Rend. Lincei Mat. Appl. 21 (2010), 175–[192](#page-17-0) DOI 10.4171/RLM/566

Calculus of Variations — Regularity results for minimizers of integral functionals with nonstandard growth in Carnot-Carathéodory spaces, by FLAVIA GIANNETTI and Antonia Passarelli di Napoli, presented on 15 January 2010 by Carlo Sbordone, communicated on 15 January 2010.

ABSTRACT. — We prove regularity results for minimizers of integral functionals of the type

$$
\int_{\Omega} f(Xu) \, dx
$$

where f satisfies a nonstandard growth condition and Xu stands for the horizontal gradient of u . More precisely, we obtain regularity in the scale of Campanato spaces without assuming any restriction on the growth exponents and, under a suitable assumption on them, we get the local boundedness as well as an higher integrability result for the gradient.

Key words: Nonstandard growth conditions, Carnot Carathéodory spaces, regularity.

Mathematics Subject Classification AMS: 49N60, 49N99.

1. Introduction

Let Ω be a bounded subset in \mathbb{R}^n and $X = (X_1, \ldots, X_k)$ be a family of vector fields defined in a neighbourhood of Ω , with real, C^{∞} smooth and globally Lipschitz coefficients satisfying the Hörmander condition. For $u : \Omega \to \mathbb{R}$, we consider the integral functional

(1.1)
$$
\mathscr{F}(u) = \int_{\Omega} F(Xu) dx
$$

where the integrand $F: \mathbb{R}^k \to \mathbb{R}$ is a continuous function satisfying

(1.2)
$$
c\{A(|\xi|) - 1\} \le F(\xi) \le C\{A(|\xi|) + 1\}
$$

(1.3)
$$
|F(\xi + \eta)| \le C_0[F(\xi) + F(\eta)]
$$

where $A : [0, \infty) \to [0, \infty)$ is an N-function, that is A is a continuous, strictly increasing and convex function satisfying

(1.4)
$$
A(0) = 0 \quad \lim_{t \to 0} \frac{A(t)}{t} = 0 \quad \lim_{t \to \infty} \frac{A(t)}{t} = +\infty
$$

We shall assume that there exist $1 < p \leq q$ such that

AðtÞ tp % ^Aðt^Þ ^t ^ð1:5^Þ ^q &

DEFINITION 1.1. A function $u \in W_X^{1,4}(\Omega)$, is a local minimizer of the integral (1.1) if

$$
\int_{\text{supp}(u-v)} F(Xu) dx \le \int_{\text{supp}(u-v)} F(Xv) dx \quad \forall v \in W_X^{1,A}(\Omega), \text{supp}(u-v) \subseteq \Omega
$$

Combining assumptions in (1.2) and (1.5) we have that the integrand f satisfies the following bounds

(1.6)
$$
c(|\xi|^p - 1) \le F(\xi) \le c(|\xi|^q + 1)
$$

Variational integrals whose integrand satisfies growth conditions of the type (1.6) are called functionals ''with non standard growth conditions'' and were introduced in the Euclidean setting by Marcellini in [\[17\]](#page-17-0). From the very beginning, it has been clear that minimizers of functionals satisfying (1.6) can be not only irregular but also unbounded if q is too large with respect to p, see [[16](#page-17-0)]. The study of the regularity of minimizers of such integrals has a long history in the Euclidean setting, see for example [[1](#page-16-0)], [\[6\]](#page-17-0), [[18](#page-17-0)] and [[2](#page-16-0)]. In [[18](#page-17-0)], Moscariello and Nania, assuming that A and its conjugate satisfy the so called Δ_2 -condition, proved that any bounded local minimizer of (1.1) is Hölder continuous in Ω . It is worth pointing out that this result was proven without any further condition on p and q . In the same paper the local boundedness of minimizers is also proved for exponents p and q opportunely close.

Here, without any assumptions on p and q , we obtain that minimizers of the integral (1.1) belong to a Campanato space and have the horizontal gradients belonging to a Morrey space. More precisely we get

THEOREM 1.1. Let u be a local minimizer of the integral functional (1.1). Then there exist $\sigma = \sigma(p, q, C_d)$ and $\tau = \tau(p, q, C_d)$ such that $u \in \mathscr{L}_X^{p, \sigma}(\Omega)$ and $Xu \in L_X^{p,\tau}(\Omega)$.

With the additional assumption $p > \frac{Qq}{Q+q}$, where Q is a homogeneous dimension relative to Ω , we establish the following higher integrability result for the horizontal gradient of minimizers (Theorem 1.2) and we prove the local boundedness of the minimizers themselves (Theorem 1.3).

THEOREM 1.2. Let A be an N-function satisfying assumptions in (1.5) with $p > \frac{Qq}{Q+q}$ and $u \in W_X^{1,A}(\Omega)$ be a local minimizer for the functional $\mathscr{F}(u)$. There exist positive constants c and $\delta = \delta(p, q, C_d)$ such that, for any balls $B_R \subset B_{2R} \subset \Omega$,

(1.7)
$$
\int_{B_R} A^{1+\delta}(|Xu|) dx \le c \Big(\int_{B_{2R}} A(|Xu|) dx\Big)^{1+\delta} + c
$$

Theorem 1.2 is the analogous of a result contained in [\[6\]](#page-17-0) concerning the Euclidean setting. Obviously, we need some changes due the fact that we are working in a homogeneous space.

