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Differential Geometry — A Stampacchia-type inequality for a fourth-order elliptic
operator on Kdihler manifolds and applications, by LucA LUSSARDI.

ABSTRACT. — In this paper we will prove an integral inequality of Stampacchia-type for a fourth-
order elliptic operator on complete and connected Kéhler manifolds. Our inequality implies a
Hodge-Kodaira orthogonal decomposition for the Sobolev-type space W”?(X). In particular we
will able to prove, under suitable topological conditions on the manifold X, the existence of an iso-
morphism between the Aeppli groups A”¢(X) and the groups H” (X)) of all global harmonic forms
of bidegree (p, q).
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1. INTRODUCTION

Let X be a complex manifold, and let p,g > 1 integers. The Aeppli groups, even
called dd-cohomology groups, defined for the first time by Aeppli in [1] and stud-
ied, principally, by Bigolin in [10] and in [11], were introduced in order to study
cycles of algebraic manifolds (see [8]). More recently the Aeppli groups are under
consideration in order to investigate integral transformations (see [17]), properties
of balanced manifolds (see [2], [5], [6]) and properties of 1-convex manifolds (see
(3], [7], [4]). The Aeppli groups were originally defined in [1] by

 Ker{A?(X) 5 APTH(X) @ AP (X))
B a0Ar~ M1 (X)
 Ker{A”4(X) & APT1et] (X))

© 0ATTNI(X) 4 0APTTH(X)

AP4(X)

VPa(X)

where A”?(X) denotes the space af all (p, ¢)-differential forms with coefficients in
C”(X) and with complex values. If X is a Stein manifolds then Aeppli, in [1],
proves that the Aeppli groups are isomorphic to the complex De Rham coho-
mology: more precisely A”7(X) and V74(X) are isomorphic, respectively, to the
spaces H?™(X) and H?™"1(X), where H'(X) denotes the space of all global
harmonic r-forms. The result of Aeppli gives a characterization of the De Rham
cohomology for Stein manifolds. If the manifold X is Kéhler and compact then
Bigolin, in [10], proves, as a consequence of a orthogonal decomposition for the
space of all dd-closed forms, that both V74(X) and A”(X) are isomorphic to
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H”9(X), where H”?(X) denotes the space of all forms in H”*?(X) of bidegree
(p,q); moreover in the same paper some results proved by Aeppli in [1] for Stein
manifolds are recovered. If we remove the compactness assumption on the man-
ifold X then, at the moment, it is unknown the relation between Aeppli groups
and H”Y(X). In this paper we study the non-compact case. We will able to prove,
under a technical topological condition on X (see assumption (5.1)), that the
Aeppli groups A”‘(X) are isomorphic to H”9(X) whenever X is a connected
and complete Kéhler manifold. The main tool for the proof of our result is a suit-
able Hodge-Kodaira orthogonal decomposition. More precisely denoting by
D?4(X) the space of all forms in A”(X) with compact support in X, we can
consider, on D”?(X), the standard complex scalar product (-,-), of L>-type
and the complex scalar product

(u,0); y = (U, 0)y + (Ou, )y + (Ju, Jv) x

where @ and 0 are the classical complex differential operators and § and & are
their adjoints, respectively. Then if we denote by W#¢(X) the completion of
D?9(X) with respect to the scalar product (-,-), y, in §4 we will able to prove
that on Kihler manifolds the following Hodge-Kodaira decomposition holds:

(L) WPIX) = [0oD”~ 1 (X)), @, [9D7 7 (X) + IDPHH9(X)],
@1 Ker[JnW?4(X)

where the square brackets with subscript 1 stands for the closure in W#*4(X) and
@, says that the direct sum is orthogonal in the sense of the scalar product
()1, x- The proof of (1.1), in the absence of compactness, requires an integral
inequality of “Stampacchia-type” for a suitable elliptic operator, and such a in-
equality is the crucial point. Let us briefly recall the history of Stampacchia-type
inequalities.

