Q2 ¼
1

2
ðxy 0 � x 0yÞ

Q3 ¼
1

2
ðxt 0 � x 0tÞ þ 1

12
ðx2y 0 � xx 0ðyþ y 0Þ þ yðx 0Þ2Þ

The Engel algebra is splitted in V1 aV2 aV3 where V1 ¼ R2 � f0g � f0g,
V2 ¼ f0g � f0g � R� f0g, V3 ¼ f0g � f0g � f0g � R and it is generated by the
vector fields

X1 ¼
q

qx
� y

2

q

qt
�
� t

2
þ y

12
ðxþ yÞ

� q

qs

X2 ¼
q

qy
þ x

2

q

qt
þ
� t

2
þ x

12
ðxþ yÞ

� q

qs

The nontrivial commutators are

½X1;X2� ¼ X3 ¼
q

qt
þ ðxþ yÞ

2

q

qs

½X1;X3� ¼ ½X1; ½X1;X2�� ¼
q

qs

and the homogeneous dimension is 7.
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3. Viscosity solutions

In order to give a first definition of viscosity solution in G for the equation

Hðx; u;DhuÞ ¼ 0ð3:1Þ

where x a G, and Dh is the horizontal gradient in G and H : G � R� Rm ! R is
a continuous function, we must identify the first order jets adapted to our frame-
work.

Definition 3.1. A function u : G ! R is of class C1 (on G) if the horizontal de-
rivatives X1u; . . . ;Xmu are continuous (on G).

If u is a locally bounded function we define

u�ðxÞ ¼ inffvðxÞ j v a CðGÞ; vb u on Gg
¼ lim sup

h!x

uðhÞ

u�ðxÞ ¼ supfvðxÞ j v a CðGÞ; va u on Gg
¼ lim inf

h!x
uðhÞ

We observe that u� is upper semicontinuous and u� is lower semicontinuous.
We recall that if u is in C1 the following Taylor expansion holds

uðxÞ ¼ uðx0Þ þ 3Dhuðx0Þ; x�1
0 :x4þ oðjx�1

0 :xjGÞ

where x is the horizontal projection (of x).
If a function u is not necessarily smooth but merely upper semicontinuous (on

G) we denote by J 1;þ
u ðx0Þ, x0 a G, the collection of vectors p�ðx0Þ a Rm such that

uðxÞa uðx0Þ þ 3p�ðx0Þ; x�1
0 :x4þ oðjx�1

0 :xjGÞ

Definition 3.1. A locally bounded function u is a viscosity subsolution of equa-
tion (3.1) if for every x0 a G and for every p�ðx0Þ a J

1;þ
u� ðx0Þ we have

Hðx0; u�ðx0Þ; p�ðx0ÞÞa 0

If a function u is not necessarily smooth but merely lower semicontinuous (on
G) we denote by J 1;�

u ðx0Þ, x0 a G the collection of vectors p�ðx0Þ a Rm such that

uðxÞb uðx0Þ þ 3p�ðx0Þ; x�1
0 :x4þ oðjx�1

0 :xjGÞ

Definition 3.2. A locally bounded function u is a viscosity supersolution of
equation (3.1) if for every x0 a G and for every p�ðx0Þ a J 1;�

u�
ðx0Þ we have

Hðx0; u�ðx0Þ; p�ðx0ÞÞb 0
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We observe that J 1;þ
u� ðx0Þ (J 1;�

u�
ðx0Þ) may be empty, but the set where J 1;þ

u� ðx0Þ
(J 1;�

u�
ðx0Þ) is not empty is dense in G. The proof of the property is the same as in

Euclidean case, [2], replacing jx�xj2
e

by jde�1=rðx�1:xÞjr!G.

Definition 3.3. A locally bounded function u is a viscosity solution of equation
(3.1) if u� is a viscosity subsolution and u� is a viscosity supersolution of equation
(3.1).

There are di¤erent but equivalent definitions for viscosity subsolutions, super-
solutions and solutions of equation (3.1).

Definition 3.4. A locally bounded function u is a viscosity subsolution (superso-
lution) of equation (3.1) if for every function c a C1ðGÞ and every local maximum
(minimum) point x0 of ðu� � cÞ ððu� � cÞÞ on G we have

Hðx0; u�ðx0Þ;Dhcðx0ÞÞa 0

ðHðx0; u�ðx0Þ;Dhcðx0ÞÞb 0Þ

A locally bounded function u is a viscosity solution of equation (3.1) if u� is a vis-
cosity subsolution and u� is a viscosity supersolution of equation (3.1).

