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Abstract. — We prove regularity results for minimizers of integral functionals of the typeZ
W

f ðXuÞ dx

where f satisfies a nonstandard growth condition and Xu stands for the horizontal gradient of u.

More precisely, we obtain regularity in the scale of Campanato spaces without assuming any restric-
tion on the growth exponents and, under a suitable assumption on them, we get the local bounded-

ness as well as an higher integrability result for the gradient.
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1. Introduction

Let W be a bounded subset in Rn and X ¼ ðX1; . . . ;XkÞ be a family of vector
fields defined in a neighbourhood of W, with real, Cl smooth and globally
Lipschitz coe‰cients satisfying the Hörmander condition. For u : W ! R, we
consider the integral functional

FðuÞ ¼
Z
W

FðXuÞ dxð1:1Þ

where the integrand F : Rk ! R is a continuous function satisfying

cfAðjxjÞ � 1gaFðxÞaCfAðjxjÞ þ 1gð1:2Þ

jFðxþ hÞjaC0½F ðxÞ þ F ðhÞ�ð1:3Þ

where A : ½0;lÞ ! ½0;lÞ is an N-function, that is A is a continuous, strictly
increasing and convex function satisfying

Að0Þ ¼ 0 lim
t!0

AðtÞ
t

¼ 0 lim
t!l

AðtÞ
t

¼ þlð1:4Þ



We shall assume that there exist 1 < pa q such that

AðtÞ
tp

% AðtÞ
tq

&ð1:5Þ

Definition 1.1. A function u a W
1;A
X ðWÞ, is a local minimizer of the integral

(1.1) ifZ
suppðu�vÞ

FðXuÞ dxa
Z
suppðu�vÞ

F ðXvÞ dx Ev a W 1;A
X ðWÞ; suppðu� vÞ T W

Combining assumptions in (1.2) and (1.5) we have that the integrand f satisfies
the following bounds

cðjxjp � 1ÞaFðxÞa cðjxjq þ 1Þð1:6Þ

Variational integrals whose integrand satisfies growth conditions of the type (1.6)
are called functionals ‘‘with non standard growth conditions’’ and were intro-
duced in the Euclidean setting by Marcellini in [17]. From the very beginning, it
has been clear that minimizers of functionals satisfying (1.6) can be not only
irregular but also unbounded if q is too large with respect to p, see [16]. The
study of the regularity of minimizers of such integrals has a long history in the
Euclidean setting, see for example [1], [6], [18] and [2]. In [18], Moscariello and
Nania, assuming that A and its conjugate satisfy the so called D2-condition,
proved that any bounded local minimizer of (1.1) is Hölder continuous in W. It
is worth pointing out that this result was proven without any further condition
on p and q. In the same paper the local boundedness of minimizers is also proved
for exponents p and q opportunely close.

Here, without any assumptions on p and q, we obtain that minimizers of the
integral (1.1) belong to a Campanato space and have the horizontal gradients be-
longing to a Morrey space. More precisely we get

Theorem 1.1. Let u be a local minimizer of the integral functional (1.1).
Then there exist s ¼ sðp; q;CdÞ and t ¼ tðp; q;CdÞ such that u a L

p;s
X ðWÞ and

Xu a L
p; t
X ðWÞ.

With the additional assumption p > Qq=ðQþ qÞ, where Q is a homogeneous
dimension relative to W, we establish the following higher integrability result
for the horizontal gradient of minimizers (Theorem 1.2) and we prove the local
boundedness of the minimizers themselves (Theorem 1.3).

Theorem 1.2. Let A be an N-function satisfying assumptions in (1.5) with
p >

Qq

Qþq
and u a W

1;A
X ðWÞ be a local minimizer for the functional FðuÞ. There ex-

ist positive constants c and d ¼ dðp; q;CdÞ such that, for any balls BR HB2R T W,Z
BR

A1þdðjXujÞ dxa c
�Z

B2R

AðjXujÞ dx
�1þd

þ cð1:7Þ
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Theorem 1.2 is the analogous of a result contained in [6] concerning the Eucli-
dean setting. Obviously, we need some changes due the fact that we are working
in a homogeneous space.