Let X be a complete and connected hermitian manifold. The classical Stam-
pacchia inequality is an integral inequality which involves the complex Laplace
operator [J; Andreotti and Vesentini proved it in [9] in order to obtain applica-
tions to the study of vanishing theorems by means of an extension of a Kodaira
theorem ([13]). More precisely if L”9(X') denotes the completion of D”*4(X) with
respect to the scalar product (-, ), and if B, denotes the ball of radius r and cen-
tered in a fixed point 0 € X, then for any r, R,o > 0, with r < R, it holds

Cc

o 1
(1.2)  (Ou,0u)p + (Su,Su)p < (; + W

) (“a u)BR + J(Du> Du)BR

for allu € A?(X), where ¢ > 0 is a constant which depends only by the complex
dimension of X. In particular it descends the following characterization of the
square-summable harmonic forms on X

(13)  KerOALP(X) = {ue AP9(X)ALP(X) : du = 9u =0}
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A real version of inequality (1.2) was proved by Vesentini, with the same tech-
nique, in [18]: if M denotes a complete and connected riemannian manifold then
for any r, R,o > 0, with r < R, it holds

(1.4) (du,du)p + (0u,0u)p < ((17 + (R—Cr)2> (u,u) g, + a(Au, Au)

for any u € A”(M), where ¢ > 0 is a constant which depends only by the dimen-
sion of M. The Stampacchia-type inequality (1.4) implies that

KerAnL?(M)={ue A’(M)nLP(M) : du = ou = 0}
from which it follows the Hodge-Kodaira decomposition of L?(M):
(1.5)  LP(M) = [dD"~"(M)] o (s @1 6D” T (M)] o3y D1 Ker A L7 (M).

In this paper we will prove a Stampacchia-type inequality like (1.2) for the
fourth-order elliptic operator & given by

G = 0099 + 3300 + 3090 + 9030 + 90 + 90

which was first considered by Kodaira and Spencer in [15] for the study of the
stability of Kéhler manifolds under small deformations (see moreover the impor-
tant book of Morrow and Kodaira [16], Ch. 4, §4). Such a operator & was also
considered by Bigolin [10] in the compact case. More precisely in §3, following
the same technique of Andreotti and Vesentini, we will prove that there exist
four positive constants ¢, ¢z, ¢3, ¢, eventually depending only by the complex
dimension of X, such that for any r, R,o > 0, with r < R, it holds

(1.6) (O, 0u) g + (3%u, $9u) , + (30u, 00u) 5 + (90u, Y0u)  + (90u, Jou) ,

c c 1
(R - »? (R _2r)4 +a> (t,0)

((Ou, 0u) g, + (u, Ju) g ) + ca0(Du, Du) g,

+ (u, du) 5, + (3u, du)y < (

3

+(R—r)2

for any u € A”?(X). By means of inequality (1.6) we will able to prove the de-
composition (1.1) and then, in the last section, we will apply such a decomposi-
tion in order to study a relation between the Aeppli cohomology and classical De
Rham cohomology.



162 L. LUSSARDI

2. RIEMANNIAN AND HERMITIAN MANIFOLDS

2.1. Riemannian Manifolds

For a thorough treatment of the argument we refer the reader to [12]. Let M be
a n-dimensional orientable complete riemannian manifold. Let g,z be the metric
tensor on M and let g% be the inverse of g,5; we also denote by g = detg,s. For
any positive integer p, with p < n, we will denote by K?(M) the space of all
currents on M of degree p; the subspace A”(M) will denote the space of all p-
differential forms with C*-coefficients and real values. In this setting it is well de-
fined the volume form e, , dx' A---Adx". Given u € A?(M) the adjoint of u is
the form given, in local coordinates, by *upg, g, = erxl...rxp/)’l...[f,l,p”“""a”- The opera-
tor x : A?(M) — A"P(M) can be extended to a unique operator x : K”(M) —
K"™7(M). On the subspace D”( M) given by all forms in A” (M) which have com-
pact support in M the operator * permits us to define the real scalar product
given by

(u,0),, :—/ U A 0.
M

We will denote by L”(M) the completion of the space D”(M) with respect to
the scalar product (-,-),,. It turns out that L”(M) is an Hilbert space. Let
d:KP(M)— K’ (M) be the exterior differential and let J:K”(M) —
K”~'(M) its formal adjoint, ie. & = (—1)"”™"" s dx; it is well known that
d>=0*=0. The laplacian of a current T e K’(M) is given by AT =
doT + 6 dT; the currents belong to Ker A are called harmonic currents, and the
forms belong to Ker A are called harmonic forms. By ellipticity it turns out that
if T e Ker A then actually 7 € A”(M).