More precisely, an extension of the Maximal Theorem to the context of Orlicz spaces reveals a key tool in the proof of both results above. Moreover, a Poincaré inequality and a Caccioppoli type inequality in the setting of Orlicz-Sobolev spaces are crucial in order to prove Theorem 1.1 and Theorem 1.2 respectively. Carnot-Carathéodory spaces associated with a system of vector fields satisfying the Hörmander condition support a Poincaré inequality in Lebesgue spaces (see Proposition 2.3) and a so called A -Poincaré inequality, that is

$$
\int_B \frac{|u - u_B|}{R} dx \le C A^{-1} \left(\int_B A(|Xu|) dx \right)
$$

As far as we know, even it should be possible to deduce a (A, A) -Poincaré inequality (see Proposition 3.1) from a A -Poincaré inequality, there is not any ex-plicit proof of it. Inspired by [[6\]](#page-17-0), we prove a (A, A) -Poincaré inequality using the Poincaré inequality in Lebesgue spaces.

In Section 3 we prove all the useful tools mentioned above.

THEOREM 1.3. Let A be an N-function satisfying assumptions in (1.5) with $p > \frac{Qq}{Q+q}$. Let $B_R \subset \Omega$ be a ball and $u \in W_X^{1,A}(\Omega)$ be a local minimizer for the functional $\mathcal{F}(u)$ assuming the value u_0 on $\partial \overrightarrow{B_R}$. If $u_0 \in L^{\infty}(\partial B_R)$, then u is locally bounded.

In the proof we follow an idea by Stampacchia [20] as suggested by Boccardo, Marcellini and Sbordone in the Euclidean setting, [[1\]](#page-16-0).

It is worth mentioning that regularity results for minimizers of integral functionals under standard growth conditions (i.e. $p = q$ in (1.6)) have been established for example in [[7, 8, 3](#page-17-0)].

2. Notation and preliminary results

Carnot-Carathéodory spaces Let X_1, \ldots, X_k be vector fields defined in \mathbb{R}^n , with real, C^{∞} smooth coefficients. We say that they satisfy the Hörmander's condition if there exists an integer m such that the family of commutators of X_1, \ldots, X_k up to length m

$$
X_1, \ldots, X_k, [X_{i_1}, X_{i_2}], \ldots, [X_{i_1}, [X_{i_1}, \ldots, X_{i_m}]] \ldots], \quad \forall i_j = 1, 2, \ldots, k
$$

spans the tangent space $T_x \mathbb{R}^n$ at every point $x \in \mathbb{R}^n$.

For any real valued Lipschitz continuous function u we define

$$
X_j u(x) = \langle X_j(x), \nabla u(x) \rangle \quad j = 1, 2, \dots, k
$$

and we call the horizontal gradient of u the vector $Xu = (X_1u, \dots, X_ku)$ whose length is given by

$$
|Xu| = \left(\sum_{j=1}^{k} (X_j u)^2\right)^{1/2}
$$

Let $\Omega \subset \mathbb{R}^n$ be an open set. For a function $u \in L^1_{loc}(\Omega)$, its distributional derivative along the vector fields X_j is defined by the identity

(2.1)
$$
\langle X_j u, \Phi \rangle = \int_{\Omega} u X_j^* \Phi \, dx \quad \forall \Phi \in C_0^{\infty}(\Omega)
$$

where X_j^* denotes the formal adjoint of X_j . Throughout the paper, if u is a nonsmooth function, $X_i u$ will be meant in the distributional sense.

An absolutely continuous curve $\gamma : [a, b] \to \mathbb{R}^n$ is said to be *admissible*, if there exist functions $c_j : [a, b] \to \mathbb{R}, j = 1, \dots, k$ such that

$$
\dot{y}(t) = \sum_{j=1}^{k} c_j(t) X_j(\gamma(t))
$$
 and $\sum_{j=1}^{k} c_j(t)^2 \le 1$

Observe that X_i do not need to be linearly independent and therefore functions c_i do not need to be unique. Define the distance function ρ as

$$
\rho(x, y) = \inf\{T > 0 : \exists y : [0, T] \to \mathbb{R}^n \text{ admissible}, y(0) = x, y(T) = y\}
$$

If there is not any such a curve, we set $\rho(x, y) = \infty$. The function ρ is called Carnot-Carathéodory distance and, since it is not clear whether one can connect any two points of \mathbb{R}^n by an admissible curve, it's not clear whether ρ is a metric. The assumption for which the vector fields X_1, \ldots, X_k satisfy the Hörmander condition ensures that ρ is a metric and in this case (\mathbb{R}^n, ρ) is said to be a Carnot-Carathéodory space.

The following theorem, due to Nagel, Stein and Wainger [19], shows that the metric ρ is locally Hölder continuous with respect to the Euclidean metric.

THEOREM 2.1. Let $X_1, \ldots X_k$ be as above. Then for every bounded open set $\Omega \subset \mathbb{R}^n$ there are constants c_1 , c_2 and $\lambda \in (0, 1]$ such that

(2.2)
$$
c_1|x - y| \le \rho(x, y) \le c_2|x - y|^{\lambda}
$$

for every $x, y \in \Omega$.

It follows that the space (\mathbb{R}^n, ρ) is homeomorphic with the Euclidean space \mathbb{R}^n and therefore bounded sets in the Euclidean metric are bounded sets in the metric ρ . The inverse is not always true but it is certainly valid if $X_1, \ldots X_k$ have globally Lipschitz coefficients (see $[10]$ $[10]$ $[10]$). In the sequel all the distances will be respect to the

metric ρ , in particular all the balls will be balls with respect to the Carnot-Carathéodory metric. We shall consider in (\mathbb{R}^n, ρ) the Lebesgue measure which locally satisfies the following doubling condition (see for example [19]):

PROPOSITION 2.2. Let Ω be an open, bounded subset of \mathbb{R}^n . There exists a constant $C_d \geq 1$, called doubling constant, such that

$$
|B(x_0, 2R)| \leq C_d |B(x_0, R)|
$$

provided $x_0 \in \Omega$ and $R \leq 5$ diam Ω .