More precisely, an extension of the Maximal Theorem to the context of Orlicz
spaces reveals a key tool in the proof of both results above. Moreover, a Poincaré
inequality and a Caccioppoli type inequality in the setting of Orlicz-Sobolev
spaces are crucial in order to prove Theorem 1.1 and Theorem 1.2 respectively.
Carnot-Carathéodory spaces associated with a system of vector fields satisfying
the Hörmander condition support a Poincaré inequality in Lebesgue spaces (see
Proposition 2.3) and a so called A-Poincaré inequality, that is

Z
B

ju� uBj
R

dxaCA�1
�Z

B

AðjXujÞ dx
�

As far as we know, even it should be possible to deduce a ðA;AÞ-Poincaré in-
equality (see Proposition 3.1) from a A-Poincaré inequality, there is not any ex-
plicit proof of it. Inspired by [6], we prove a ðA;AÞ-Poincaré inequality using the
Poincaré inequality in Lebesgue spaces.

In Section 3 we prove all the useful tools mentioned above.

Theorem 1.3. Let A be an N-function satisfying assumptions in (1.5) with
p >

Qq

Qþq
. Let BR HW be a ball and u a W

1;A
X ðWÞ be a local minimizer for the

functional FðuÞ assuming the value u0 on qBR. If u0 a LlðqBRÞ, then u is locally
bounded.

In the proof we follow an idea by Stampacchia [20] as suggested by Boccardo,
Marcellini and Sbordone in the Euclidean setting, [1].

It is worth mentioning that regularity results for minimizers of integral func-
tionals under standard growth conditions (i.e. p ¼ q in (1.6)) have been estab-
lished for example in [7, 8, 3].

2. Notation and preliminary results

Carnot-Carathéodory spaces Let X1; . . . ;Xk be vector fields defined in Rn, with
real, Cl smooth coe‰cients. We say that they satisfy the Hörmander’s condition
if there exists an integer m such that the family of commutators of X1; . . . ;Xk up
to length m

X1; . . . ;Xk; ½Xi1 ;Xi2 �; . . . ; ½Xi1 ; ½Xi1 ; . . .Xim �� . . .�; Eij ¼ 1; 2; . . . ; k

spans the tangent space TxR
n at every point x a Rn.

For any real valued Lipschitz continuous function u we define

XjuðxÞ ¼ 3XjðxÞ;‘uðxÞ4 j ¼ 1; 2; . . . ; k
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and we call the horizontal gradient of u the vector Xu ¼ ðX1u; . . . ;XkuÞ whose
length is given by

jXuj ¼
�Xk

j¼1

ðXjuÞ2
�1=2

Let WHRn be an open set. For a function u a L1
locðWÞ, its distributional de-

rivative along the vector fields Xj is defined by the identity

3Xju;F4 ¼
Z
W

uX �
j F dx EF a Cl

0 ðWÞð2:1Þ

where X �
j denotes the formal adjoint of Xj. Throughout the paper, if u is a

nonsmooth function, Xju will be meant in the distributional sense.
An absolutely continuous curve g : ½a; b� ! Rn is said to be admissible, if there

exist functions cj : ½a; b� ! R, j ¼ 1; . . . ; k such that

_ggðtÞ ¼
Xk
j¼1

cjðtÞXjðgðtÞÞ and
Xk
j¼1

cjðtÞ2 a 1

Observe that Xj do not need to be linearly independent and therefore functions cj
do not need to be unique. Define the distance function r as

rðx; yÞ ¼ inffT > 0 : bg : ½0;T � ! Rn admissible; gð0Þ ¼ x; gðTÞ ¼ yg

If there is not any such a curve, we set rðx; yÞ ¼ l. The function r is called
Carnot-Carathéodory distance and, since it is not clear whether one can connect
any two points of Rn by an admissible curve, it’s not clear whether r is a metric.
The assumption for which the vector fields X1; . . . ;Xk satisfy the Hörmander con-
dition ensures that r is a metric and in this case ðRn; rÞ is said to be a Carnot-
Carathéodory space.

The following theorem, due to Nagel, Stein and Wainger [19], shows that the
metric r is locally Hölder continuous with respect to the Euclidean metric.

Theorem 2.1. Let X1; . . .Xk be as above. Then for every bounded open set
WHRn there are constants c1, c2 and l a ð0; 1� such that

c1jx� yja rðx; yÞa c2jx� yjlð2:2Þ

for every x; y a W.

It follows that the space ðRn; rÞ is homeomorphic with the Euclidean space Rn

and therefore bounded sets in the Euclidean metric are bounded sets in the metric
r. The inverse is not always true but it is certainly valid if X1; . . .Xk have globally
Lipschitz coe‰cients (see [10]). In the sequel all the distances will be respect to the
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metric r, in particular all the balls will be balls with respect to the Carnot-
Carathéodory metric. We shall consider in ðRn; rÞ the Lebesgue measure which
locally satisfies the following doubling condition (see for example [19]):

Proposition 2.2. Let W be an open, bounded subset of Rn. There exists a con-
stant Cd b 1, called doubling constant, such that

jBðx0; 2RÞjaCd jBðx0;RÞj

provided x0 a W and Ra 5 diamW.

Let Y be a metric space and m a Borel measure in Y . Assume m finite on
bounded sets and satisfying the doubling condition on every open, bounded sub-
set W of Y . If there exists a positive constant C such that

mðBÞ
mðB0Þ

bC
� R

R0

�Q
for any ball B0 having center in W and radius R0 < diamW and any ball B cen-
tered in x a B0 and having radius RaR0, we say that Q is a homogeneous dimen-
sion relative to W.

It is well known that doubling property implies the existence of such a Q.
However, Q is not unique and it may change with W. Obviously any Q 0 bQ is
also a homogeneous dimension.

For a bounded open set W containing a family of vector fields satisfying the
Hörmander condition, the Carnot-Carathéodory space ðW; rÞ with the Lebesgue
measure has the homogeneous dimension Q ¼ log2 Cd .

Recall that the Sobolev space W 1;p
X ðWÞ is defined as

W
1;p
X ðWÞ ¼ fu a LpðWÞ : Xju a LpðWÞ j ¼ 1; . . . ; kg

and that W
1;p
X ;0ðWÞ denotes the closure of Cl

X ;0ðWÞ in W
1;p
X ðWÞ. The following

versions of Sobolev and Poincaré type inequalities hold (see for example [5], [10]).

Proposition 2.3. Let X1; . . .Xk be as before. Let Q be a homogeneous dimen-
sion relative to W. There exist constants C1;C2 > 0 such that, for every ball BR

centered in W and having radius Ra diamW, the following inequalities hold

�Z
BR

ju� uRjp
�
dx
�1=p�

aC1R
�Z

BR

jXujp dx
�1=p

ð2:3Þ

for 1a p < Q and p� ¼ Qp

Q�p
andZ

BR

ju� uRjp dxaC2R
p

Z
BR

jXujp dxð2:4Þ

for 1a p < l.
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We have denoted by uR the average of the function u on BR.
The following imbedding property holds under the previous assumptions on

the vector fields X1; . . .Xk.

Proposition 2.4. Let WHRn be an open set with su‰ciently smooth boundary
and Q a homogeneous dimension relative to W. Let u a W

1;p
X ;0ðWÞ with 1a p < Q.

Then there exists a constant c > 0 such that

jjujjLp�ðWÞ a cjjujj
W

1; p
X ; 0

ðWÞð2:5Þ

For the proof the reader can refer to [11] and [12].
For 0 < aa 1 we say that a continuous function on W belongs to the Hölder

class C0;a
X ðWÞ if

sup
xAy;x;y AW

juðxÞ � uðyÞj
rðx; yÞa <l

Finally u a LpðWÞ is said to belong to the Campanato space Lp;s
X ðWÞ if

1

jBRj

Z
BR

ju� uRjp dxa cRs

and to the Morrey space Lp; t
X ðWÞ ifZ

BR

jujp dxa cRt

for every ball BR centered in W and having radius R < diamW.
Note that the following Theorem holds (see for example [14])

Theorem 2.5. If g < 0, the Campanato space L
p; g
X ðWÞ is isomorphic to the

Morrey space L
p; g
X ðWÞ. If 0 < g < p, the Campanato space L

p; g
X ðWÞ is isomorphic

to C0;a
X ðWÞ with a ¼ g

p
.

Orlicz and Orlicz-Sobolev spaces Let A : ½0;lÞ ! ½0;lÞ be a continuous,
strictly increasing and convex function satisfying (1.4). We shall assume that
there exist 1 < pa q such that

pAðtÞa tA 0ðtÞa qAðtÞ Etb 0ð2:6Þ

It is easy to verify that the second inequality in (2.6) is equivalent to say that there
exists a constant k > 1 such that

Að2tÞa kAðtÞ Etb 0ð2:7Þ

that is the so called D2-condition on A, while both the inequalities in (2.6) are
equivalent to
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AðtÞ
tp

% AðtÞ
tq

&ð2:8Þ

and to the following conditions

A�ðtÞ
tp

0 & A�ðtÞ
tq

0 %ð2:9Þ

where p 0 and q 0 denote the Hölder conjugate exponents of p and q respectively
and A� is the conjugate N-function of A defined by

A�ðsÞ ¼ sup
tb0

fst� AðtÞgð2:10Þ

It follows that

c1ðtp � 1ÞaAðtÞa c2ðtq þ 1Þð2:11Þ

for some constants c1, c2.
Note that (2.9) implies that A� also satisfies a D2-condition.
There are many functions A which behave as above. For example, it is easy to

verify that the function

AðtÞ ¼ tp logð1þ tÞ p > 1

satisfies conditions in (2.8) with p ¼ p� e and q ¼ pþ e for all e > 0.
Let WHRn be an open set, the Orlicz class LAðWÞ defined by

LAðWÞ ¼ u : W ! R : u is measurable;

Z
W

AðjuðxÞjÞ dx < l

� �

is a Banach space equipped with the Luxemburg norm

jjujjLAðWÞ ¼ inf l > 0 :

Z
W

A
� juðxÞj

l

�
dxa 1

� �

The space generated by A� is the dual of LA and the two following fundamental
inequalities hold

A�
�AðtÞ

t

�
aAðtÞð2:12Þ

staAðtÞ þ A�ðsÞ ðYoung’s inequalityÞð2:13Þ

The Orlicz-Sobolev space W 1;A
X ðWÞ is the subspace of LAðWÞ of functions u such

that the horizontal gradient Xu belongs to LAðWÞ. It is equipped with the norm

jjujj
W

1;A
X

ðWÞ ¼ jjujjLAðWÞ þ jjXujjLAðWÞ
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Maximal functions For f a L1
locðWÞ, we define the maximal function by

MW
R f ðxÞ :¼ sup

0<r<R;Bðx; rÞHW

Z
Bðx; rÞ

j f j dy

In order to simplify the notations we will write MR and M2R in place of MBR

R

and MB2R

2R respectively. The following proposition contains a metric version of a
‘‘weak type’’ inequality for the maximal function whose proof can be found in
[12].

Proposition 2.6. Assume X be a metric space equipped with a doubling mea-
sure m on an open set WHX. Let h be a locally integrable function in W. Then

mðfx a W : MW
R hðxÞ > tgÞa c

t

Z
W

jhj dmð2:14Þ

for t > 0, where the constant c depends only on the doubling constant Cd .

From now on we shall denote by W a bounded open set in Rn and by Q a homo-
geneous dimension relative to W. Let us conclude this section with a useful in-
equality due to Hajlasz and Strzelecki [13].

Proposition 2.7. Let u a W
1;p
X ðWÞ. Then

juðxÞ � uRj
R

a cMW
2RjXujðxÞ

for almost every x a W 0 with W 0
T W.

3. Crucial inequalities

In this section we prove some propositions that reveal crucial in the sequel. We
start with the following ðA;AÞ-Poincaré inequality

Proposition 3.1. Let A be an N-function satisfying (1.5) and Q a homogeneous

dimension relative to W. If u a W 1;A
X ðWÞ, then there exists a positive constant

C ¼ Cðp; q;QÞ such thatZ
BR

A
� ju� uRj

R

�
dxaC

Z
BR

AðjXujÞ dxð3:1Þ

for each ball BR well contained in W.

