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1. INTRODUCTION
We consider the Hamilton-Jacobi equation
(1.1) u+yH(x,Vu) =0

where the Hamiltonian H(x, p) : RY x RY — R is not coercive in p. In some
cases the lack of coerciveness of the Hamiltonian can be overcome by chancing
the underlying geometry with a suitable family of vector fields. More precisely we
consider the case H(x,t,q) = H(x,t,a(x)p) where o(x) is a m x N matrix,
m < N and H is coercive in ¢ = a(x)p. Here the rows of the matrix o(x) are con-
sidered as coefficients of vector fields satisfying the Hormander condition, which
generate a Carnot group and are left translation invariant, therefore o(x)Vu is the
horizontal gradient in the Carnot group denoted in the following by Dj,u, see sec-
tion 2.

Here we are interested in existence and uniqueness of viscosity solutions of
the problem (1.1) and in their Lipschitz continuity (in the group). We recall
that the Lipschitz continuity in the group is the Lipschitz continuity for the right
translations with respect to the Carnot-Carathéodory (left translation invariant)
distance on the group and that the Lipschitz continuity is equivalent to the
boundness of the horizontal gradient. We observe that in the Euclidean case
(o(x) = 1) with H(x,Vu) = H(Vu) — f(x), where f(x) is Lipschitz continuous,
the Lipschitz continuity of # may easily be deduced from comparison results;

! The Author has been supported by the MIUR Research Project n. 2007WECYEA.
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this proof can not be generalized to the case of Carnot groups, since the vector
fields and the Carnot-Carathéodory distance are left translation invariant and we
are interested in the Lipschitz continuity in the group (i.e. the Lipschitz continuity
for the right translations with respect to the Carnot-Carathéodory distance).

We recall that the notion of viscosity solution has been introduced by M. G.
Crandall, P. L. Lions, [8]; existence, uniqueness and comparison results for vis-
cosity solutions of (1.1) in the coercive Euclidean case have been summarized in
the paper [14] and in the books [1], [2]. We recall also the paper [9], where the
existence of viscosity solutions is proved using the Perron’s method.

Concerning the case of Carnot groups an existence and comparison result of
(Lipschitz continuous in the group) viscosity solutions has been proved in the
case of Heisenberg group by I. Birindelli, J. Wigniolle, [4], and in the general
case by B. Stroffolini, [15], but, in the last paper, it seems that some commutativ-
ity conditions on the group are tacitly assumed. We recall also that in the evolu-
tion case Hopf-Lax-Oleinik type representation formulas has been proved in [12]
for the case of the Heisenberg group and in [5] for general Hérmander’s vector
fields (in this last paper a review of the result of Hopf-Lax-Oleinik type represen-
tation formulas in the subelliptic framework is given).

The method used to prove our result is founded on a careful choice of the pe-
nalization functions in the doubling variables method, which take into account
some suggestions of [4], and on the results on the Perron’s method given [9].

In section 2, we give the fundamental definitions concerning Carnot groups
and some examples of Carnot groups and in section 3 we give the notion of vis-
cosity solution in the framework of Carnot groups. In sections 4 and 5 we give
the results, which are the main goal of this paper, and their proofs.

2. CARNOT GROUPS

We consider R as a Carnot group with a group operation (translation) denoted
by . and a family of dilations, compatible with the Lie structure.

A Carnot group G of step r > 1 is a simply connected nilpotent Lie group,
whose Lie algebra g is stratified. This means that g admits a decomposition as a
vector space sum

=0, D9 ®---Dg,

such that

[gl7gj] =811

for j=1,...,r where g, = 0 when k > r. Let m; = dimg; and denote by X; ; a
basis of g; formed by left invariant vector fields. We observe that G considered
as a manifold has dimension N = mj + - - - + m,..

For convenience we fix a Riemannian metric in g so that X = {X;;} is an
orthonormal frame and the Riemannian volume element coincides with the
Haar measure on G and then with the Lebesgue measure on R”.
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The horizontal tangent space at a point & € G is the m; dimensional subspace
linearly spanned by X (¢),..., X, 1(¢). In the following we will denote by
Xi,..., X, a frame of vector fields spanning the firs layer g,;. The exponential co-
ordinates are given by the diffeomorphism F : RY — G defined by

r m;

F(x) —exp(ZZx,, t/)

J=

We denote x; = (x; ), mp J =11

In the followmg we consider G endowed with the exponential coordinates;
then the mapping (&, %) — £.7 has polynomial entries.