Let Y be a metric space and μ a Borel measure in Y. Assume μ finite on bounded sets and satisfying the doubling condition on every open, bounded subset Ω of Y. If there exists a positive constant C such that

$$
\frac{\mu(B)}{\mu(B_0)}\geq C\Big(\frac{R}{R_0}\Big)^{\mathcal{Q}}
$$

for any ball B_0 having center in Ω and radius $R_0 < \text{diam } \Omega$ and any ball B centered in $x \in B_0$ and having radius $R \le R_0$, we say that Q is a homogeneous dimension relative to Ω .

It is well known that doubling property implies the existence of such a Q. However, Q is not unique and it may change with Ω . Obviously any $Q' \geq Q$ is also a homogeneous dimension.

For a bounded open set Ω containing a family of vector fields satisfying the Hörmander condition, the Carnot-Caratheodory space (Ω, ρ) with the Lebesgue measure has the homogeneous dimension $Q = \log_2 C_d$.

Recall that the Sobolev space $W_X^{1,p}(\Omega)$ is defined as

$$
W_X^{1,p}(\Omega) = \{u \in L^p(\Omega) : X_j u \in L^p(\Omega) \ j = 1, \ldots, k\}
$$

and that $W^{1,p}_{X,0}(\Omega)$ denotes the closure of $C^{\infty}_{X,0}(\Omega)$ in $W^{1,p}_X(\Omega)$. The following versions of Sobolev and Poincaré type inequalities hold (see for example [\[5](#page-17-0)], [[10](#page-17-0)]).

PROPOSITION 2.3. Let $X_1, \ldots X_k$ be as before. Let Q be a homogeneous dimension relative to Ω . There exist constants $C_1, C_2 > 0$ such that, for every ball B_R centered in Ω and having radius $R \leq \text{diam } \Omega$, the following inequalities hold

(2.3)
$$
\left(\int_{B_R} |u - u_R|^{p^*} dx\right)^{1/p^*} \leq C_1 R \left(\int_{B_R} |Xu|^p dx\right)^{1/p}
$$

for $1 \leq p < Q$ and $p^* = \frac{Qp}{Q-p}$ and

(2.4)
$$
\int_{B_R} |u - u_R|^p \, dx \le C_2 R^p \int_{B_R} |Xu|^p \, dx
$$

for $1 \leq p < \infty$.

We have denoted by u_R the average of the function u on B_R .

The following imbedding property holds under the previous assumptions on the vector fields X_1, \ldots, X_k .

PROPOSITION 2.4. Let $\Omega \subset \mathbb{R}^n$ be an open set with sufficiently smooth boundary and Q a homogeneous dimension relative to Ω . Let $u \in W^{1,p}_{X,0}(\Omega)$ with $1 \leq p < Q$. Then there exists a constant $c > 0$ such that

$$
(2.5) \t\t\t\t \|u\|_{L^{p*}(\Omega)} \le c \|u\|_{W^{1,p}_{X,0}(\Omega)}
$$

For the proof the reader can refer to [\[11\]](#page-17-0) and [\[12\]](#page-17-0).

For $0 < \alpha \leq 1$ we say that a continuous function on Ω belongs to the Hölder class $C_X^{0,\alpha}(\Omega)$ if

$$
\sup_{x \neq y, x, y \in \Omega} \frac{|u(x) - u(y)|}{\rho(x, y)^{\alpha}} < \infty
$$

Finally $u \in L^p(\Omega)$ is said to belong to the Campanato space $\mathscr{L}^{p,\sigma}_X(\Omega)$ if

$$
\frac{1}{|B_R|}\int_{B_R} |u - u_R|^p \, dx \le cR^{\sigma}
$$

and to the Morrey space $L_X^{p, \tau}(\Omega)$ if

$$
\int_{B_R} |u|^p \, dx \le cR^\tau
$$

for every ball B_R centered in Ω and having radius $R < \text{diam } \Omega$.

Note that the following Theorem holds (see for example [[14\]](#page-17-0))

THEOREM 2.5. If $\gamma < 0$, the Campanato space $\mathscr{L}_X^{p,\gamma}(\Omega)$ is isomorphic to the Morrey space $L_X^{p,\gamma}(\Omega)$. If $0<\gamma<\rho$, the Campanato space $\mathscr{L}_X^{p,\gamma}(\Omega)$ is isomorphic to $C_X^{0,\alpha}(\Omega)$ with $\alpha = \frac{\gamma}{p}$.

Orlicz and Orlicz-Sobolev spaces Let $A : [0, \infty) \to [0, \infty)$ be a continuous, strictly increasing and convex function satisfying (1.4). We shall assume that there exist $1 < p \leq q$ such that

$$
(2.6) \t\t pA(t) \le tA'(t) \le qA(t) \quad \forall t \ge 0
$$

It is easy to verify that the second inequality in (2.6) is equivalent to say that there exists a constant $k > 1$ such that

$$
(2.7) \t\t A(2t) \le kA(t) \quad \forall t \ge 0
$$

that is the so called Δ_2 -condition on A, while both the inequalities in (2.6) are equivalent to

regularity results for minimizers of integral functionals 181

AðtÞ tp % ^Aðt^Þ ^t ^ð2:8^Þ ^q &

and to the following conditions

AðtÞ tp⁰ & ^Aðt^Þ tq ^ð2:9^Þ ⁰ %

where p' and q' denote the Hölder conjugate exponents of p and q respectively and A^* is the conjugate N-function of A defined by

(2.10)
$$
A^*(s) = \sup_{t \ge 0} \{st - A(t)\}
$$

It follows that

$$
(2.11) \t\t c_1(t^p - 1) \le A(t) \le c_2(t^q + 1)
$$

for some constants c_1 , c_2 .