In the definition 3.4 the condition c a C1ðGÞ can be replaced by the condition
c a ClðGÞ. The definitions 3.1, . . . , 3.4 has been given in Euclidean setting in [8]
and [6]; the generalization of Definitions 3.1, . . . , 3.4 to the Carnot group setting
has been given in [15]. The equivalence of the three notions has been proved in
Euclidean setting by [8] and by [6]; in the Carnot groups setting the equivalence
is founded on the observation that the definitions in Euclidean setting and Carnot
group setting are equivalent.

Remark 3.1. We observe that an upper (lower) semicontinuos function u is a
viscosity sub- (super-) solution of the equation Hðx; u;DhuÞ ¼ 0 if and only if
v ¼ �u is viscosity super- (sub-) solution of the equation �Hðx;�v;�DhvÞ ¼ 0.

Proposition 3.1. A bounded upper (lower) semicontinuous function is Lipschitz
continuous on G if and only if ðJ 1;�

u ðxÞÞ J 1;þ
u ðxÞ is bounded on G.

Proof. We prove the result in the case of upper semicontinuous functions; in
the case of lower semicontinuous functions the proof is analogous.

Let u be a bounded upper semicontinuous functions such that jp�ðhÞjaL for
p�ðhÞ a J 1;þ

u ðxÞ. Let wðhÞ ¼ uðhÞ � uðxÞ, where x is fixed. We have that u is a vis-
cosity subsolution of the Hamilton-Jacobi equation

jDhuj ¼ L

Let M be such that jujaM then w is a viscosity subsolution of the Hamilton-
Jacobi equation

wþ jDhwj ¼ Lþ 2Mð3:3Þ
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in RNnx with the condition wðxÞ ¼ 0. Let now be vðhÞ ¼ ðLþ 2MÞdCCðx; hÞ.
Since dCCðx; hÞ is a viscosity solution of the eikonal equation in RNnx, the
function v is a Lipschitz continuous viscosity solution of the Hamilton-Jacobi
equation

vþ jDhvj ¼ ðLþ 2MÞ þ vð3:4Þ

in RNnx.
From (3.3) w is a viscosity subsolution of the equation (3.4) (with second term

ðLþ 2MÞ þ v).
We now postpone the proof that wa v to Theorem 5.1 and Remark 5.1.
Then we have

wðhÞa ðLþ 2MÞdCCðx; hÞð3:5Þ

Using the left translation invariance of Dh we obtain in the general case

uðhÞ � uðxÞa ðLþ 2MÞdCCðx; hÞð3:6Þ

Interchanging the role of x and h we obtain also

uðxÞ � uðhÞa ðLþ 2MÞdCCðx; hÞ

then

juðxÞ � uðhÞja ðLþ 2MÞdCCðx; hÞ

and the result is proved.

The following result is proved in [4] for the Heisenberg group and in [15] for
general Carnot groups in the case of continuous u. We need the result for upper
semicontinuous u and we give here a di¤erent proof as an easy corollary of Prop-
osition 3.1.

Corollary 3.2. Let u be a bounded upper semicontinuous viscosity subsolution
of jDhujaC then u is Lipschitz on G, i.e.

juðhÞ � uðxÞjaCdCCðh; xÞ

Proof. Let be p�ðxÞ a J 1;þ
u ðxÞ. Then we have jp�ðxÞjaC. The result follows

from Proposition 3.1.

4. Existence of the viscosity solution

In the present section we consider the problem

uþ gHðx;DhuÞ ¼ fð4:1Þ
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where H : G � Rm ! R is a continuous function, which is uniformly continuous
on G � B for every ball B (for the Carnot-Carathéodory distance) in G, f is uni-
formly continuous on G and g is a positive constant.

We assume:

f bounded in Gð4:2Þ
jHðx; 0ÞjaC on Gð4:3Þ

lim
jpj!þl

Hðx; pÞ ¼ þl uniformly on Gð4:4Þ

Theorem 4.1. Let the assumptions (4.2), (4.3) and (4.4) hold. There exists a
bounded Lipschitz continuous viscosity solution u of (4.1). Moreover every bounded
upper semicontinuous solution of (4.1) is Lipschitz continuous on G.