If we use the exponential coordinates the following formula holds:

a roomy ) a
2.1 X, = b! e X
1) R BB ACICARE IO~y
o=1,...,m, where each b’ is a polynomial of weighted degree j— 1. By

welghted degree we mean that the layer g in the stratification of g has degree ;.
Then each homogeneous monomial x| ...xr“' with multindices o; = (o j, ...,
%m,.j), j = 1,...7 has a weighted degree p if

r m;

Zj(zai,j) =D

=1 =
There is a family of dilations compatible with the group operation:
2 22 )
5,1(6) = (/1)61,1, e ,/lxm,l, A X1,25 -5 A Xy, 2y - - - ,/ermnr)

With the above notations the horizontal subspace in the point & can be identified
by the left translation by & of Gy (G denotes the subspace of RY corresponding
to g;).

A horizontal curve y(z), ¢ € [0, 1], is a piecewise smooth curve whose tangent
vector y’(), whenever it exists, is in the horizontal tangent space in y(z).

Given two points ¢ and # we consider the set

I'(¢,n) = {y horizontal curve: y(0) = &, y(1) =}
By Chow’s accessibility theorem, [3], the above set is never empty.

The Carnot-Carathéodory distance is defined as the infimum of the length of
horizontal curves of the set I':

1
dec(é,n) = inf / /()] dr
r'¢n Jo
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The Carnot-Carathéodory ball of radius R centered at & is given by

B(&,R)={neG:dcc(é,n) < R}

The Carnot-Carathéodory gauge is defined by

|f|cc = dCC(O; f)

We recall that dec(E,n) is left translation invariant and gives a topology on G,
which is equivalent to the Euclidean one.

The important property that || is a viscosity and a.e. solution of the hori-
zontal eikonal equation in R™\0 has been proved by Monti and Serra-Cassano,
[13].

A smooth gauge in G is defined by

m;

I€|c = (i (; |Xi,,~|2)r!/j)l/2r!

J=1
The following result holds, [3]:

THEOREM 2.1. We have

7 mj

»
oo = el = D fxiyl
i=1

=1
meas(B(0, R)) ~ R?
where Q = /r:l Jmyj is called the homogeneous dimension of G.
As a consequence of Theorem 2.1 we have that the Lipschitz continuity (for the
right translations) with respect to the Carnot-Carathéodory distance or with re-

spect to the smooth gauge are equivalent.
Examples of Carnot groups are the Heisenberg group and the Engel group.

2.1. The Heisenberg group

The Heisenberg group can be identified with R*¥*! endowed with the non com-
mutative group law

1
(x, 3,0).(x", ', 1) = (x +xy+y 41— 5 (x, 'y - <x’,y>)>

where x, y € RY and ¢ € R. The Heisenberg algebra is splitted in ¥; @ V> where
Vi = R* x {0} and ¥, = {0} x R and it is generated by the vector fields
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o 1 0
X = Z v,
i =g 275
o 1 0
Y, = .
T
The only non trivial commutator is
0
[X}v Yj] = ot

and the homogeneous dimension is 2N + 2.

2.2. The Engel group

The Engel group can be identified with R* endowed with the non commutative
group law

(e, p,0,8).(x", y" 08" ) = (x+ X",y + Y e+ 1 + Qs 54+ 5"+ 03)

where

0y =5 (xy' = x'y)

1
2

1
(' = x'1) + 35 (¥ = xx'(y+ ') + p(x)?)

| =

0 =

The Engel algebra is splitted in V; @ V> @ V3 where V; = R? x {0} x {0},
V, ={0} x {0} x R x {0}, V3 ={0} x {0} x {0} x R and it is generated by the
vector fields

d yd t 0
Y=g (3t R0+)5
0 x 0 t X 0
Xy =—+—— — _
2 6y+281+<2+12(x+y))8s
The nontrivial commutators are
., 0 (x+ypy) o0
[X17X2]—X3—E+ > o

Xi, X = X0, X, X =

and the homogeneous dimension is 7.
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3. VISCOSITY SOLUTIONS

In order to give a first definition of viscosity solution in G for the equation

(3.1 H(& u,Dyu) =0

where ¢ € G, and Dy, is the horizontal gradientin G and H : G x Rx R" — R is
a continuous function, we must identify the first order jets adapted to our frame-
work.