2.2. Hermitian Manifolds

For a thorough treatment of the subject we refer the reader to [16] and [19]. Let
X be a complete hermitian manifold of complex dimension #, let g, be the her-
mitian metric on X, and let g% be its inverse; as in the real case we denote by
g = detg,s. For any positive integers p, ¢, with p,q <n, we will denote by
K?”4(X) the space of all currents on X of bidegree (p,¢); the subspace A”(X)
will denote the space of all (p,q)-differential forms with C*-coefficients and
complex values. Associated to an hermitian metric we have the fundamental
real form w = ig,p dz* dzP; X is a Kéhler manifold if dew = 0. Let, in local coor-
dinates, ey, 4,p,..p5, dz* A+ Adz™ AdZP Ao AdZPr be the volume form on X.
Given u € A??(X) the adjoint of u is the form given, in local coordinates, by
*uul.../zn_qvl...vn,p = e/zl.4.,11,7_qoc1...ozqvl...v,,,,,[flml[fpl/lal"'a"/}l"'ﬁ/’. The operator  : APJJ(X) i
A"P"P(X) can be extended to a unique operator x : K 4(X) — K""¢"P(X).
As in the riemannian case on the subspace D?”?(X) given by all forms in
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A?4(X) which have compact support in X the operator * permits us to define a
complex scalar product given by

(u,0)y ::/u/\*_v.
X

We will denote by L”7(X) the completion of D”*?(X’) with respect to the scalar
product (-, ). It turns out that L”(X) is an Hilbert space. Let 0 : K”(X) —
K 9(X) and 0: K”9(X) — K”9"(X) be the classical complex differential
operators. It is well known that 0> =32 =0 and d = d+ 0. The operators
9:K7(X) — KP'(X) and §: K”(X) — K”*l_"zf(X) can be defined by set-
ting 3 = — % 0% and § = — = Jx, and we get 3> = 3~ = 0. Let us now recall the
following useful formulas: If at least one form between u# and v belong to
D?”4(X) then

(2.1) (Ou,v)y = (u, )y and (0u,v)y = (u, ) y;

moreover it holds 90 = —dd and 9% = —34. If X is a Kéhler manifold then it is
well known that

(2.2) 09+90=0, 09+390=0, 09+ 90=03+ J0.
We recall that the complex laplacian [J: K”7(X) — K”(X) is defined by
[0 = 03 + 30; the currents belong to Ker[] are called harmonic currents, and
the forms belong to Ker[] are called harmonic forms. On Kéhler manifolds by
(2.2) it descends

O=0:=d%+ 9.
By ellipticity it turns out that if 7' € Ker[] then actually 7 € A”7(X). On Kéhler

manifolds it holds [] = 1 A. Finally we will denote by W”¢(X) the Sobolev-type
space given by the completion of D?*¢(X") with respect to the scalar product

(u,u)y y = (u,u)y + (Ou, Ou) y + (Su, Su) 5.

It turns out that W”¢(X) is an Hilbert space.

3. A STAMPACCHIA-TYPE INEQUALITY FOR THE OPERATOR ¥
In the rest of the paper X will denote a complete and connected Kdhler manifold

of complex dimension n. Let p,q < n be positive integers. Consider the fourth-
order operator & : K?(X) — K”4(X) given by

(3.1) 9 = 9090 + 0909 + 30 + 90
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REMARK 3.1. An easy application of formulas (2.2) shows that

(3.2) (0% = 8090 + 0909
and
(3.3) 9090 + 0909 = 0093 + 9900 + 3090 + 3090.