Note that (2.9) implies that A^* also satisfies a Δ_2 -condition.

There are many functions A which behave as above. For example, it is easy to verify that the function

$$
A(t) = t^p \log(1+t) \quad p > 1
$$

satisfies conditions in (2.8) with $p = p - \varepsilon$ and $q = p + \varepsilon$ for all $\varepsilon > 0$.

Let $\Omega \subset \mathbb{R}^n$ be an open set, the Orlicz class $L^A(\Omega)$ defined by

$$
L^{A}(\Omega) = \left\{ u : \Omega \to \mathbb{R} : u \text{ is measurable, } \int_{\Omega} A(|u(x)|) dx < \infty \right\}
$$

is a Banach space equipped with the Luxemburg norm

$$
\|u\|_{L^{A}(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} A\left(\frac{|u(x)|}{\lambda}\right) dx \le 1 \right\}
$$

The space generated by A^* is the dual of L^A and the two following fundamental inequalities hold

$$
(2.12)\t\t\t A^*\left(\frac{A(t)}{t}\right) \le A(t)
$$

(2.13)
$$
st \leq A(t) + A^*(s)
$$
 (Young's inequality)

The Orlicz-Sobolev space $W_X^{1,A}(\Omega)$ is the subspace of $L^A(\Omega)$ of functions u such that the horizontal gradient Xu belongs to $L^A(\Omega)$. It is equipped with the norm

$$
\|u\|_{W_X^{1,A}(\Omega)} = \|u\|_{L^A(\Omega)} + \|Xu\|_{L^A(\Omega)}
$$

Maximal functions For $f \in L^1_{loc}(\Omega)$, we define the maximal function by

$$
M_R^{\Omega}f(x) := \sup_{0 < r < R, B(x, r) \subset \Omega} \int_{B(x, r)} |f| \, dy
$$

In order to simplify the notations we will write M_R and M_{2R} in place of $M_R^{B_R}$ In order to simplify the hotations we will write M_R and $M_{2R}^{B_{2R}}$ in place of M_R
and $M_{2R}^{B_{2R}}$ respectively. The following proposition contains a metric version of a ''weak type'' inequality for the maximal function whose proof can be found in [[12\]](#page-17-0).

PROPOSITION 2.6. Assume X be a metric space equipped with a doubling measure u on an open set $\Omega \subset X$. Let h be a locally integrable function in Ω . Then

(2.14)
$$
\mu(\lbrace x \in \Omega : M_R^{\Omega} h(x) > t \rbrace) \leq \frac{c}{t} \int_{\Omega} |h| d\mu
$$

for $t > 0$, where the constant c depends only on the doubling constant C_d .

From now on we shall denote by Ω a bounded open set in \mathbb{R}^n and by Q a homogeneous dimension relative to Ω . Let us conclude this section with a useful inequality due to Hajlasz and Strzelecki [[13](#page-17-0)].

PROPOSITION 2.7. Let $u \in W_X^{1,p}(\Omega)$. Then

$$
\frac{|u(x) - u_R|}{R} \le c M_{2R}^{\Omega} |Xu|(x)
$$

for almost every $x \in \Omega'$ with $\Omega' \subseteq \Omega$.

3. Crucial inequalities

In this section we prove some propositions that reveal crucial in the sequel. We start with the following (A, A) -Poincaré inequality

PROPOSITION 3.1. Let A be an N-function satisfying (1.5) and Q a homogeneous dimension relative to Ω . If $u \in W_X^{1,A}(\Omega)$, then there exists a positive constant $C = C(p, q, Q)$ such that

(3.1)
$$
\int_{B_R} A\left(\frac{|u - u_R|}{R}\right) dx \le C \int_{B_R} A(|Xu|) dx
$$

for each ball B_R well contained in Ω .

PROOF. Define the function

(3.2)
$$
K(t) = \int_0^t A(s^{1/q})/s \, ds
$$

It is obviously increasing and, in virtue of (2.6), it is easy to verify that is concave and satisfies the following inequalities

(3.3)
$$
A(t^{1/q}) \le K(t) \le \frac{q}{p}A(t^{1/q})
$$

Denoting by $H(t) = A(t^{1/q})$, we have

$$
(3.4) \quad \int_{B_R} A\left(\frac{|u - u_R|}{R}\right) dx = \int_{B_R} H\left(\frac{|u - u_R|^q}{R^q}\right) dx
$$

$$
\leq \int_{B_R} K\left(\frac{|u - u_R|^q}{R^q}\right) dx \leq K \left(\int_{B_R} \frac{|u - u_R|^q}{R^q} dx\right)
$$

$$
\leq K \left(c \int_{B_R} |Xu|^q dx\right) \leq \frac{q}{p} A \left[c \left(\int_{B_R} |Xu|^q dx\right)^{1/q}\right]
$$

$$
\leq c A \left[\left(\int_{B_R} |Xu|^q dx\right)^{1/q}\right]
$$

where we used (3.3), Jensen's inequality, Poincaré inequality in (2.4) and Δ_2 condition. ndition.
Now denoting by $\Psi(t) = \int^t$ $A(\sigma)$

 $\boldsymbol{0}$ $\frac{\partial u}{\partial \sigma} d\sigma$, a simple change of variable gives

(3.5)
$$
\Psi(t) = q \int_0^{t^{1/q}} \frac{A(s^q)}{s} ds =: \tilde{\Psi}(t^{1/q})
$$

Using conditions in (2.6), we can easily prove that the function $\Psi(t)$ is convex and that the function $\tilde{\Psi}(t^{1/q})$ defined in (3.5) satisfies the following inequalities

(3.6)
$$
\frac{1}{q}A(t^{1/q}) \leq \tilde{\Psi}(t^{1/q}) \leq A(t^{1/q})
$$

Therefore, by Jensen's inequality,

$$
(3.7) \t cA\left[\left(\int_{B_R} |Xu|^q dx\right)^{1/q}\right] \leq c\tilde{\Psi}\left[\left(\int_{B_R} |Xu|^q dx\right)^{1/q}\right]
$$

$$
= c\Psi\left(\int_{B_R} |Xu|^q dx\right) \leq c\int_{B_R} \Psi(|Xu|^q) dx
$$

$$
= c\int_{B_R} \tilde{\Psi}(|Xu|) dx \leq c\int_{B_R} A(|Xu|) dx
$$

The conclusion follows combining inequalities in (3.4) and (3.7) .