DEFINITION 3.1. A function u: G — R is of class C' (on G) if the horizontal de-
rivatives X\u, . .., Xpu are continuous (on G).

If u is a locally bounded function we define

u*(&) =inf{v(¢) |v e C(G),v > uon G}

= lim sup u(n)
n—<¢

u, (&) = sup{v(¢) |v e C(G), v <uon G}
= limi?f u(n)
174)

We observe that u* is upper semicontinuous and u, is lower semicontinuous.
We recall that if « is in C' the following Taylor expansion holds

u(&) = u(&y) + (Do), &> + 0(1Ey "¢l )

where ¢ is the horizontal projection (of ¢&).
If a function u is not necessarily smooth but merely upper semicontinuous (on
G) we denote by J' (&), & € G, the collection of vectors p*(&) € R” such that

(&) < ulE) + <p* (&), &8> + 0(IE " Elg)

DEFINITION 3.1. A locally bounded function u is a viscosity subsolution of equa-
tion (3.1) if for every &y € G and for every p*(&) € J,J;+(éo) we have

H(So,u* (&), p7(£0)) <0

If a function u is not necessarily smooth but merely lower semicontinuous (on
G) we denote by J'~ (&), & € G the collection of vectors p.(&y) € R™ such that

u(E) = u() + (pu(&0), & -E + 0(1 "¢l )

DEFINITION 3.2. A locally bounded function u is a viscosity supersolution of
equation (3.1) if for every &y € G and for every p.(&y) € Jl};‘(éo) we have

H(&)? u*(é())vp* (60)) >0
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We observe that J: (&) (/4 (&)) may be empty, but the set where JLET(E)

u

(4>~ (&)) is not empty is dense in ,G. The proof of tllle property is the same as in
Euclidean case, [2], replacing 2= by |0, (Z~1.&)|7.

&

DEFINITION 3.3. A locally bounded function u is a viscosity solution of equation
(3.1) if u* is a viscosity subsolution and u, is a viscosity supersolution of equation

(3.1).

There are different but equivalent definitions for viscosity subsolutions, super-
solutions and solutions of equation (3.1).

DEFINITION 3.4. A locally bounded function u is a viscosity subsolution (superso-
lution) of equation (3.1) if for every function \y € C'(G) and every local maximum
(minimum) point &y of (u* — ) ((ux — ) on G we have

H(é()v u*(fO)y Dhlp(é())) <0
(H(éO; U (50)7 Dh‘p(éO)) > O)

A locally bounded function u is a viscosity solution of equation (3.1) if u* is a vis-
cosity subsolution and u, is a viscosity supersolution of equation (3.1).

In the definition 3.4 the condition y € C'(G) can be replaced by the condition
W € C*(G). The definitions 3.1, ..., 3.4 has been given in Euclidean setting in [§]
and [6]; the generalization of Definitions 3.1,..., 3.4 to the Carnot group setting
has been given in [15]. The equivalence of the three notions has been proved in
Euclidean setting by [8] and by [6]; in the Carnot groups setting the equivalence
is founded on the observation that the definitions in Euclidean setting and Carnot
group setting are equivalent.

REMARK 3.1. We observe that an upper (lower) semicontinuos function u is a
viscosity sub- (super-) solution of the equation H(&,u, Dyu) =0 if and only if
v = —u is viscosity super- (sub-) solution of the equation —H (&, —v, —Djv) = 0.

PROPOSITION 3.1. A bounded upper (lower) semicontinuous function is Lipschitz
continuous on G if and only if (J1~(&)) J1+(&) is bounded on G.

PrROOF. We prove the result in the case of upper semicontinuous functions; in
the case of lower semicontinuous functions the proof is analogous.

Let u be a bounded upper semicontinuous functions such that |p*()| < L for
p*(n) € JLH(&). Let w(n) = u(n) — u(&), where ¢ is fixed. We have that u is a vis-
cosity subsolution of the Hamilton-Jacobi equation

|Dpu| = L

Let M be such that |u| < M then w is a viscosity subsolution of the Hamilton-
Jacobi equation

(3.3) w+ [Dyw| = L+2M
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in RM\¢ with the condition w(&) =0. Let now be v(y) = (L +2M)dcc(E,7).
Since dcc(&,n) is a viscosity solution of the eikonal equation in RV\¢, the
function v is a Lipschitz continuous viscosity solution of the Hamilton-Jacobi
equation

(3.4) v+ |Dpo| = (L+2M) +v
in RM\¢&.