In [15] Kodaira and Spencer show that & (they used, for the principal part of 2,
the form given by the right-hand side of (3.3)) is an elliptic operator, since its
principal part is given by

84
> 9" s
7T 029028027020
offyo

in any local coordinates system. For any u € A”Y(X) let
(uyu)y y = (9u, 39)  + (00u, 00u)  + (90u, $0u) y + (30u, Jou) y .

Let 0 € X be a fixed point; for any r > 0 we will denote by B, the ball centered in
0 with radius r. For the sake of simplicity we will use the notation (-,-), and
(*,°),,, respectively for the quantities (-,-), and (-,), p . Notice that the com-
pleteness of X ensures that the generic ball B, is relatively compact in X, by
Hopf-Rinow theorem; in particular all quantities (u,u), and (u,u), , are finite.
The fundamental result of this section is an integral inequality of Stampacchia-
type for the operator &.

THEOREM 3.2 (Stampacchia-type inequality). For every R,r,a > 0 with r < R
it holds

(3.4) (O, Ou), + (u,u), , + (Ou, ou), + (Ou, ou),

= <(R L_l r)4 * (R izr)z + %) (1, u)
3
(R—r)?

((Ou, Ou) g + (Ju, Su) ) + caa(Zu, Du)

Jfor any u € AP1(X), with ¢y, ¢, ¢3, ¢4 positive constants eventually depending only
by the complex dimension n.

PRrROOF. Using the same argument of Lemma 6 in [9] we can construct a function
@: X —[0,1] with ¢ = 1 on B,, ¢ = 0 on X\ Bg such that there exist two positive
constants M| and M;, depending only by n, with
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(3.5) (LoAu,Lop nu)p <

(NpAu,NpAu)p <

for any u e A”%(X), whenever L e {0,0,9,3} and N € {00,939, 90,30}. Let
u e A”(X); then ¢™u has support in By for any positive integer m. Now we di-
vide the proof in two steps; first we collect some useful estimates for the first and
the second order terms that appears in &, and then we will prove (3.4).

Step 1. Let us consider the first order terms. We have

d(p*u) = 4909 Au+ ¢*ou
and then

(0u, 0(9*u)) g = (9*0u, 4p0p A u + ¢>0u) g = 4(9>0u, pog A 1) g + (9 0ut, 9> 0u) .
Taking into account formulas (2.1) we deduce that
(3.6) (9 0u, p*0u) p = (90u, p*u) p — 4(9*Ou, pop A 1) .
By applying the same argument we get
(3.7) (9?0, p*0u) . = (90u, p*u) x — 4(p?Ou, PO A 1) .
Let us now consider the second order terms. We easily have
90(p*u) = 9(20°0p Au + 9> 0(p*u))
= 6099 A Op Au+ 202909 Au+ (—1)"T92030p A u
+ 2080 A 0(9*u) + 9*90(¢u)

= 10099 A 0p A u+ 20309 A u+ (—1)7T20°0p A Ju
+ 2099 A Ou + ¢*90(p*u)

from which we obtain

(90u, 30(p*u)) p = (9*90u, 1099 A Op A u+ 20300 Au+ (—1)" 2000 A Ju
+ 2090 A du + 90(p*u))
= (90(p*u) — 299 A dp A — 20909 Au— (—1)P 200 A Ju
— 2090 A 0u, 1099 A 0p Au+ 20909 Au+ (—1)" 2000 A Ju
+ 2090 A Su + 90(p*u)) -
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Then taking into account (2.1) we get

(3.8)  (80(9*u). 90(¢*u)) g
= (9090u, p*u) p — 10(90(pu), 99 A dp A ) 5
+20(39 A 0p A, 99 A Op A tt) g + 20(p30p A, Ip A Op A )
+20(—1)"*(pdp A Su, 39 A Op A1) g + 20(pIp A Ou, Sp A Op A 5
— 2(80(p*u), p30p Au) g + 4(9p A Op A, 0909 A 5
+ 4(p309 A u, 9309 Au) p + 2(— 1) (pdp A Su, p90p A u)
+ 4(p3p A Ou, 9900 Au) g — 2(=1)"T(90(p7u), pdp A )
+4(=1)""(9p A dp Au, pdp A Ju)
+4(=1)""(p30p A u, pdp A Ju) x + 4(pdp A Ju, pdp A Ju)
+4(=1)"" (9% A du, pdp A ) g — 2(90(97u), 939 A u)
+4(99 A 0p Au, 03¢ A Ou) o + 40300 A u, pIp A Ou)
+4(=1)""(pdp A Ju, p3p A 0u) g + 4(p3p A Ou, I A Ou)
+2(99 A 0p Au, 30(9*u)) g + 2(0I0p A u, 90(p*u)) g
2(=1)" (g A 9, 98(00) ¢ + 2990 A B, 95(p0) .

