Rend. Lincei Mat. Appl. 21 (2010), 115-157
DOI 10.4171/RLM/564

Complex Variable Functions — Jenkins-Strebel differentials, by ENRICO
ARBARELLO and MAURIZIO CORNALBA, communicated on 12 February 2010.!

ABSTRACT. — In this mostly expository paper we revisit a fundamental result of Strebel, asserting
the existence and uniqueness, on Riemann surfaces of finite type, of Jenkins-Strebel differentials
having double poles with prescribed “‘residues’ at prescribed points. In particular, we give a self-
contained and somewhat shortened proof of Strebel’s result.
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1. INTRODUCTION

In this largely expository paper we revisit a rather astonishing result, due to
Strebel [19], which we briefly describe. Let (C,xy,...,x,) be a stable pointed
Riemann surface of genus g > 0. Consider the space of quadratic differentials
we H(C,KZ(2x1 + -+ +2x,)) having poles of order two at the points x;.
Among these quadratic differentials, look at the ones having the following prop-

erty: for each i = 1,...,n, one can find a suitable coordinate z; vanishing at x;
for which the local expression of w is
a; 2 a; \2dz?
1 :<_'.d1 i) :_(_l) @i
(1) @ =\ o8e 2n)  z?

1

where the g; are positive real numbers. Let us recall (see for instance section 5 of
Chapter 16 in [1]) that, away from its zeros and poles, the differential o defines
a hermitian metric, the w-metric, which is defined to be the one with local
expression

|fldzdz,

where f dz? is a local expression for w. If we look at one of the points x; and set
X=x;, a=a;,z=z and z = rel’, we see that the Riemannian metric associated
to the w-metric is just (i)z(‘f’—; + d02). The concentric circles r = constant, which
are geodesics with respect to the w-metric, all have length equal to «, so that a
punctured disc around x, in the w-metric, looks like a semi-infinite cylinder:

! Research partially supported by PRIN 2007 Spazi di moduli e teoria di Lie.
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The question Strebel addresses is whether there exist quadratic differentials for
which these local pictures fit into a nice global one. The answer is quite beautiful:
there exists a unique quadratic differential w with poles of order two at the points
x; and with local expressions given by (1), having the following additional prop-
erty. We can choose the coordinates z; so that their codomains are disks centered
at the origin and, furthermore, if U; stands for the domain of z;,

Figure 1

r= C\OUi
i=1

is a graph (i.e., a 1-dimensional complex), called the Strebel graph, having a ver-
tex of valency n + 2 for each n-th order zero of w. Moreover the edges of I are
horizontal w-geodesics for w. The following picture illustrates the case g = 0,
n=23a =a = a;.

Figure 2

In this paper we will give a self-contained and somewhat shorter proof of
Strebel’s result by using ideas already partly contained in [13].

Perhaps the most striking application of Strebel’s theorem is the one to the cel-
lular decomposition of moduli spaces of pointed curves. Let M, , be the moduli
space of n-pointed, genus g, smooth complete curves. The idea of using Jenkins-
Strebel differentials to define a cellular decomposition of M, , is due to (unpub-
lished) work of Mumford and Thurston and to Harer [6, 5]. Actually, from the
point of view of Strebel differentials, the natural space to work with is the space
M, , x R. Given a point y = [C;xy,...,Xp;a1,...,a,] € My, x R, take the
Jenkins-Strebel differential w associated to it and con51der the Strebel graph I’
equipped with the metric induced by w. Then y can be viewed as a point of the
orbi-cell
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er = RY"/Aut(T)

where Nr is the number of edges of I'. Moving from one cell to another corre-
sponds to a Feynman move. Moving inside a cell er corresponds to changing
the w-length of the edges of I'. Using this cell decomposition one can easily prove
vanishing theorems for the homology of M, , (see [5]). