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ABSTRACT. — We prove regularity results for minimizers of integral functionals of the type

/Qf(Xu) dx

where f satisfies a nonstandard growth condition and Xu stands for the horizontal gradient of u.
More precisely, we obtain regularity in the scale of Campanato spaces without assuming any restric-
tion on the growth exponents and, under a suitable assumption on them, we get the local bounded-
ness as well as an higher integrability result for the gradient.
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1. INTRODUCTION

Let Q be a bounded subset in R” and X = (X,..., X)) be a family of vector
fields defined in a neighbourhood of Q, with real, C* smooth and globally
Lipschitz coefficients satisfying the Hérmander condition. For u: Q — R, we
consider the integral functional

(1.1) ﬁf’(u):/F(Xu)dx

Q
where the integrand F : R¥ — R is a continuous function satisfying
(1.2) {A(E]) — 1} < F(&) < C{A([¢]) + 1}

(1.3) [F(E+n)| < GlF(S) + F(n))]

where 4 : [0, 00) — [0,00) is an N-function, that is A is a continuous, strictly
increasing and convex function satisfying

(1.4) A(0) =0 m@:o tim A9 _ 4

1— o0 t
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We shall assume that there exist 1 < p < ¢ such that

05 Ay, A0

174 14

DEerFINITION 1.1. A4 function u € WJI(’A(Q), is a local minimizer of the integral

(L1 i

/ F(Xu)dx < / F(Xv)dx Yve WAI;A(Q),supp(u —0) €EQ
supp(u—v) supp(u—v)

Combining assumptions in (1.2) and (1.5) we have that the integrand f satisfies
the following bounds

(1.6) c(lE” = 1) < F(&) < c(lg]"+ 1)

Variational integrals whose integrand satisfies growth conditions of the type (1.6)
are called functionals “with non standard growth conditions’” and were intro-
duced in the Euclidean setting by Marcellini in [17]. From the very beginning, it
has been clear that minimizers of functionals satisfying (1.6) can be not only
irregular but also unbounded if ¢ is too large with respect to p, see [16]. The
study of the regularity of minimizers of such integrals has a long history in the
Euclidean setting, see for example [1], [6], [18] and [2]. In [18], Moscariello and
Nania, assuming that A4 and its conjugate satisfy the so called Aj-condition,
proved that any bounded local minimizer of (1.1) is Holder continuous in Q. Tt
is worth pointing out that this result was proven without any further condition
on p and ¢. In the same paper the local boundedness of minimizers is also proved
for exponents p and g opportunely close.

Here, without any assumptions on p and ¢, we obtain that minimizers of the
integral (1.1) belong to a Campanato space and have the horizontal gradients be-
longing to a Morrey space. More precisely we get

THEOREM 1.1. Let u be a local minimizer of the integral functional (1.1).
Then there exist o = a(p,q,Cq) and T = t(p,q, Cq) such that u e L¥°(Q) and
Xu e L}T(Q).

With the additional assumption p > Qq/(Q + ¢), where Q is a homogeneous
dimension relative to Q, we establish the following higher integrability result
for the horizontal gradient of minimizers (Theorem 1.2) and we prove the local
boundedness of the minimizers themselves (Theorem 1.3).

THEOREM 1.2. Let A be an N-function satisfying assumptions in (1.5) with

p> % and u € W)l('A(Q) be a local minimizer for the functional F (u). There ex-
ist positive constants ¢ and 0 = d(p,q, Cy) such that, for any balls Bg = Byg € Q,

(1.7) ]iA“fs(]Xu)dec(]i A(\Xu|)dx)l+5+c
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Theorem 1.2 is the analogous of a result contained in [6] concerning the Eucli-
dean setting. Obviously, we need some changes due the fact that we are working
in a homogeneous space.

More precisely, an extension of the Maximal Theorem to the context of Orlicz
spaces reveals a key tool in the proof of both results above. Moreover, a Poincaré
inequality and a Caccioppoli type inequality in the setting of Orlicz-Sobolev
spaces are crucial in order to prove Theorem 1.1 and Theorem 1.2 respectively.
Carnot-Carathéodory spaces associated with a system of vector fields satisfying
the Hormander condition support a Poincaré inequality in Lebesgue spaces (see
Proposition 2.3) and a so called A-Poincaré inequality, that is

][‘“ 8l v < ca- (]QA(|Xu)dx)

As far as we know, even it should be possible to deduce a (4, 4)-Poincaré in-
equality (see Proposition 3.1) from a A-Poincaré inequality, there is not any ex-
plicit proof of it. Inspired by [6], we prove a (A, A)-Poincaré inequality using the
Poincaré inequality in Lebesgue spaces.

In Section 3 we prove all the useful tools mentioned above.

THEOREM 1.3. Let A be an N-function sansfymg assumptions in (1.5) with
p> QQq Let Br = Q be a ball and u € W Q) be a local minimizer for the

Sunctional F (u) assuming the value uy on aBR If uy € L*(0BR), then u is locally
bounded.

In the proof we follow an idea by Stampacchia [20] as suggested by Boccardo,
Marcellini and Sbordone in the Euclidean setting, [1].

It is worth mentioning that regularity results for minimizers of integral func-
tionals under standard growth conditions (i.e. p = ¢ in (1.6)) have been estab-
lished for example in [7, 8, 3].

2. NOTATION AND PRELIMINARY RESULTS

Carnot-Carathéodory spaces Let X1, ..., X} be vector fields defined in R”, with
real, C* smooth coefficients. We say that they satisfy the Hérmander’s condition

if there exists an integer m such that the family of commutators of X7,..., Xj up
to length m
X, X (XL X XL XL X)) Y =120k

spans the tangent space 7,R” at every point x € R".
For any real valued Lipschitz continuous function u we define

Xu(x) = <{X;(x),Vu(x)) j=12,....k
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and we call the horizontal gradient of u the vector Xu = (Xju, ..., Xpu) whose
length is given by

il = (Y 00?)

=1
Let Q = R” be an open set. For a function u € L) (Q), its distributional de-
rivative along the vector fields X is defined by the identity

(2.1) (X, D) = /Q uX;ddx YO e CF(Q)

where X;* denotes the formal adjoint of Xj;. Throughout the paper, if u is a
nonsmooth function, Xju will be meant in the distributional sense.

An absolutely contlnuous curve y : [a,b] — R" is said to be admissible, if there
exist functions ¢; : [a,b] — R, j=1,...,k such that

k

= ¢(0X(y and zk: ¢(1)?
=1

Jj=1

Observe that X; do not need to be linearly independent and therefore functions ¢;
do not need to be unique. Define the distance function p as

p(x,y) =inf{T > 0:3y: [0, T] — R" admissible, y(0) = x,y(T) = y}

If there is not any such a curve, we set p(x, y) = oo. The function p is called
Carnot-Carathéodory distance and, since it is not clear whether one can connect
any two points of R” by an admissible curve, it’s not clear whether p is a metric.
The assumption for which the vector fields X7, . .., X satisfy the Hérmander con-
dition ensures that p is a metric and in this case (R",p) is said to be a Carnot-
Carathéodory space.

The following theorem, due to Nagel, Stein and Wainger [19], shows that the
metric p is locally Holder continuous with respect to the Euclidean metric.

THEOREM 2.1. Let Xi,... X be as above. Then for every bounded open set
Q < R" there are constants ci, ¢ and J. € (0, 1] such that

(22) arlx =y < plx,y) < calx = 3
for every x,y € Q.