Proof. Corollary 3.2 gives easily the second part of Theorem 4.1.
For the first part of the result we consider our problem in the Euclidean

framework then H is a continuous Hamiltonian. The constant �M � gC
(M þ gC) is a viscosity sub- (super-) solution of our problem, where M ¼ sup j f j
and C is as in (4.3). Then there exists a bounded viscosity solution of problem
(4.1) u, which is the supremum of upper semicontinuous subsolutions v of (4.1)
with �M � gCa vaM þ gC, [9]. We recall that the notion of subsolution in
the Euclidean and in Carnot groups setting are equivalent and that the topolo-
gies on RN and on G are equivalent. From Corollary 3.2. and assumption (4.4)
we have that all upper semicontinuous subsolutions v with �M � gCa va
M þ gC are uniformly Lipschitz continuous on G, then u is Lipschitz continuous
on G.

5. Uniqueness and continuous dependence for the viscosity solution

The main di‰culty in this section derives (as pointed out in the introduction)
from the noncommutative nature of G. In fact, if we consider the function
jh�1:xj2rG , which is the natural substitute of jx� yj2 in the Euclidean case, we
have that

Dh;xðjh�1:xj2rG ÞADh;hðjh�1:xj2rG Þ

This fact does not allow to use for the proof of the uniqueness and continuous
dependence the method of [8] or its developments in [7], [10] (see also [1], [2]).
We have to choose carefully the penalization functions in the doubling variables
method and to take into account the Lipschitz continuity of upper semicontinu-
ous viscosity subsolutions of our equation.

Theorem 5.1. Let u ðvÞ be an upper (lower) semicontinuos viscosity subsolution
(supersolution) of the Hamilton-Jacobi equation (4.1). Assume that u (or v) is
Lipschitz continuous on G and that v (or u) is bounded then

ua v
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Proof. We assume that u is Lipschitz continuous and v is bounded; the proof in
the other case (v Lipschitz continuous and u bounded) is analogous.

Suppose by contradiction that supðu� vÞb d > 0; there exists a point x0 such
that uðx0Þ � vðx0Þ ¼ t > 0, for t suitable. Let Aeðx; hÞ and raðx; hÞ be defined as

Aeðx; hÞ ¼
Xr
j¼1

Xmj

i¼1

ðx�1:hÞi; j
er=j

�����
�����
2r=j

raðx; hÞ ¼
Xr
j¼1

Xmj

i¼1

a2rðjðx�1
0 :xÞi; j j

2r=j þ jðx�1
0 :hÞi; jj

2r=jÞ

where 0 < e, aa 1
2 .

Consider the function

Fe;aðx; hÞ ¼ uðxÞ � vðhÞ � Aeðx; hÞ � raðx; hÞ

Taking into account Theorem 2.1, we have that for fixed ðe; aÞ the function
Fe;aðx; hÞ diverges to �l as ðjxjG þ jhjGÞ ! þl.

Since ðu� vÞ is upper semicontinuous, for every e, a there exists a maximum
point ðxe;a; he;aÞ of Fe;aðx; hÞ.

We have

Fe;aðxe;a; xe;aÞ þFe;aðhe;a; he;aÞa 2Fe;aðxe;a; he;aÞð5:1Þ

We recall that u is Lipschitz continuous on G and we denote by L his Lipschitz
constant. We easily obtain from (5.1)

Aeðxe;a; he;aÞa 2ðM þ CLjx�1
e;a:he;ajGÞð5:2Þ

Then from Theorem 2.1 we have

Aeðxe;a; he;aÞaC1ð5:3Þ

From the inequality Fe;aðx0; x0ÞaFe;aðxe;a; he;aÞ we obtain

uðx0Þ � vðx0Þa uðxe;aÞ � vðhe;aÞ � Aeðxe;a; he;aÞ � raðxe;a; he;aÞ

Then from (5.3) we have

Xr
j¼1

Xmj

i¼1

a2rðjðx�1
0 :xe;aÞi; jj

2r=j þ jðx�1
0 :he;aÞi; jj

2r=jÞaC2 þ CLjx�1
0 :xe;ajG
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Then we obtain

Xr
j¼1

Xmj

i¼1

a4rðjðx�1
0 :xe;aÞi; jj

2r=j þ jðx�1
0 :he;aÞi; jj

2r=jÞ

a a2r
�
C2 þ C3L

�Xr
j¼1

Xmj

i¼1

jðx�1
0 :xe;aÞi; jj

1=j
��

a a2r
�
C4 þ C3L

�Xr
j¼1

Xmj

i¼1

jðx�1
0 :xe;aÞi; jj

r=j
��

From the above inequality we deduce easily the following estimate

raðxe;a; he;aÞaC5ð5:4Þ

We consider now Dh;xAeðxe;a; he;aÞ and Dh;hAeðxe;a; he;aÞ.