From (3.3) w is a viscosity subsolution of the equation (3.4) (with second term
(L+2M) +v).

We now postpone the proof that w < v to Theorem 5.1 and Remark 5.1.
Then we have

(3.5) w(n) < (L +2M)dcc(E;n)
Using the left translation invariance of D; we obtain in the general case
(3.6) u(n) —u(&) < (L +2M)dcc(S,n)
Interchanging the role of £ and # we obtain also
u(¢) —u(n) < (L+2M)dcc(&,n)
then
(&) —u(n)| < (L +2M)dcc(&n)
and the result is proved.

The following result is proved in [4] for the Heisenberg group and in [15] for
general Carnot groups in the case of continuous u. We need the result for upper
semicontinuous # and we give here a different proof as an easy corollary of Prop-
osition 3.1.

COROLLARY 3.2. Let u be a bounded upper semicontinuous viscosity subsolution
of |Dyu| < C then u is Lipschitz on G, ie.

lu(n) —u(S)| < Cdec(n, <)

PROOF. Let be p*(&) € JL+(&). Then we have |p*(&)| < C. The result follows
from Proposition 3.1.

4. EXISTENCE OF THE VISCOSITY SOLUTION

In the present section we consider the problem

(4.1) u+yH(E Dpu) = f
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where H : G x R™ — R is a continuous function, which is uniformly continuous
on G x B for every ball B (for the Carnot-Carathéodory distance) in G, f is uni-
formly continuous on G and y is a positive constant.

We assume:
(4.2) J/ bounded in G
(4.3) |H(,0)]<Con G
(4.4) lim H(&, p) = +oo uniformly on G

[pl—+o0

THEOREM 4.1. Let the assumptions (4.2), (4.3) and (4.4) hold. There exists a
bounded Lipschitz continuous viscosity solution u of (4.1). Moreover every bounded
upper semicontinuous solution of (4.1) is Lipschitz continuous on G.

Proor. Corollary 3.2 gives easily the second part of Theorem 4.1.

For the first part of the result we consider our problem in the Euclidean
framework then H is a continuous Hamiltonian. The constant —M — yC
(M + yC) is a viscosity sub- (super-) solution of our problem, where M = sup ||
and C is as in (4.3). Then there exists a bounded viscosity solution of problem
(4.1) u, which is the supremum of upper semicontinuous subsolutions v of (4.1)
with —M —yC <v < M + yC, [9]. We recall that the notion of subsolution in
the Euclidean and in Carnot groups setting are equivalent and that the topolo-
gies on R" and on G are equivalent. From Corollary 3.2. and assumption (4.4)
we have that all upper semicontinuous subsolutions v with —M —yC <v <
M + yC are uniformly Lipschitz continuous on G, then u is Lipschitz continuous
on G.

5. UNIQUENESS AND CONTINUOUS DEPENDENCE FOR THE VISCOSITY SOLUTION

The main difficulty in this section derives (as pointed out in the introduction)
from the noncommutative nature of G. In fact, if we consider the function
\;7*1.£|2G", which is the natural substitute of |x — y|* in the Euclidean case, we
have that

Dye(ln " €13) # Dy~ .E12)

This fact does not allow to use for the proof of the uniqueness and continuous
dependence the method of [8] or its developments in [7], [10] (see also [1], [2]).
We have to choose carefully the penalization functions in the doubling variables
method and to take into account the Lipschitz continuity of upper semicontinu-
ous viscosity subsolutions of our equation.

THEOREM 5.1. Let u (v) be an upper (lower) semicontinuos viscosity subsolution
(supersolution) of the Hamilton-Jacobi equation (4.1). Assume that u (or v) is
Lipschitz continuous on G and that v (or u) is bounded then

u<sv



108 M. BIROLI

PrROOF. We assume that u is Lipschitz continuous and v is bounded; the proof in
the other case (v Lipschitz continuous and u bounded) is analogous.