It follows that the space (R”, p) is homeomorphic with the Euclidean space R”
and therefore bounded sets in the Euclidean metric are bounded sets in the metric
p. The inverse is not always true but it is certainly valid if X, ... X} have globally
Lipschitz coefficients (see [10]). In the sequel all the distances will be respect to the
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metric p, in particular all the balls will be balls with respect to the Carnot-
Carathéodory metric. We shall consider in (R”, p) the Lebesgue measure which
locally satisfies the following doubling condition (see for example [19]):

PROPOSITION 2.2. Let Q be an open, bounded subset of R". There exists a con-
stant Cy > 1, called doubling constant, such that

| B(x0,2R)| < Ca|B(x0, R)]
provided xy € Q and R < 5diam Q.

Let Y be a metric space and u a Borel measure in Y. Assume u finite on
bounded sets and satisfying the doubling condition on every open, bounded sub-
set Q of Y. If there exists a positive constant C such that

u(B)
u(Bo)

= c(R)°

Ry

for any ball By having center in Q and radius Ry < diam Q and any ball B cen-
tered in x € By and having radius R < Ry, we say that Q is a hiomogeneous dimen-
sion relative to Q.

It is well known that doubling property implies the existence of such a Q.
However, Q is not unique and it may change with Q. Obviously any Q' > Q is
also a homogeneous dimension.

For a bounded open set Q containing a family of vector fields satisfying the
Hoérmander condition, the Carnot-Carathéodory space (Q, p) with the Lebesgue

measure has the homogeneous dimension Q = log, C,.
Recall that the Sobolev space Wy”(Q) is defined as

WiP(Q) = {ue LP(Q): Xue LP(Q) j=1,...,k}

and that W)l(';’(’)(Q) denotes the closure of C¥ () in W)l(”’ (Q). The following
versions of Sobolev and Poincaré type inequalities hold (see for example [5], [10]).

PROPOSITION 2.3. Let X1,... Xy be as before. Let Q be a homogeneous dimen-
sion relative to Q. There exist constants Cy, C, > 0 such that, for every ball Br
centered in Q and having radius R < diam Q, the following inequalities hold

. 1/p* 1/
(2.3) ( lu — ug|? dx) "< C1R< |Xu|pdx> !
Br Br
forl < p< Qandp*= QQ_pp and
(2.4) ][ lu — ugl’ dx < CzR”f | Xul|? dx
Br Br

Jorl < p< .
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We have denoted by ug the average of the function u on Bg.
The following imbedding property holds under the previous assumptions on
the vector fields X7, ... X}.

PROPOSITION 2.4. Let Q <= R" be an open set with sufficiently smooth boundary
and Q a homogeneous dimension relative to Q. Let u € W)l(”(’)(Q) with 1 < p < Q.
Then there exists a constant ¢ > 0 such that

(25) il < €ty

For the proof the reader can refer to [11] and [12].
For 0 < o < 1 we say that a continuous function on Q belongs to the Holder
class C*(Q) if

1) w0

X#Y,X,yEQ p(xa y)“
Finally u € L”(Q) is said to belong to the Campanato space #¢7(Q) if

1

—— | Ju—ugl’dx < cR’
|Br| /B,

and to the Morrey space Ly (Q) if

/ |ul” dx < ¢R”
Br

for every ball By centered in Q and having radius R < diam Q.
Note that the following Theorem holds (see for example [14])

THEOREM 2.5. If y <0, the Campanato space %7 (Q) is isomorphic to the

Morrey space LY (Q). If 0 < y < p, the Campanato space L7 (Q) is isomorphic
10 CY*(Q) with o = Z.

Orlicz and Orlicz-Sobolev spaces Let A :[0,00) — [0,00) be a continuous,
strictly increasing and convex function satisfying (1.4). We shall assume that
there exist 1 < p < ¢ such that

(2.6) pA(t) <tA'(t) < qA(t) Yi=0

It is easy to verify that the second inequality in (2.6) is equivalent to say that there
exists a constant k£ > 1 such that