After the same computation we can obtain a similar identity for the term
(08(p%u), 08(9°u)) -

Step 2. Now we will prove (3.4). By taking the sum of (3.6), (3.7), (3.8) and the
similar identity for the term (09(¢p*u),0%(p’u))y, taking into account the very
definition of &, Young inequality and (3.5) we easily obtain

(3.9)  (90(9*u), 90(p7u)) g + (09(p*u), 0(p°u))
+ (p*0u, gozau) + (p*0u, (pzéu)

< [(Zu,p*u), |+ [(90(p*u), 90(9*u) g + (09(9*u), 09(p*u)) &

+ (p*0u, p*0u) g + (¢*u, p*0u) 5] + ((R f EY. + ® f r)4> (u, 1)

i (R j r)? ((Ou, 0u) g + (Sut, Sut) )

for some positive constants «, 5, y depending only on the complex dimension 7.
Then



A STAMPACCHIA-TYPE INEQUALITY FOR A FOURTH-ORDER ELLIPTIC OPERATOR 167

(90(pu), 90(p*u)) g + (08(p*u), 09(p*u)) g + (9*0u, 9*du) g + (9> 0u, p*0u) 4

20 2p
R (R—r)4> 4

IA
)
9
=
<
~
=
=
_|_
N

Now observe that

(90(p*u), 90(¢*u)) g + (38(9°u), 08(9°u)) = (O9*u), D(0”u) )

and, at the same time, applying (3.3),
(90(pu), 90(p*u)) g + (39(9*u), 08(9u)) g = (9°u, 9*u1); -

Thus, since ¢ = 1 on B,, we deduce that

(O, Ou), + (u, 1), , + (0u, ou), + (0u, ou),

4 4
= ((R _ar)z & _ﬁr)4> (1)

+ (R4—yr)2 ((Ou, 0u) g + (Ju, Su) ) + 4|(2u, (p4u)R|.

Finally, applying again Young inequality, we obtain, for any # > 0,

(O, Ou), + (u,10)5, + (Ou, 0u), + (Ou, o),

S( 4o 1+ 4p 4+:7_1>(u,M)R

(R—7) (R—r)

4y

W ((Ou, gu)R + (Ju, u) ) + 4n|(Du, Du) |

+
which is, up to constants, inequality (3.4). O
4. A HODGE-KODAIRA DECOMPOSITION FOR THE SPACE W/ (X)

This section is devoted to the proof of a Hodge-Kodaira orthogonal decompos-
tion for the space W#9(X).
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ProrosITION 4.1. It holds
(4.1) KerOnW”(X) =Ker2nW"(X)
={ueA”I(X)AWP(X): 3u = du = ou = 0}.

PRrROOEF. Let u € W79(X) with Zu = 0. Then inequality (3.4) implies that

(93u, $3u), + (Ou, ou), + (Ou, ou), < (

for any R, r,o > 0 with r < R. Observe that since X is connected we get
(93u, $u), + (Ou, ou), + (Ou, ou), — ($%u, 39u) , + (ou, ou)  + (Ou, du)

as r — +0o0. Choosing r = R/2 and by taking the limsup as R,¢ — 40 we
deduce that (33u, $3u), = (Ou, ou)y = (Ou, au)X = 0. Then $%u = ou = ou =
Conversely if u € A”(X) and if $%u = du = ou = 0 then recalling (3.3) we im-
mediately have Zu = 0. Then

Ker 2 nWP4(X) = {ue A" (X) nWP4(X) : $8u = ou = ou = 0}.