Next Proposition contains an extension of the Maximal Theorem to the context of Orlicz spaces.

PROPOSITION 3.2. Let B_R be a ball well contained in Ω . If A is an N-function satisfying conditions (1.5) and $f \in L^A(B_R)$ is a non negative function, then there exists a positive constant c depending on p, q and on the doubling constant C_d , such that

(3.8)
$$
\int_{B_R} A(M_R f) dx \le c \int_{B_R} A(f) dx
$$

PROOF. Defining, for any $t > 0$,

(3.9)
$$
\lambda(t) = |\{x \in B_R : M_R f(x) > t\}|
$$

we have

(3.10)
$$
\int_{B_R} A(M_R f) dx = \int_{B_R} dx \int_0^{M_R f} A'(t) dt
$$

$$
= \int_0^{\infty} A'(t) \lambda(t) dt
$$

Now choosing

$$
h(x) = \begin{cases} f(x) & \text{if } f(x) > \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}
$$

we have that $M_R f \leq \frac{t}{2} + M_R h$ and therefore

$$
\{x \in B_R : M_Rf(x) > t\} \subset \left\{x \in B_R : M_Rh(x) > \frac{t}{2}\right\}
$$

It follows that

$$
(3.11) \qquad \int_{B_R} A(M_R f) dx \le \int_0^\infty A'(t) \left| \left\{ x \in B_R : M_R h(x) > \frac{t}{2} \right\} \right| dt
$$

$$
\le c(C_d) \int_0^\infty \frac{A'(t)}{t} dt \int_{f > t/2} f \, dx.
$$

where, in the last inequality, we have used Proposition 2.6. By Fubini's theorem, integration by parts and assumptions on A we get

regularity results for minimizers of integral functionals 185

$$
(3.12) \qquad \int_{B_R} A(M_R f) \, dx \le c(C_d) \int_{B_R} f(x) \, dx \int_0^{2f(x)} [A'(t)/t] \, dt
$$
\n
$$
= c(C_d) \int_{B_R} A(2f(x))/2 \, dx
$$
\n
$$
+ c(C_d) \int_{B_R} f(x) \, dx \int_0^{2f(x)} [A(t)/t^2] \, dt
$$
\n
$$
\le \frac{1}{2} c(k, C_d) \int_{B_R} A(f(x)) \, dx
$$
\n
$$
+ c(C_d) \int_{B_R} f(x) \, dx \int_0^2 [A(s f(x))/s^2 f(x)] \, ds
$$
\n
$$
= \frac{1}{2} c(k, C_d) \int_{B_R} A(f(x)) \, dx
$$
\n
$$
+ c(C_d) \int_{B_R} dx \int_0^2 [A(s f(x))/s^2] \, ds
$$

Note that in the last equality we have used the change of variable $t = sf(x)$. Splitting the last integral, by using (1.5) and the Δ_2 -condition, we have

$$
(3.13) \qquad \int_0^2 [A(st(x))/s^2] \, ds = \int_0^1 [A(st(x))/s^2] \, ds + \int_1^2 [A(st(x))/s^2] \, ds
$$
\n
$$
\leq A(f(x)) \int_0^1 s^{p-2} \, ds + kA(f(x)) \int_1^2 s^{-2} \, ds
$$

Inserting (3.13) in (3.12) we conclude that

$$
\int_{B_R} A(M_R f) dx \le c(C_d, p, q) \int_{B_R} A(f(x)) dx \qquad \qquad \Box
$$

Arguing as in [[6\]](#page-17-0), we can easily deduce from Proposition 3.2 the following extension of Gehring's lemma for N -functions A satisfying (1.5).

PROPOSITION 3.3. Let A be an N-function satisfying conditions (1.5), and let $f \in L^1_{loc}(\Omega)$ a non negative function such that, for any ball $B_R \subseteq \Omega$,

(3.14)
$$
\int_{B_{R/2}} A(f) dx \le b_1 A\left(\int_{B_R} f\right) + b_2.
$$

Then there exist $c_1, c_2, \delta > 0$ depending on b_1, b_2, p, q, Q such that

(3.15)
$$
\int_{B_{R/2}} A^{1+\delta}(f) dx \le c_1 A^{1+\delta} \Big(\int_{B_R} f\Big) + c_2.
$$

Let us conclude this section with the following Caccioppoli type inequality

Theorem 3.4. Let A be an N-function satisfying conditions (1.5) and $u \in W_X^{1,A}(\Omega)$ be a minimizer for the functional $\mathscr{F}(u)$. Then, for $R \leq s < t \leq 2R$,

$$
(3.16)\quad \int_{B_s} A(|Xu|) dx \le c \left[\int_{B_t \setminus B_s} A\left(\frac{|u - u_R|}{t - s}\right) dx + \int_{B_t \setminus B_s} A(|Xu|) dx + R^Q \right]
$$

where c is a constant depending on q and on the Δ_2 -constant of A.