(2.7) A(2t) <kA(t) Vi=>=0

that is the so called A,-condition on A, while both the inequalities in (2.6) are
equivalent to
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A(1) A(1)
8) 20, 2O
and to the following conditions
A*(1) A*(1)
(29) [pr \« tqr /

where p’ and ¢’ denote the Holder conjugate exponents of p and ¢ respectively
and A* is the conjugate N-function of 4 defined by

(2.10) A*(s) = sup{st — A(1)}

t>0
It follows that
(2.11) a’ —1) < A(t) <1+ 1)

for some constants c;, ¢;.
Note that (2.9) implies that 4* also satisfies a A,-condition.
There are many functions 4 which behave as above. For example, it is easy to
verify that the function
A(t) =t log(l+1) p>1

satisfies conditions in (2.8) with p = p —¢and ¢ = p+ ¢ for all ¢ > 0.
Let Q = R" be an open set, the Orlicz class L#(Q) defined by

LY(Q) = {u : Q — R : uis measurable, / A(lu(x)|) dx < oo}
Q

is a Banach space equipped with the Luxemburg norm

otz 0 [ a1
oy = int {7505 [ (M) v <

The space generated by 4* is the dual of L# and the two following fundamental
inequalities hold

(2.12) A*(@) < A1)

(2.13) st < A(t) + A*(s) (Young’s inequality)

The Orlicz-Sobolev space Wy *(Q) is the subspace of L4 (Q) of functions u such
that the horizontal gradient Xu belongs to L4(Q). It is equipped with the norm

lul 100y = Wl gy + 1 Xl
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Maximal functions For f € Ll (Q), we define the maximal function by

MEf(x):=  sup f( Wl

0<r<R,B(x,r)cQ J B(x,

In order to simplify the notations we will write Mg and Mjg in place of My Br
and M2 o respectlvely The following proposition contains a metric version of a

“weak type” inequality for the maximal function whose proof can be found in
[12].

PROPOSITION 2.6. Assume X be a metric space equipped with a doubling mea-
sure @ on an open set Q < X. Let h be a locally integrable function in Q. Then

(2.14) u({x e Q: MEh(x) > 1}) < /|h|du

for t > 0, where the constant ¢ depends only on the doubling constant C,.

From now on we shall denote by Q a bounded open set in R” and by Q a homo-
geneous dimension relative to Q. Let us conclude this section with a useful in-
equality due to Hajlasz and Strzelecki [13].

PROPOSITION 2.7. Let u € WP (Q). Then

) “ ikl < enagy) o)

for almost every x € Q' with Q" € Q.

3. CRUCIAL INEQUALITIES

In this section we prove some propositions that reveal crucial in the sequel. We
start with the following (A4, A)-Poincaré inequality

PRrOPOSITION 3.1. Let A be an N-function satisfying (1.5) and Q a homogeneous

dimension relative to Q. If u € W)l(’A(Q), then there exists a positive constant
C = C(p,q, Q) such that

(3.1) fBA(W_RuR')dst]{; A(|Xu) dx

for each ball Bg well contained in Q.

PRrROOF. Define the function

(3.2) K(1r) = /0 A(sY9) /s ds
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It is obviously increasing and, in virtue of (2.6), it is easy to verify that is concave
and satisfies the following inequalities

(3.3) Ay < K(r) < 2 A(e'/9)

Denoting by H(t) = A(t'/9), we have

o4 f (M as= | (M as

where we used (3.3), Jensen’s inequality, Poincaré inequality in (2.4) and A,-
condition. ' A(o)

Now denoting by W¥(¢) = / —Jda, a simple change of variable gives
0 ag

/4 q
(3.5) ‘P(t):q/o A o = (1)

S

Using conditions in (2.6), we can easily prove that the function W(z) is convex
and that the function \P(¢'/9) defined in (3.5) satisfies the following inequalities

(3.6) %]A@l/q) < WY1y < A(:M9)

Therefore, by Jensen’s inequality,

(3.7) CA[( BR|Xu|qu)l/q] gc‘i’{( BRlXuI"d;g)Vq]

:c‘P( |Xu|qu) sC][ P (| Xul?) dx
Br

Br

=c ‘?(|Xu|)dx£cf A(| Xul) dx
BR BR

The conclusion follows combining inequalities in (3.4) and (3.7). O



184 F. GIANNETTI AND A. PASSARELLI DI NAPOLI

Next Proposition contains an extension of the Maximal Theorem to the con-
text of Orlicz spaces.