Now if u € A”?(X) n'W?4(X) and [Ju = 0 then applying (1.2) and the same for
O we get du = du = Yu = Ju = 0, and thus Zu = 0. Conversely if u € A”9(X) N
W 4(X) and Zu = 0 then by (3.4) we have

(Du,Du),S( a 4, @ +1>(u,u)X

(R=r)" (R-r)? @
3
R r)2 ((Ou, 0u) y + (Su, Su) y)
Reasoning as before we conclude. O

LemMaA 4.2. If at least one form between u and v belong to D¥*9(X) then
(4.2) (Ou, v), y = (u, gv)u( and (ou, V)1 x = (4, 90)) -

ProOOF. By direct computation we have, since (2.1) and (2.2) hold,

(00u, 0v) y + (90u, Jv)

(900u, v) 4 + (090u,v)

(90 + 09)0u, v)y = (u, ) + (63 + 90)0u, v)
(030u,v)y = (u, Jv) y + (I0u, $v)
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(4, 90); x = (u, I0) y + (Ju, 0v)  + (Su, $9v)

= (u, ) y + (90u, %)y + (0%u, Jv)y = (u, )y + (I0u + du, Jv)

= (u, ) y + (03u + J0u, $)y = (u, Jv) y + (90u, v),.

The other one is similar. O

THEOREM 4.3 (Hodge-Kodaira decomposition). The following Hodge-Kodaira
orthogonal decomposition holds:

(43)  WP4(X) = [00DP 47 1(X)], @, [9D7 4T (X) 4 IDP (X)),
@, Ker(OJnW7I(X).

PrOOF. Taking into account (4.1) it is sufficient to show that
WPi(X) = [00D"" M1 (X)), @ [9D7 (X)) + 9D (X))
@ {ue A"I(X) A WPI(X) : 99u = ou = du = 0}.
STEP 1. First we prove that the subspaces
[0oDP~ 171 (X)), and [ID74T(X) 4 GDPT( X)),

are orthogonal in the space W”4(X). Let u = 00 for some # € D?~147!(X) and
let v = 9%, + 8, for some #; € D71 (X) and &, € D”"19(X). Then taking into
account (4.2) we get

(u,0), y = (004, 951, y + (00@, 952), y = — (001, 961), y + (004, I02), y
— (3, 8%61), ¢ + (0, §52), y = 0.
Passing to the closures in W”'4(X’) we conclude.

STEP 2. Taking into account Step I and applying the projection theorem in an
Hilbert space we obtain the orthogonal decomposition

WPi(X) = [90D"" 1 (X)) @ [9D7 (X)) + IDP (X))
@, (00D (X A [9DPHH(X) + IDPTH(X)]
Using the same argument as before we easily get
{ue AP1(X) WP (X): 88u = ou = du = 0}
< [00DP~ LN (X)) A [9DP (X)) 4+ DR (X))

Now if u e [00DP~ 471 (X)) A [9D”4F1(X) + §D14(X)]; then for each v e
D7 147l (x), we D777 (X) and z e D”T9(X) we have
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(4.4) (00v,u), y = (9w + Jz,u), y = 0.
Let € D?4(X); then considering (3.3) we have
(i, u); y = (001, 1),y + (903 + Jos, 1), y
where

w; = 9% e DV VN(X),  w, = 090a e DM (X),
w3 = 900 + 030u e D' TH(X)
and thus from (4.4) we deduce that (Zii,u), = 0. Then u is a weak solution of

the equation Zu = 0; since Z is an elliptic operator we get u € A”(X). By (4.2)
we finally obtain

(v, 9§u)17X = (w,gu)l_’X = (z, 6“)1,){ =0
for all ve D’ 147 1(X), we D”*1(X) and z e D?"4(X). Therefore $3u =
Ou = 0u = 0, and this concludes the proof of (4.3). O
5. APPLICATIONS TO THE STUDY OF AEPPLI GROUPS

Let p,q > 1 integers. As recalled in the Introduction, the Aeppli groups A9
were originally defined by