Proof. Define the function

KðtÞ ¼
Z t

0

Aðs1=qÞ=s dsð3:2Þ
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It is obviously increasing and, in virtue of (2.6), it is easy to verify that is concave
and satisfies the following inequalities

Aðt1=qÞaKðtÞa q

p
Aðt1=qÞð3:3Þ

Denoting by HðtÞ ¼ Aðt1=qÞ, we have
Z
BR

A
� ju� uRj

R

�
dx ¼

Z
BR

H
� ju� uRjq

Rq

�
dxð3:4Þ

a

Z
BR

K
� ju� uRjq

Rq

�
dxaK

�Z
BR

ju� uRjq

Rq
dx
�

aK
�
c

Z
BR

jXujq dx
�
a

q

p
A c

�Z
BR

jXujq dx
�1=q� �

a cA
�Z

BR

jXujq dx
�1=q� �

where we used (3.3), Jensen’s inequality, Poincaré inequality in (2.4) and D2-
condition.

Now denoting by CðtÞ ¼
Z t

0

AðsÞ
s

ds, a simple change of variable gives

CðtÞ ¼ q

Z t1=q

0

AðsqÞ
s

ds ¼: ~CCðt1=qÞð3:5Þ

Using conditions in (2.6), we can easily prove that the function CðtÞ is convex
and that the function ~CCðt1=qÞ defined in (3.5) satisfies the following inequalities

1

q
Aðt1=qÞa ~CCðt1=qÞaAðt1=qÞð3:6Þ

Therefore, by Jensen’s inequality,

cA
�Z

BR

jXujq dx
�1=q� �

a c ~CC
�Z

BR

jXujq dx
�1=q� �

ð3:7Þ

¼ cC
�Z

BR

jXujq dx
�
a c

Z
BR

CðjXujqÞ dx

¼ c

Z
BR

~CCðjXujÞ dxa c

Z
BR

AðjXujÞ dx

The conclusion follows combining inequalities in (3.4) and (3.7). r
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Next Proposition contains an extension of the Maximal Theorem to the con-
text of Orlicz spaces.

Proposition 3.2. Let BR be a ball well contained in W. If A is an N-function
satisfying conditions (1.5) and f a LAðBRÞ is a non negative function, then there
exists a positive constant c depending on p, q and on the doubling constant Cd,
such that Z

BR

AðMR f Þ dxa c

Z
BR

Að f Þ dxð3:8Þ

Proof. Defining, for any t > 0,

lðtÞ ¼ jfx a BR : MR f ðxÞ > tgjð3:9Þ

we have Z
BR

AðMR f Þ dx ¼
Z
BR

dx

Z MR f

0

A 0ðtÞ dtð3:10Þ

¼
Z l

0

A 0ðtÞlðtÞ dt

Now choosing

hðxÞ ¼ f ðxÞ if f ðxÞ > t
2

0 otherwise

�

we have that MR f a
t
2 þMRh and therefore

fx a BR : MR f ðxÞ > tgH x a BR : MRhðxÞ >
t

2

� �

It follows that

Z
BR

AðMR f Þ dxa
Z l

0

A 0ðtÞ x a BR : MRhðxÞ >
t

2

� �����
���� dtð3:11Þ

a cðCdÞ
Z l

0

A 0ðtÞ
t

dt

Z
f>t=2

f dx:

where, in the last inequality, we have used Proposition 2.6. By Fubini’s theorem,
integration by parts and assumptions on A we get
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Z
BR

AðMR f Þ dxa cðCdÞ
Z
BR

f ðxÞ dx
Z 2f ðxÞ

0

½A 0ðtÞ=t� dtð3:12Þ

¼ cðCdÞ
Z
BR

Að2f ðxÞÞ=2 dx

þ cðCdÞ
Z
BR

f ðxÞ dx
Z 2f ðxÞ

0

½AðtÞ=t2� dt

a
1

2
cðk;CdÞ

Z
BR

Að f ðxÞÞ dx

þ cðCdÞ
Z
BR

f ðxÞ dx
Z 2

0

½Aðsf ðxÞÞ=s2f ðxÞ� ds

¼ 1

2
cðk;CdÞ

Z
BR

Að f ðxÞÞ dx

þ cðCdÞ
Z
BR

dx

Z 2

0

½Aðsf ðxÞÞ=s2� ds

Note that in the last equality we have used the change of variable t ¼ sf ðxÞ. Split-
ting the last integral, by using (1.5) and the D2-condition, we haveZ 2