Lemma 5.2. We have

Dh;xAeðxe;a; he;aÞ ¼
1

e2r
2 ðjðx�1

e;a:he;aÞi;1j
2r�2ðh�1

e;a:xe;aÞi;1 þ oðe1=rÞÞi¼1;...;m

and

Dh;hAeðxe;a; he;aÞ ¼
1

e2r
2 ðjðx�1

e;a:he;aÞi;1j
2r�2ðx�1

e;a:he;aÞi;1 þ oðe1=rÞÞi¼1;...;m

Proof. Since our vector fields are invariant for left translations in the group we
have

Dh;xAeðxe;a; he;aÞ ¼ Dh;x

Xr
j¼1

Xmj

i¼1

ðxÞi; j
er=j

����
����
2r=j

 ! !
ðh�1

e;a:xe;aÞ

Then

X1;xAeðxe;a; he;aÞ ¼
1

e2r
2 jðh�1

e;a:xe;aÞ1;1j
2r�2ðh�1

e;a:xe;aÞ1;1

þ
Xr
j¼2

Xmj

i¼1

bi
j;1ðh�1

e;a:xe;aÞ
� 1

e2r
2=j 2

jðh�1
e;a:xe;aÞi; jj

2r=j�2
�
ðh�1

e;a:xe;aÞi; j

where the bi
j;1 are as in (2.1).

From (5.3) we have that

jðh�1
e;a:xe;aÞi; jjaCer=j
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so

jbi
j;1ðh�1

e;a:xe;aÞjaCer=ð j�1Þ

Then

jbi
j;1ðh�1

e;a:xe;aÞ
� 1

e2r
2=j 2

jðh�1
e;a:xe;aÞi; jj

2r=j�2
�
ðh�1

e;a:xe;aÞi; jjð5:5Þ

aCer=ð j�1Þ�r=j ¼ Cer=ð jð j�1ÞÞ

From (5.5) we obtain that

X1;xAeðxe;a; he;aÞ ¼
1

e2r
2 jðh�1

e;a:xe;aÞ1;1j
2r�2ðh�1

e;a:xe;aÞ1;1 þ oðe1=rÞ

By the same methods we prove

Xi;xAeðxe;a; he;aÞ ¼
1

e2r
2 jðh�1

e;a:xe;aÞi;1j
2r�2ðh�1

e;a:xe;aÞi;1 þ oðe1=rÞ

for s ¼ 2; . . . ;m and

Xi;hAeðxe;a; he;aÞ ¼
1

e2r
2 jðx�1

e;a:he;aÞi;1j
2r�2ðx�1

e;a:he;aÞi;1 þ oðe1=rÞ

The result follows.

By the same methods we can prove:

Lemma 5.3. We have

lim
a!0

Dh;xraðhe;a; he;aÞ ¼ 0

lim
a!0

Dh;hraðhe;a; he;aÞ ¼ 0

uniformly in e > 0.

We now end the proof of Theorem 5.1.
We have that xe;a is a maximum point for the function x ! uðxÞ �

Aeðx; he;aÞ � raðx; he;aÞ and he;a is a minimum point for the function h ! vðhÞ þ
Aeðxe;a; hÞ þ raðxe;a; hÞ. Then we have

uðxe;aÞ þ gHðxe;a; pe;aÞa f ðxe;aÞð5:6Þ

where pe;a ¼ Dh;xAeðxe;a; he;aÞ þDh;xraðx; he;aÞ a J 1;þ
u ðxe;aÞ. Since u is Lipschitz

continuous, pe;a is bounded in e, a.
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We have also

vðhe;aÞ þ gHðhe;a; qe;aÞb f ðhe;aÞð5:7Þ

where qe;a ¼ �Dh;hAeðxe;a; he;aÞ �Dh;hraðhe;aÞ a J 1;�
v ðxe;aÞ.