Suppose by contradiction that sup(u — v) > ¢ > 0; there exists a point &, such
that u(&y) — v(&,) = v > 0, for 7 suitable. Let 4,(,7) and p, (&, n) be defined as

roomy 2r/j

As(f,’?) = Z Z
=1 =

rom

pul&m) = 3> o (&0 ) 1 1)
j=1 i=l

(571-’7)1‘,]'

g’/f

where 0 < ¢, o0 < %
Consider the function

Deo(E,m) = u(E) —v(n) — A& m) — po(Sm)
Taking into account Theorem 2.1, we have that for fixed (e «) the function

@, 5(¢,77) diverges to —oo as ([¢]g + [nlg) — +0.
Since (1 — v) is upper semicontinuous, for every &, o there exists a maximum

point (éc,w ;78,1) of (DS,tZ(éa 77).
We have

(51) (I)S,Ot(és,au ée,oc) + (I)S-,Of(’//s,omne,a) = 2(1)5-,01(587067’78,0()

We recall that « is Lipschitz continuous on G and we denote by L his Lipschitz
constant. We easily obtain from (5.1)

(52> AS(és,ow ”c,a) < 2(M + CL‘é;;'”c.,oJG)

Then from Theorem 2.1 we have
(53> Ac(ée,m’?s,(x) < Cl

From the inequality @, ,(<o, o) < @ 5(E,, 4,7, ,) We obtain

u(éO) - U(éO) < u(ée,a) - U(’?g,q) - Aﬁ(fs,w}//s,u) - poc(fe,onns,o:)

Then from (5.3) we have

r m;

SO (& L) T H1E )i 1) < G+ CLIET 6Ll

j=1 i=l
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Then we obtain

rom

r — 2r/j — 2r/j
(&5 o) 17 1S )i 1)
j=1 i=1

<o (G ch(;1 é 1(&" &) 1)
<o (cran(y 213 & &)

From the above inequality we deduce easily the following estimate

(54) pa(és,mng,a) <Gs
We consider now Dy, :A4:(S; 5,7, ) and D yAe(Ey 057, 4)-

LeEmMMA 5.2. We have
1 — r
D/LfAS(és,wy/s,ac) - 827 (|(ée,;'7/a,a¢)i,l| (77.9 o éf‘ 1)1 1 + 0( 1/ )) i=l,....m

and
1 _ 29—D .
thﬂAE(éC,m 778,0() = 827 (|( a,;c',/s,a)i,l ' (ée,;'ne,a)i,l + 0(81/)))1':1,...,771

PRrROOF. Since our vector fields are invariant for left translations in the group we

have
2r/]
)) (1 3-Cs)

“Ac<ée,on 77.5 zx <Dh (2 Z

el /j
Then

1 r—
Xl,fA&‘(és.mns,oc) = 82r2 |(77p ar és ac)l 1|2 2(’7‘? ar és ot)

room;

1
223 0 o) (G s e 7 O

j=2 i=

where the b/ | are as in (2.1),
From (5.3) we have that

|(”;;'éa,1)iﬁj| < Cgr/j
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SO
1b] 11 3-Ce.0)| < Ce"/U7Y
Then
P 1 _ i _
(55) |bjA1(’73,;c'58,1)<W|(77a,;'és,oz)i,j|2 g 2) (’78,;‘68,01)i,j|

< Ce"U-D=rli = cgr/UU=1)

From (5.5) we obtain that

1 — 2r—2 — r
X1,5A8<és,ou773,oc) = £2r |(’73,;'és,oﬁ)l,1| (”s,;‘éﬁ,ﬁ)l,l + 0(81/ )

By the same methods we prove

1 — 2r—2 — r
A/i,cfAs(ée,m 775,9() = £2r? |(7]g7l'ée,o<)i,l‘ (’7{;7{}('66,01)1',1 + 0(81/ )

fors=2,...,mand

1

g2r?

— 2r—2 — r
‘Xi,ﬂAC<§s,m %,a) = |(ég,}("76.,c<)i,l‘ (6872("76,0()1'71 + 0(81/ )

The result follows.
By the same methods we can prove:

LEMMA 5.3. We have
iiil(l) Dhjpog(ns,w ’78,0() - 0
iii}r(l) Dh7npm(}737(x? }7871) - 0

uniformly in ¢ > 0.