0

½Aðsf ðxÞÞ=s2� ds ¼
Z 1

0

½Aðsf ðxÞÞ=s2� dsþ
Z 2

1

½Aðsf ðxÞÞ=s2� dsð3:13Þ

aAð f ðxÞÞ
Z 1

0

sp�2 dsþ kAð f ðxÞÞ
Z 2

1

s�2 ds

Inserting (3.13) in (3.12) we conclude thatZ
BR

AðMR f Þ dxa cðCd ; p; qÞ
Z
BR

Að f ðxÞÞ dx r

Arguing as in [6], we can easily deduce from Proposition 3.2 the following
extension of Gehring’s lemma for N-functions A satisfying (1.5).

Proposition 3.3. Let A be an N-function satisfying conditions (1.5), and let
f a L1

locðWÞ a non negative function such that, for any ball BR T W,Z
BR=2

Að f Þ dxa b1A
�Z

BR

f
�
þ b2:ð3:14Þ

Then there exist c1, c2, d > 0 depending on b1, b2, p, q, Q such thatZ
BR=2

A1þdð f Þ dxa c1A
1þd
�Z

BR

f
�
þ c2:ð3:15Þ
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Let us conclude this section with the following Caccioppoli type inequality

Theorem 3.4. Let A be an N-function satisfying conditions (1.5) and
u a W

1;A
X ðWÞ be a minimizer for the functional FðuÞ. Then, for Ra s < ta 2R,

Z
Bs

AðjXujÞ dxa c

Z
BtnBs

A
� ju� uRj

t� s

�
dxþ

Z
BtnBs

AðjXujÞ dxþ RQ

" #
ð3:16Þ

where c is a constant depending on q and on the D2-constant of A.

Proof. Let h a Cl
0 ðBtÞ be a cut-o¤ function such that hC 1 on Bs, jXhja c

t�s
.

The proof of the existence of a such function can be found, for example, in [4].
Since j ¼ ðu� uRÞh belongs to the space W 1;A

X ðBtÞ, it can be used as a test func-
tion in Definition (1.1). The assumption on (1.2) and (1.3), the monotonicity of
the function A and the D2-condition give usZ

Bt

F ðXuÞ dxa
Z
Bt

F ðXðu� jÞÞ dx

¼
Z
Bt

Fðð1� hÞXu� Xhðu� uRÞÞ dx

a c

Z
BtnBs

Aðj1� hj jXujÞ dxþ
Z
BtnBs

AðjXhj ju� uRjÞ dxþ RQ

" #

a c

Z
BtnBs

Aðj1� hj jXujÞ dxþ
Z
BtnBs

A
� ju� uRj

t� s

�
dxþ RQ

" #

Therefore assumption on (1.2) and the monotonicity of A implyZ
Bt

AðjXujÞ dxa c

Z
Bt

FðXuÞ dxþ RQ

� �

a c

Z
BtnBs

AðjXujÞ dxþ
Z
BtnBs

A
� ju� uRj

t� s

�
dxþ RQ

" #

hence the conclusion. r

4. The regularity result

This section is devoted to the proof of Theorem 1.1.

Proof. Let B2R be a ball in W. Combining the Maximal inequality proved in
Proposition 3.2, the Caccioppoli type inequality in (3.16) for s ¼ R and t ¼ 2R
and the pointwise inequality jXujaM2RðjXujÞ, we easily get
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Z
BR