PROPOSITION 3.2. Let Bg be a ball well contained in Q. If A is an N-function
satisfying conditions (1.5) and f € L*A(Bg) is a non negative function, then there
exists a positive constant ¢ depending on p, q and on the doubling constant Cy,
such that

(3.8) /BA(MRf)deC/ A(f) dx

Br

PrROOF. Defining, for any ¢ > 0,

(3.9) (1) =|{x € Br: Mgf(x) > t}|
we have
Mpf
(3.10) /B A(MRf)dx:/B dx/o A' () dt
- /wA’(t)},(z) dr
0

Now choosing

h(x) = {f(x) if f(x) >3

0 otherwise

we have that M f < 4+ Mgh and therefore
t
{x € Br: Mpf(x) >t} c {x € Br: Mph(x) > 5}

It follows that

(3.11) /B A(Mf) dx < /OwA/(t) {xeBR . Mgh(x) >§Hdt

Sc(Cd)/ Aft) ar | fax
0 f>t/2

where, in the last inequality, we have used Proposition 2.6. By Fubini’s theorem,
integration by parts and assumptions on 4 we get
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21 (x)
(3.12) /B AMf)dx < o(Co) [ S dx/o 4'(1) /4] dt
~c(Co) [ aCr)/2ds
2f(x)
+e(Co) | f(x)dx / [A(1)/ %) dt
Br 0
< 36k, € [ ()
2
ve(Ca) [ red [ Latr ()5 () ds
B 0
—5clk.C) [ At () d

2
+e(C) [ ax [ A )5 ds

Note that in the last equality we have used the change of variable = sf(x). Split-
ting the last integral, by using (1.5) and the A;-condition, we have

1

2 2
(3.13) AMW@Wﬂ%=AMWWWﬂﬂ+[MWUWﬂ%

2

1
< A(f(x)) /0 72 ds + kA(f (x)) / 52 ds

1

Inserting (3.13) in (3.12) we conclude that
[ Attnp) s < dCop) [ a(reo)ax g
Bgr Br

Arguing as in [6], we can easily deduce from Proposition 3.2 the following
extension of Gehring’s lemma for N-functions A satisfying (1.5).

PROPOSITION 3.3. Let A be an N-function satisfying conditions (1.5), and let
/€ L .(Q) a non negative function such that, for any ball Bx € Q,

(3.14) ][ A(f)dxsblA(][ f>+b2.
Bg)» Br
Then there exist ¢y, c2, 0 > 0 depending on by, b, p, q, Q such that
(3.15) ][ A1+5(f)dXSC1A1+5(][ f)+cz.
7% Br
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Let us conclude this section with the following Caccioppoli type inequality

THEOREM 3.4. Let A be an N-function satisfying conditions (1.5) and
ue W)l(’A(Q) be a minimizer for the functional F (u). Then, for R < s < t < 2R,

(3.16) /A(|Xu|)dxscl/ A(M)abﬁ—/ A(|Xu]) dx + R?
B, B\ B, B\ Bs

t—s
where c is a constant depending on q and on the Ay-constant of A.