PROOF. Let $\eta \in C_0^{\infty}(B_t)$ be a cut-off function such that $\eta \equiv 1$ on B_s , $|X\eta| \leq \frac{c}{t-s}$. The proof of the existence of a such function can be found, for example, in [\[4\]](#page-17-0). Since $\varphi = (u - u_R)\eta$ belongs to the space $W_X^{1, A}(B_t)$, it can be used as a test function in Definition (1.1) . The assumption on (1.2) and (1.3) , the monotonicity of the function A and the Δ_2 -condition give us

$$
\int_{B_{l}} F(Xu) dx \leq \int_{B_{l}} F(X(u - \varphi)) dx
$$
\n
$$
= \int_{B_{l}} F((1 - \eta)Xu - X\eta(u - u_{R})) dx
$$
\n
$$
\leq c \left[\int_{B_{l} \setminus B_{s}} A(|1 - \eta| |Xu|) dx + \int_{B_{l} \setminus B_{s}} A(|X\eta| |u - u_{R}|) dx + R^{2} \right]
$$
\n
$$
\leq c \left[\int_{B_{l} \setminus B_{s}} A(|1 - \eta| |Xu|) dx + \int_{B_{l} \setminus B_{s}} A\left(\frac{|u - u_{R}|}{t - s}\right) dx + R^{2} \right]
$$

Therefore assumption on (1.2) and the monotonicity of A imply

$$
\int_{B_t} A(|Xu|) dx \le c \left[\int_{B_t} F(Xu) dx + R^Q \right]
$$

\n
$$
\le c \left[\int_{B_t \setminus B_s} A(|Xu|) dx + \int_{B_t \setminus B_s} A\left(\frac{|u - u_R|}{t - s}\right) dx + R^Q \right]
$$

hence the conclusion. \Box

4. The regularity result

This section is devoted to the proof of Theorem 1.1.

PROOF. Let B_{2R} be a ball in Ω . Combining the Maximal inequality proved in Proposition 3.2, the Caccioppoli type inequality in (3.16) for $s = R$ and $t = 2R$ and the pointwise inequality $|Xu| \leq M_{2R}(|Xu|)$, we easily get

$$
\int_{B_R} A(M_{2R}(|Xu|)) dx
$$
\n
$$
\leq \int_{B_{2R}} A(M_{2R}(|Xu|)) dx \leq c \int_{B_{2R}} A(|Xu|) dx
$$
\n
$$
\leq c \left[\int_{B_{2R} \setminus B_R} A(M_{2R}(|Xu|)) dx + \int_{B_{2R} \setminus B_R} A\left(\frac{|u - u_R|}{R}\right) dx + R^Q \right]
$$

Now, since A is increasing and Proposition 2.7 holds, we get

$$
\int_{B_R} A(M_{2R}(|Xu|)) dx \le c \left[\int_{B_{2R}\setminus B_R} A(M_{2R}(|Xu|)) dx + R^Q \right]
$$

Now we fill the hole adding c B_R $A(M_{2R}(|Xu|)) dx$ to both sides of the obtained inequality having

$$
\int_{B_R} A(M_{2R}(|Xu|)) dx \le \theta \int_{B_{2R}} A(M_{2R}(|Xu|)) dx + cR^Q
$$

for $\theta \in (0, 1)$. A standard iteration argument implies the existence of a constant τ such that the following decay estimate holds

(4.1)
$$
\int_{B_R} A(M_{2R}(|Xu|)) dx \le cR^{\tau}
$$

and observing that

(4.2)
$$
\int_{B_R} A(|Xu|) dx \le \int_{B_R} A(M_R(|Xu|)) dx \le \int_{B_R} A(M_{2R}(|Xu|)) dx
$$

we get

$$
\int_{B_R} |Xu|^p \, dx \le cR^\tau
$$

that means $Xu \in L_X^{p,\tau}(\Omega)$.

Moreover, applying the Poincaré inequality of Proposition 3.1 to the left hand side of (4.2) and using (4.1) , we have

$$
\int_{B_R} A\left(\frac{|u - u_R|}{R}\right) dx \le \int_{B_R} A(|Xu|) dx
$$

$$
\le \int_{B_R} A(M_{2R}(|Xu|)) dx \le cR^{\tau}
$$

and then

$$
\frac{1}{|B_R|} \int_{B_R} \frac{|u - u_R|^p}{R^p} dx \le cR^{\tau - Q}
$$

that is $u \in \mathcal{L}_X^{p,p+\tau-Q}(\Omega)$, i.e. the conclusion.

REMARK 4.1. Since $\mathscr{L}_X^{p,p+\tau-Q}(\Omega)$ is isomorphic to $C_X^{0,\alpha}(\Omega)$ for $\alpha=1+\frac{\tau-Q}{p}$, provided $\tau > Q - p$, in the particular case $p = Q$ the minimizers of the integral (1.1) belong to $C_X^{0,\alpha}(\Omega)$ for $\alpha = \frac{\tau}{Q}$.

5. The higher integrability

The Caccioppoli type inequality in (3.16) combined with the Gehring's lemma 3.3 will give Theorem 1.2.