AðM2RðjXujÞÞ dx

a

Z
B2R

AðM2RðjXujÞÞ dxa c

Z
B2R

AðjXujÞ dx

a c

Z
B2RnBR

AðM2RðjXujÞÞ dxþ
Z
B2RnBR

A
� ju� uRj

R

�
dxþ RQ

" #

Now, since A is increasing and Proposition 2.7 holds, we getZ
BR

AðM2RðjXujÞÞ dxa c

Z
B2RnBR

AðM2RðjXujÞÞ dxþ RQ

" #

Now we fill the hole adding c

Z
BR

AðM2RðjXujÞÞ dx to both sides of the obtained
inequality havingZ

BR

AðM2RðjXujÞÞ dxa y

Z
B2R

AðM2RðjXujÞÞ dxþ cRQ

for y a ð0; 1Þ. A standard iteration argument implies the existence of a constant t
such that the following decay estimate holdsZ

BR

AðM2RðjXujÞÞ dxa cRtð4:1Þ

and observing thatZ
BR

AðjXujÞ dxa
Z
BR

AðMRðjXujÞÞ dxa
Z
BR

AðM2RðjXujÞÞ dxð4:2Þ

we get Z
BR

jXujp dxa cRtð4:3Þ

that means Xu a L
p; t
X ðWÞ.

Moreover, applying the Poincaré inequality of Proposition 3.1 to the left hand
side of (4.2) and using (4.1), we haveZ

BR

A
� ju� uRj

R

�
dxa

Z
BR

AðjXujÞ dx

a

Z
BR

AðM2RðjXujÞÞ dxa cRt

and then
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1

jBRj

Z
BR

ju� uRjp

Rp dxa cRt�Q

that is u a L
p;pþt�Q
X ðWÞ, i.e. the conclusion. r

Remark 4.1. Since L
p;pþt�Q
X ðWÞ is isomorphic to C0;a

X ðWÞ for a ¼ 1þ t�Q

p
,

provided t > Q� p, in the particular case p ¼ Q the minimizers of the integral
(1.1) belong to C

0;a
X ðWÞ for a ¼ t

Q
.

5. The higher integrability

The Caccioppoli type inequality in (3.16) combined with the Gehring’s lemma 3.3
will give Theorem 1.2.

Proof (of Theorem 1.2). Fix B2R an arbitrary ball well contained in W and
R < s < ta 2R. By Theorem 3.4 we haveZ

Bs

AðjXujÞ dxa c

Z
BtnBs

A
� ju� uRj

t� s

�
dxþ

Z
BtnBs

AðjXujÞ dxþ RQ

" #

and therefore, filling the hole adding to both sides of the inequality the integral

c

Z
Bs

AðjXujÞ dx, we get

Z
Bs

AðjXujÞ dxa y

Z
Bt

AðjXujÞ dxþ c

Z
Bt

A
� ju� uRj

t� s

�
dxþ RQ

� �
ð5:1Þ

for y a ð0; 1Þ. It follows thatZ
BR

AðjXujÞ dxa c

Z
B2R

A
� ju� uRj

R

�
dxþ RQ

� �
ð5:2Þ

hence by Hölder’s inequality, we deduce thatZ
BR

AðjXujÞ dx

a c

Z
B2R

Aðju� uRj=RÞ
jðu� uRÞ=RjQq=ðQþqÞ

u� uR

R

���� ����Qq=ðQþqÞ
þ c

a c

Z
B2R

AðQþqÞ=qðju� uRj=RÞ
jðu� uRÞ=RjQ

" #q=ðQþqÞ Z
B2R

jðu� uRÞ=Rjq dx
� �Q=ðQþqÞ

þ c

Define

KðtÞ ¼
Z t

0

½Aðs1=qÞ=s�ðQþqÞ=q
ds; HðtÞ ¼ ½Aðt1=qÞ�ðQþqÞ=q

tQ=q
;ð5:3Þ
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In virtue of (2.6), it is possible to prove that KðtÞ is concave and that there exists a
constant c such that

HðtÞaKðtÞa cHðtÞ Et > 0ð5:4Þ

Therefore, for q� ¼ Qq

Qþq
, using Proposition 2.3, we have

Z
BR

AðjXujÞ dxa c

Z
B2R

Kðjðu� uRÞ=RjqÞ
� �q=ðQþqÞZ

B2R

jXujq� dxþ cð5:5Þ

a cK q=ðQþqÞ
�Z

B2R

jðu� uRÞ=Rjq dx
�Z

B2R

jXujq� dxþ c

a cHq=ðQþqÞ
Z
B2R

jXujq�
� �q=q� !Z

B2R

jXujq� dxþ c

¼ c
A
�	R

B2R
jXujq� dx


1=q���R
B2R

jXujq� dx
� Z

B2R

jXujq� dxþ c

¼ cA

Z
B2R

jXujq� dx
� �1=q� !