PRrROOF. Let#n e Ci°(B;) be a cut-off function such that » = 1 on By, |[X7| < ;<.
The proof of the existence of a such function can be found, for example, in [4].
Since ¢ = (u — ug)n belongs to the space Wy “(B,), it can be used as a test func-
tion in Definition (1.1). The assumption on (1.2) and (1.3), the monotonicity of
the function 4 and the A,-condition give us

/B FX) de < / F(X(u— ) dx

B

— | F( = )X Xt ) ds

gcl/ A(|]1 -7 |Xu|)dx+/ A(|Xny| |u— ug|) dx + R?
l\ § B/ s

SC/ A(|1—;7||Xu|)dx—|—/ A<M>dx+RQ
B/\By B\B, r—s

Therefore assumption on (1.2) and the monotonicity of 4 imply

/BA(|Xu|)dx§c[/B F(Xu)dx—i—RQ}

|u — ug|

/ A(|Xu)dx+/ A( ) dx+ RO
B\B, B\B, t—s

hence the conclusion. O

<c

4. THE REGULARITY RESULT
This section is devoted to the proof of Theorem 1.1.

PROOF. Let By be a ball in Q. Combining the Maximal inequality proved in
Proposition 3.2, the Caccioppoli type inequality in (3.16) for s = R and r = 2R
and the pointwise inequality |Xu| < M,gr(|Xul), we easily get
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/ A(Mog(|Xu])) dx
Br

< [ (X)) dx < [ AQX)

Byr

gc/ A(MQR(|Xu|))dx+/ A<M>dx+RQ
BZR\BR BZR\BR R

Now, since 4 is increasing and Proposition 2.7 holds, we get

/B A(Mogp(|Xu])) dx < CVB , A(Mog(|Xu])) dx + RO

Now we fill the hole adding ¢ / A(M>g(|Xul)) dx to both sides of the obtained
inequality having Br

/A(M2R<|Xu|)>dxge/ A(Mog(|Xu])) dx + cR?
Br Bor

for 6 € (0,1). A standard iteration argument implies the existence of a constant t
such that the following decay estimate holds

(4.1) /B A(Mog(|Xul)) dx < cR®

and observing that

(4.2) /BA(|Xu|)dx£/ A(MR(|XM|))dx§/ A(Mop(|Xul)) dx

R Br

we get
(4.3) / | Xul? dx < cR?
Br

that means Xu € LY (Q).
Moreover, applying the Poincaré inequality of Proposition 3.1 to the left hand
side of (4.2) and using (4.1), we have

/BRA(%) dx < /B A(|Xu) dx

R

g/ A(Mog(|Xu))) dx < cR®
Bp

and then
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1 |u — ug|’
dx < cR"?
|Br| ), R’
that is u € Z27772(Q), i.e. the conclusion. 0

REMARK 4.1. Since #27"*9(Q) is isomorphic to Cy*(Q) for o = 1 +T;Q,
provided © > Q — p, in the particular case p = Q the minimizers of the integral

(1.1) belong to C¥*(Q) for o = o

5. THE HIGHER INTEGRABILITY

The Caccioppoli type inequality in (3.16) combined with the Gehring’s lemma 3.3
will give Theorem 1.2.

PrOOF (of Theorem 1.2). Fix B,g an arbitrary ball well contained in Q and
R < s <t <2R. By Theorem 3.4 we have

/A(|Xu|)dxscl/ A(M)dyﬁ—/ A(|Xu|) dx + R?
B B\B, I—s B\B,

and therefore, filling the hole adding to both sides of the inequality the integral
c/ A(| Xu|) dx, we get
BS

A(|Xu|)dx+c[/3 A(M> dx+RQ]

B, 3 t—3s

(5.1) /BVA(|Xu|)dx <0

for 0 € (0,1). It follows that

(5.2) /BRA(|Xu|)dec[/BZRAOu_}%M)dx—i-RQ}

hence by Holder’s inequality, we deduce that

/f A(|Xu) dx
Br

<Cf A(|lu — ug|/R) ’u—uR‘Qq/(QJrq)
= B |(u— ug)/R| Q¢/(0+q) | R

+c

9/(Q+4) 0/(0+q)

{meKu—uR)/Rde +c

f A(Q+q)/q(|u — ug|/R)
B |(u—ur)/R°

(5.3) K(1t) = /O’[A(sl/q)/s](Q+q)/q ds, H(i) = [A(tl/t‘fg)ﬂ’
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In virtue of (2.6), it is possible to prove that K(7) is concave and that there exists a
constant ¢ such that