PROOF (of Theorem 1.2). Fix B_{2R} an arbitrary ball well contained in Ω and $R < s < t \leq 2R$. By Theorem 3.4 we have

$$
\int_{B_s} A(|Xu|) dx \le c \left[\int_{B_t \setminus B_s} A\left(\frac{|u - u_R|}{t - s}\right) dx + \int_{B_t \setminus B_s} A(|Xu|) dx + R^Q \right]
$$

and therefore, filling the hole adding to both sides of the inequality the integral Z c B_s $A(|Xu|) dx$, we get

$$
(5.1) \qquad \int_{B_s} A(|Xu|) dx \leq \theta \int_{B_t} A(|Xu|) dx + c \left[\int_{B_t} A\left(\frac{|u - u_R|}{t - s}\right) dx + R^{\mathcal{Q}} \right]
$$

for $\theta \in (0, 1)$. It follows that

(5.2)
$$
\int_{B_R} A(|Xu|) dx \le c \left[\int_{B_{2R}} A\left(\frac{|u - u_R|}{R}\right) dx + R^Q \right]
$$

hence by Hölder's inequality, we deduce that

$$
\int_{B_R} A(|Xu|) dx
$$
\n
$$
\leq c \int_{B_{2R}} \frac{A(|u - u_R|/R)}{|(u - u_R)/R|^{\frac{Qq}{(Q+q)}}|} \frac{u - u_R}{R} \Big|^{2q/(Q+q)} + c
$$
\n
$$
\leq c \left[\int_{B_{2R}} \frac{A^{(Q+q)/q}(|u - u_R|/R)}{|(u - u_R)/R|^{\frac{Q}{2}}} \right]^{q/(Q+q)} \left[\int_{B_{2R}} |(u - u_R)/R|^q dx \right]^{2/(Q+q)} + c
$$

Define

(5.3)
$$
K(t) = \int_0^t [A(s^{1/q})/s]^{(Q+q)/q} ds, \quad H(t) = \frac{[A(t^{1/q})]^{(Q+q)/q}}{t^{Q/q}},
$$

In virtue of (2.6), it is possible to prove that $K(t)$ is concave and that there exists a constant c such that

(5.4)
$$
H(t) \le K(t) \le cH(t) \quad \forall t > 0
$$

Therefore, for $q_* = \frac{Qq}{Q+q}$, using Proposition 2.3, we have

$$
(5.5) \qquad \int_{B_R} A(|Xu|) \, dx \le c \left[\int_{B_{2R}} K(|(u - u_R)/R|^q) \right]^{q/(Q+q)} \int_{B_{2R}} |Xu|^{q_*} \, dx + c
$$
\n
$$
\le c K^{q/(Q+q)} \left(\int_{B_{2R}} |(u - u_R)/R|^q \, dx \right) \int_{B_{2R}} |Xu|^{q_*} \, dx + c
$$
\n
$$
\le c H^{q/(Q+q)} \left(\left[\int_{B_{2R}} |Xu|^{q_*} \right]^{q/q_*} \right) \int_{B_{2R}} |Xu|^{q_*} \, dx + c
$$
\n
$$
= c \frac{A \left(\left[\int_{B_{2R}} |Xu|^{q_*} \, dx \right]^{1/q_*} \right)}{\left(\int_{B_{2R}} |Xu|^{q_*} \, dx \right)} \int_{B_{2R}} |Xu|^{q_*} \, dx + c
$$
\n
$$
= c A \left(\left[\int_{B_{2R}} |Xu|^{q_*} \, dx \right]^{1/q_*} \right) + c
$$

Setting $\Phi(t) = A(t^{1/q_*})$, we have

$$
\Phi(2t) \le k\Phi(t) \quad \text{and} \quad \Phi'(t) \ge \frac{p}{q_*} \frac{\Phi(t)}{t}
$$

where, by assumption, $\frac{p}{q_*} > 1$. Hence inequality (5.5) can be written as

$$
\int_{B_R} \Phi(|Xu|^{q_*}) dx \le c \Phi\Big(\int_{B_{2R}} |Xu|^{q_*} dx\Big) + c
$$

Using now Proposition 3.3, we deduce that there exists $\delta > 0$ such that

$$
\int_{B_R} \Phi^{1+\delta}(|Xu|^{q_*}) dx \le c\Phi^{1+\delta}\Big(\int_{B_{2R}} |Xu|^{q_*} dx\Big) + c
$$

that is

(5.6)
$$
\int_{B_R} A^{1+\delta}(|Xu|) dx \le c A^{1+\delta} \left(\left[\int_{B_{2R}} |Xu|^{q_*} dx \right]^{1/q_*} \right) + c
$$

Setting

(5.7)
$$
\Psi(t) = \int_0^t \frac{A(s)}{s} ds,
$$

it is easy to prove that

(5.8)
$$
\frac{1}{q}A(t) \le \Psi(t) \le A(t)
$$

and that $\Psi(t)$ and $\Psi(t^{1/p})$ are both convex. It follows that

(5.9)
$$
\left[\int_{B_{2R}} |Xu|^p dx\right]^{1/p} \leq \Psi^{-1}\left(\int_{B_{2R}} \Psi(|Xu|) dx\right) + c
$$

see [[15](#page-17-0)]. Finally, since $p > q_*$, we have from (5.8) and (5.9) that

$$
(5.10) \qquad \frac{1}{q} A \left(\left[\int_{B_{2R}} |Xu|^{q_*} dx \right]^{1/q_*} \right) \le \frac{1}{q} A \left(\left[\int_{B_{2R}} |Xu|^p dx \right]^{1/p} \right) + c
$$

$$
\le c \int_{B_{2R}} A(|Xu|) dx
$$

The conclusion follows from (5.6) and (5.10) .

For the case of spherical Quasi-minima, compare with the proof given in [[7](#page-17-0)].

6. The local boundedness

In this section we prove the boundedness of the local minimizers of the functional (1.1) with a fixed boundary value.