þ c

Setting FðtÞ ¼ Aðt1=q� Þ, we have

Fð2tÞa kFðtÞ and F 0ðtÞb p

q�

FðtÞ
t

where, by assumption, p
q�
> 1. Hence inequality (5.5) can be written asZ

BR

FðjXujq� Þ dxa cF
�Z

B2R

jXujq� dx
�
þ c

Using now Proposition 3.3, we deduce that there exists d > 0 such thatZ
BR

F1þdðjXujq� Þ dxa cF1þd
�Z

B2R

jXujq� dx
�
þ c

that is Z
BR

A1þdðjXujÞ dxa cA1þd

Z
B2R

jXujq� dx
� �1=q� !

þ cð5:6Þ

Setting

CðtÞ ¼
Z t

0

AðsÞ
s

ds;ð5:7Þ
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it is easy to prove that

1

q
AðtÞaCðtÞaAðtÞð5:8Þ

and that CðtÞ and Cðt1=pÞ are both convex. It follows that

Z
B2R

jXujp dx
� �1=p

aC�1
�Z

B2R

CðjXujÞ dx
�
þ cð5:9Þ

see [15]. Finally, since p > q�, we have from (5.8) and (5.9) that

1

q
A

Z
B2R

jXujq� dx
� �1=q� !

a
1

q
A

Z
B2R

jXujp dx
� �1=p !

þ cð5:10Þ

a c

Z
B2R

AðjXujÞ dx

The conclusion follows from (5.6) and (5.10). r

For the case of spherical Quasi-minima, compare with the proof given in [7].

6. The local boundedness

In this section we prove the boundedness of the local minimizers of the functional
(1.1) with a fixed boundary value.

Proof (of Theorem 1.3). For a positive constant lb jju0jjl, let us consider the
function

w ¼ signðuÞmaxfjuj � l; 0gð6:1Þ

and use v ¼ u� w as test function in Definition (1.1), that is

Z
suppw

FðXuÞ dxa
Z
suppw

FðXvÞ dx

Since Xu ¼ Xw on the set El ¼ fx a BR : juðxÞj > lg, it follows thatZ
El

F ðXuÞ dxa
Z
El

Fð0Þ dx

thus, by assumptions in (1.2), we get

Z
El

AðjXujÞ dxa cjEljð6:2Þ
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By a simple use of the Sobolev embedding in (2.5) and the hypotheses on A, we
have �Z

BR

jwjp
�
dx
�p=p�

a c

Z
BR

jXwjp dxa c

Z
BR

AðjXwjÞ dxð6:3Þ

¼ c

Z
BRnEl

AðjXwjÞ dxþ
Z
El

AðjXwjÞ dx
" #

¼ c

Z
El

AðjXujÞ dx

and combining (6.2) and (6.3) we obtain

�Z
BR

jwjp
�
dx
�p=p�

a cjEljð6:4Þ

Recalling the definition of the function w, we have for d > l,Z
BR

jwjp
�
dx ¼

Z
El

j juj � ljp
�
dxb

Z
Ed

j juj � ljp
�
dxð6:5Þ

b

Z
Ed

jd� ljp
�
dx ¼ jd� ljp

�
jEdj

and therefore, from (6.4) and (6.5), we have

jEdja c
jEljp

�=p

jd� ljp�

Applying Lemma 4.1 of [20], we obtain that

jEtj ¼ 0 where t ¼ cjBRj1=Q ¼ cR

that implies

sup
BR

juja jju0jjl þ cR

i.e. the conclusion. r
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Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math.,
vol. 49 (1996), 1081–1144.

[11] P. Hajlasz: Sobolev spaces on an arbitrary metric space, Potential Anal., 5 (1996),
403–415.

[12] P. Hajlasz - P. Koskela: Sobolev met Poincaré, Mem. Amer. Math. Soc., 145 n. 688,
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