(5.4) H(t) <K(t)<cH(t) Yt>0

Therefore, for g, = %, using Proposition 2.3, we have

q/(0+q)
(5.5) /f A(|Xu]) dx < c{ K(|(u— uR)/R|q)] ][ | Xu* dx + ¢
Bgr Bor Bor
< cK/(Q+a) ( ][
Bor
q/q«
< cH(9+4) [ ][ |Xu|q*] ][ | Xu| " dx + ¢
BZR BZR

A([JCBZR | Xu| dx]l/q*) Yul® d
(Fy.. [Xu]" d) J[' U™ dxtc

1/q.
=cA [f | Xu| dx] +c
Bar

Setting (1) = A(t'/4), we have

(e — uR)/R|qu)][ | Xu|* dx + ¢

Byr

O(2f) <k®(r) and @'(1) > — T)
where, by assumption, q% > 1. Hence inequality (5.5) can be written as

][CI)(|Xu|"*)dx3cCD(][ |Xu|‘1*dx>+c
Br

Byr

Using now Proposition 3.3, we deduce that there exists & > 0 such that

][ OO (| Xu|") dx < cCDH‘S(f | Xu| ¥ dx) +c
Br

Byr

that is

‘ 1/q.
(5.6) f A (| Xul) dx < CAH(S<[][ | Xu| dx] ) +c
Br Bor

Setting

(5.7) W(i) = /Ot@ds,



190 F. GIANNETTI AND A. PASSARELLI DI NAPOLI

it is easy to prove that

(5.8) éA(t) <W(r) < A(1)

and that ¥(¢) and ¥(¢'/7) are both convex. It follows that

(5.9) M |Xu|”dx}1/p < ‘P‘l( - ‘P(|Xu|)dx) p

see [15]. Finally, since p > ¢., we have from (5.8) and (5.9) that

1 1/4. 1 1/p
(5.10) -4 [][ | Xu|* dx] <-4 [][ |Xu|pdx] +c
q BZR q BZR

< c][ A(| Xul) dx
Bar

The conclusion follows from (5.6) and (5.10). O

For the case of spherical Quasi-minima, compare with the proof given in [7].

6. THE LOCAL BOUNDEDNESS

In this section we prove the boundedness of the local minimizers of the functional
(1.1) with a fixed boundary value.

PrOOF (of Theorem 1.3). For a positive constant 2 > |uo| ., let us consider the
function

(6.1) w = sign(u) max{|u| — 1,0}

and use v = u — w as test function in Definition (1.1), that is

/ F(Xu)dx < / F(Xv)dx
suppw

supp w

Since Xu = Xw on the set E; = {x € Bg : |u(x)| > 4}, it follows that

/E F(Xu)dx < / F(0) dx

E;

thus, by assumptions in (1.2), we get

(6.2) / A\ Xu)) dx < c|E,|

)
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By a simple use of the Sobolev embedding in (2.5) and the hypotheses on A, we
have

. /p*
(6.3) (L|wﬁdoppgc |XMH&£C/4MMMDw

Br Br
= cl/BR\EZA(|Xw|)dx+ /EZA(|XW|)dx]
:c/ A(| Xu|) dx

E;

and combining (6.2) and (6.3) we obtain
(6.4) / lw|?” dx < c|E;]
Recalling the definition of the function w, we have for ¢ > 4,
(6.5) wWw:/HWwaz/HWJWW
Bx E E;
Zﬂﬂé—ﬂfdx:w—ﬂfwb

and therefore, from (6.4) and (6.5), we have

|E/1|17*/1J

Es| < c——
Bl < e

Applying Lemma 4.1 of [20], we obtain that
|E.|=0 wheret=c|Bg|" % =cR

that implies

sup u| < Juol,, + R
Br

1.e. the conclusion. O
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