We now end the proof of Theorem 5.1.

We have that &, is a maximum point for the function & — u(&) —
A:(&m, ) — py(&im, ,) and 1, , is @ minimum point for the function  — v(y) +
Ag(ée,w 77) + pa(éa,mn) Then WC have

(5.6) U(&e,n) + 7H (Co 05 o) < f(S00)

where p. ., = Dy :A:(Ey 051, 0) + Diepy(Eim, ) € JLH (&, ,). Since u is Lipschitz
continuous, p; , is bounded in ¢, o.
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We have also
(5.7) v(,0) + VH (1, 4 Ge,0) = f(1,5)

where 9e,0 = _Dlz,fyAs(ég,a7;757a) - Dh,npa(ﬂg_ya) € Jyh_(és,oz)'
From the lemma 5.2 we have

1 - r
(58) poo= (@m0 G +06) 4 DraplEn)

=

.....

(é;i‘ns,a)[,llzr (773 o éf A)t 1 + 0( 1/")) B Dhﬁﬂpa(naﬁoc)

i=1,...,my

1
(5'9) e, = (82'2

Since p, , is bounded in ¢, « (for &, o small enough) we have that

1 - - 2r=2, —
8272 |(ég,olfi7z,na>i,1| ' (’78,;5871)1',1
i=1

is bounded in ¢, « and then ¢, , is bounded in ¢, «.
From (5.1), (5.6) and (5.7) we have

(5.10) T < (&) — (1))
< YHM, 0 Ge.n) — H(Es ns Pea)) + (f(E) = S (1)
= 9(H My, 10 Ge,0) — H(C4 00 Ge,0))
+ Y (H (o0 Gea) — H(Eo o Pea)) + (f(E0) — f (M)

Since |é M, 4| converges to 0 as ¢ — 0 (uniformly with respect to o) we have

(5.11) hm( (’7; w 4e, ot)_H(és,a,qe,a)) =0
(5.12) lim(f(&,.) — £ (1) = 0

uniformly with respect to o.
From (5.8) and (5.9) we have

(H(ée,mqs,m) - H(és,mpa,a))
:( (éb ocv(ppoci+0( l/r))‘ 1

where

_ | S 2
Deoi = 827 |(é£,d"78,0()i71‘ . (’78 o éf c()

1s bounded as o, & — 0.
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Then we obtain

(513) lim (H(és,om qg,oc) - H(éc,w ps,oc)) =0

o0—0,e—0

From (5.10), (5.11), (5.12) and (5.13) we obtain a contradiction and the result is
proved.

REMARK 5.1. The result of Theorem 5.1 holds again if we assume that u (v) are
viscosity sub(super)-solutions of the equation (4.1) in RV\0 with #(0) = v(0). The
proof is the same of Theorem 5.1 if &, ,,7, , € RV\0 (as &0 — 0). Assume that
there is a sequence g, o such that g, o — 0 as k — 400 and Moo, = 0. Then
we have &, , — 0 as g — 0. We recall that u — v is upper semicontinuous then

0
5 < kllm (u(éek,c{k777£k.o(k) - U(ésk.,txkﬂ/]sk,ak)) < (M(O) - U(O)) =0
——+0o0

Then we have a contradiction with the assumption sup(u — v) >J > 0. By the
same methods we prove that there is no subsequences &, o such that &, , =0
then &, .7, , € RM\0.

As easy consequences of the Theorem 5.1 we obtain:

COROLLARY 5.4. Let the assumptions (4.2), (4.3) and (4.4) hold. Let u (v) be a
bounded upper (lower) semicontinuos viscosity subsolution (supersolution) of the
Hamilton-Jacobi equation (4.1). Then

usv

It is enough to observe that from Corollary 3.2 we have that u is Lipschitz con-
tinuous on G.

COROLLARY 5.5. Let the assumptions (4.3) and (4.4) hold. Let u, and uy be upper
semicontinuous solutions of the Hamilton-Jacobi equation (4.1) with f = f1 and
f = fo, where f1, f> are bounded uniformly continuous on G. Then

sup |ug — uz| < sup|fi — fo
G G

PROOF. Tt is enough observe that u, — M (u; — M) is a subsolution of (4.1) with
f =i (f = /o), where M = supg|fi — f2|, and use Theorem 4.1.
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