 Ker{A?9(X) L APVI(x) @ AP (X))

AP _
d0AP~1971(X)

Bigolin, in [11], proves, using certain resolutions of the sheaf of germs of d0-
closed functions, that there exists an algebraic isomorphism between A”*? and

_ Ker{K”9(X) % KP19(x) @ K+ (X)}

AP =
0KP~ L7l (x)

First we prove the following lemma.
LEMMA 5.1. The natural map

[Ker{D”“(X) > D*14(X) ® D7+ (X)}],
03D LT (X)),

Ker(DPH4(x) % D71 ()} 0.
[de+q—l (X)]pr

—

is injective.
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Proor. Using the same argument of the proof of theorem 4.3 it is possible to
show that

[Ker{D"4(X) 5 DP*14(x) @ D74+ (X)}], = [9IDP4H (X) + JDPH4(X)]1
Taking into account the Hodge-Kodaira decomposition (4.3) we deduce that

[Ker{D™?(X) % D"*14(X) ® D" (X)}],
[0aD7 LT ()],

and Ker[Jn W”9(X)

are isomorphic. Now Ker[]n W”?(X) < Ker A n L”"(X). Since
d
[Ker{D"*(X) = D" (X )} o) = 0D (X))
then, by the classical Hodge-Kodaira decomposition (1.5),

d
[Ker{DP*(X) % D? (X)) o

KerAnL”™(X) and T
[dDPH (X Lrax)

are isomorphic, and this concludes the proof. O

In order to prove the main theorem of this section, i.e. a characterization of the
Aeppli groups A”9(X), we have to assume a technical topological condition on
the manifold X. More precisely we will assume that

(5.1) A0KP~ 1971 (X)) is weakly closed in K”7(X)

where the weak topology on K#?(X) is the usual weak topology of distributions
(recall that K”7(X) is the dual space of D”(X)). It is well known that compact
manifolds and Stein manifolds are examples of manifolds satisfying condition
(5.1), so that our result extends the results contained in [1] and [10]. Moreover
we point out that condition (5.1) is a necessary condition in order to prove only
the next theorem: all the rest of the paper holds independently from this assump-
tion; in particular the Stampacchia-type inequality (3.4) and the Hodge-Kodaira
decomposition (4.3) hold for any connected and complete Kdhler manifold.

THEOREM 5.2. Let us assume (5.1). Then the Aeppli group A”*(X) is isomorphic
to the group H”4(X), where we recall that H?9(X) denotes the space of all global
harmonic (p + q)-forms of bidegree (p, q).

PrOOF. Since

_ Ker{K”"(X) % K7 (X))
- dKPHT(X)

HrH4 ( X)

and since the image of the natural map
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 Ker{K"(X) LR @KPT (X)) Ker{KMH(X) S KPHet (X))
: = —
00K~ (X) dK7H1(X)

is exactly H”?(X), then it is sufficient to show that 7 is injective. Let 7" € K”/(X)
with 7' = dS for some S € K”*~!(X). Then we have to show that there exists
R e KP~171(X) such that T = d0R. Since D”T7!(X) is dense in K”™7!(X)
then there exists a sequence (Sj),c € D™ '(X) with S, — S as h — +o0.
Then dS, — T and we can suppose, without loss of generality, that dS) €
D?4(X). Let T, = dS). Taking into account lemma 5.1 we get

T}, € [03DP 1471 (X)),

so that

with TF =00Uf for some UFeD’ 7!(X). Since we are assuming
00K?~ 1471 (X)) weakly closed in K”*7(X) then

T, = 00Ry,

for some R;, € K~ 1471 (X), and then T = 09R for some R € K’ 1471(X), which
ends the proof. O

REMARK 5.3. One can repeat all the considerations on the operator
Z* = 9090 + 0909 + 09 + 09
and in particular we get the Hodge-Kodaira orthogonal decomposition
WPi(X) = [$ID7 10 (X)) @ [0D? (X)) + aDP (X))
@, Ker[On W#(X)

which permits to study the Aeppli groups V'4(X) reasoning as in lemma 5.1 and in
theorem 5.2.
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