PROOF (of Theorem 1.3). For a positive constant $\lambda \ge ||u_0||_{\infty}$, let us consider the function

(6.1)
$$
w = sign(u) max{ |u| - \lambda, 0 }
$$

and use $v = u - w$ as test function in Definition (1.1), that is

$$
\int_{\text{supp } w} F(Xu) \, dx \le \int_{\text{supp } w} F(Xv) \, dx
$$

Since $Xu = Xw$ on the set $E_{\lambda} = \{x \in B_R : |u(x)| > \lambda\}$, it follows that

$$
\int_{E_{\lambda}} F(Xu) dx \le \int_{E_{\lambda}} F(0) dx
$$

thus, by assumptions in (1.2), we get

(6.2)
$$
\int_{E_{\lambda}} A(|Xu|) dx \leq c|E_{\lambda}|
$$

$$
\qquad \qquad \Box
$$

By a simple use of the Sobolev embedding in (2.5) and the hypotheses on A, we have

(6.3)
$$
\left(\int_{B_R} |w|^{p^*} dx\right)^{p/p^*} \le c \int_{B_R} |Xw|^p dx \le c \int_{B_R} A(|Xw|) dx
$$

$$
= c \left[\int_{B_R \setminus E_\lambda} A(|Xw|) dx + \int_{E_\lambda} A(|Xw|) dx\right]
$$

$$
= c \int_{E_\lambda} A(|Xu|) dx
$$

and combining (6.2) and (6.3) we obtain

(6.4)
$$
\left(\int_{B_R} |w|^{p^*} dx\right)^{p/p^*} \leq c|E_\lambda|
$$

Recalling the definition of the function w, we have for $\delta > \lambda$,

(6.5)
$$
\int_{B_R} |w|^{p^*} dx = \int_{E_\lambda} |u| - \lambda|^{p^*} dx \ge \int_{E_\delta} |u| - \lambda|^{p^*} dx
$$

$$
\ge \int_{E_\delta} |\delta - \lambda|^{p^*} dx = |\delta - \lambda|^{p^*} |E_\delta|
$$

and therefore, from (6.4) and (6.5), we have

$$
|E_\delta| \leq c \frac{|E_\lambda|^{p^*/p}}{|\delta - \lambda|^{p^*}}
$$

Applying Lemma 4.1 of [20], we obtain that

$$
|E_{\tau}| = 0 \quad \text{where } \tau = c|B_R|^{1/Q} = cR
$$

that implies

$$
\sup_{B_R} |u| \le \|u_0\|_{\infty} + cR
$$

i.e. the conclusion. \Box

REFERENCES

- [1] L. BOCCARDO P. MARCELLINI C. SBORDONE: L^{∞} -Regularity for Variational Problems with Sharp Non Standard Growth Conditions, Bollettino U.M.I. (7), 4-A (1990), 219–225.
- [2] T. BHATTACHARYA F. LEONETTI: A new Poincaré inequality and its application to the regularity of minimizers of integral functionals with nonstandard growth, Nonlinear Anal., vol. 17, n. 9 (1991), 833–839.
- [3] A. BJÖRN - N. MAROLA: Moser iteration for (quasi)minimizers on metric spaces, Manu. Math., vol. 121, n. 3 (2006), 339–366.
- [4] G. CITTI N. GAROFALO E. LANCONELLI: Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math., vol. 115, n. 3 (1993), 699–734.
- [5] B. FRANCHI G. Lu R. L. WHEEDEN: A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices, vol. 1 (1996), 1–14.
- [6] N. Fusco C. SBORDONE: Higher integrability of the gradient of the minimizers of functionals with non standard growth conditions, Comm. on Pure and Appl. Math., 43 (1990), 673–683.
- [7] U. Gianazza: Higher integrability for quasiminima of functionals depending on vector fields, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), vol. 17 (1993), 209–227.
- [8] F. GIANNETTI: Weak minima of integral functionals in Carnot-Carathodory spaces, Ricerche Mat. 54 (2005), n. 1, 255–270 (2006).
- [9] E. Giusti: Metodi diretti nel Calcolo delle Variazioni, U.M.I. (1984).
- [10] N. GAROFALO D. M. NHIEU: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., vol. 49 (1996), 1081–1144.
- [11] P. Hajlasz: Sobolev spaces on an arbitrary metric space, Potential Anal., 5 (1996), 403–415.
- [12] P. Hajlasz P. Koskela: Sobolev met Poincare´, Mem. Amer. Math. Soc., 145 n. 688, (2000) , x+101 pp.
- [13] P. Hajlasz P. Strzelecki: Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces, Math. Ann., 312 (1998), 341–362.
- [14] G. Lu: Embedding theorems on Campanato-Morrey space for vector fields of Hörmander type, Approx. Theory Appl. (N.S), 14 (1998), no. 1, 69-80.
- [15] M. A. KRASNOSEL'SKII Y. B. RUTICKI: Convex functions and Orlicz spaces, Noordhoff Ltd., New York (1961).
- $[16]$ P. MARCELLINI: Un example de solution discontinue d'un probéme variationel dans le cas scalaire, Preprint Ist. U. Dini, Firenze (1987).
- [17] P. Marcellini: Regularity of Minimizers of integrals of the Calculus of Variations with non Standard Growth Conditions, Arch. Rat. Mech. and Anal., 105 (1989), 267–284.
- [18] G. MOSCARIELLO L. NANIA: Hölder continuity of minimizers of functionals with non standard growth conditions, Ricerche di Matematica., vol. XL fasc. 2 (1991), 259–273.
- [19] A. NAGEL E. M. STEIN S. WAINGER: Balls and metrics defined by vector fields I: Basic properties, Acta Math., vol. 155, n. 1 (1985), 103–147.
- [20] G. STAMPACCHIA: Le probléme de Dirichlet puor les équations elliptiques du second ordre á coefficients discontinus, Ann. Inst. Fourier (Grenoble), vol. 15 (1965), 189–258.

Received 22 September 2009,

and in revised form 22 December 2009.

Flavia Giannetti–Antonia Passarelli di Napoli Dipartimento di Matematica e Applicazioni ''R. Caccioppoli'' Università di Napoli "Federico II" via Cintia—80126 Napoli giannett@unina.it antonia.passarelli@unina.it