From the lemma 5.2 we have

pe;a ¼
� 1

e2r
2 jðx�1

e;a:he;aÞi;1j
2r�2ðh�1

e;a:xe;aÞi;1 þ oðe1=rÞ
�
i¼1;...;m

þDh;xraðx; he;aÞð5:8Þ

qe;a ¼
� 1

e2r
2 jðx�1

e;a:he;aÞi;1j
2r�2ðh�1

e;a:xe;aÞi;1 þ oðe1=rÞ
�
i¼1;...;m1

�Dh;hraðhe;aÞð5:9Þ

Since pe;a is bounded in e, a (for e, a small enough) we have that

1

e2r
2

Xm1

i¼1

jðx�1
e;ahe;aÞi;1j

2r�2ðh�1
e;axe;aÞi;1

is bounded in e; a and then qe;a is bounded in e, a.
From (5.1), (5.6) and (5.7) we have

ta ðuðxe;aÞ � vðhe;aÞÞð5:10Þ
a gðHðhe;a; qe;aÞ �Hðxe;a; pe;aÞÞ þ ð f ðxe;aÞ � f ðhe;aÞÞ
¼ gðHðhe;a; qe;aÞ �Hðxe;a; qe;aÞÞ
þ gðHðxe;a; qe;aÞ �Hðxe;a; pe;aÞÞ þ ð f ðxe;aÞ � f ðhe;aÞÞ

Since jx�1
e;a:he;ajG converges to 0 as e ! 0 (uniformly with respect to a) we have

lim
e!0

ðHðhe;a; qe;aÞ �Hðxe;a; qe;aÞÞ ¼ 0ð5:11Þ

lim
e!0

ð f ðxe;aÞ � f ðhe;aÞÞ ¼ 0ð5:12Þ

uniformly with respect to a.
From (5.8) and (5.9) we have

ðHðxe;a; qe;aÞ �Hðxe;a; pe;aÞÞ
¼ ðHðxe;a; ð~ppe;a;i þ oðe1=rÞÞi¼1;...;m �Dh;hraðxe;a; he;aÞÞ
�Hðxe;a; ð~ppe;a;i þ oðe1=rÞÞi¼1;...;m þDh;hraðxe;a; he;aÞÞÞ

where

~ppe;a;i ¼
1

e2r
2 jðx�1

e;a:he;aÞi;1j
2r�2ðh�1

e;a:xe;aÞi;1

is bounded as a; e ! 0.
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Then we obtain

lim
a!0; e!0

ðHðxe;a; qe;aÞ �Hðxe;a; pe;aÞÞ ¼ 0ð5:13Þ

From (5.10), (5.11), (5.12) and (5.13) we obtain a contradiction and the result is
proved.

Remark 5.1. The result of Theorem 5.1 holds again if we assume that u (v) are
viscosity sub(super)-solutions of the equation (4.1) in RNn0 with uð0Þ ¼ vð0Þ. The
proof is the same of Theorem 5.1 if xe;a; he;a a RNn0 (as e; a ! 0). Assume that
there is a sequence ek, ak such that ek; ak ! 0 as k ! þl and hek ;ak ¼ 0. Then
we have xek ;ak ! 0 as ek ! 0. We recall that u� v is upper semicontinuous then

d

2
a lim

k!þl
ðuðxek ;ak ; hek ;akÞ � vðxek ;ak ; hek ;akÞÞa ðuð0Þ � vð0ÞÞ ¼ 0

Then we have a contradiction with the assumption supðu� vÞb d > 0. By the
same methods we prove that there is no subsequences ek, ak such that xek ;ak ¼ 0
then xe;a; he;a a RNn0.

As easy consequences of the Theorem 5.1 we obtain:

Corollary 5.4. Let the assumptions (4.2), (4.3) and (4.4) hold. Let u ðvÞ be a
bounded upper (lower) semicontinuos viscosity subsolution (supersolution) of the
Hamilton-Jacobi equation (4.1). Then

ua v

It is enough to observe that from Corollary 3.2 we have that u is Lipschitz con-
tinuous on G.

Corollary 5.5. Let the assumptions (4.3) and (4.4) hold. Let u1 and u2 be upper
semicontinuous solutions of the Hamilton-Jacobi equation (4.1) with f ¼ f1 and
f ¼ f2, where f1, f2 are bounded uniformly continuous on G. Then

sup
G

ju1 � u2ja sup
G

j f1 � f2j

Proof. It is enough observe that u2 �M (u1 �M) is a subsolution of (4.1) with
f ¼ f1 ( f ¼ f2), where M ¼ supGj f1 � f2j, and use Theorem 4.1.
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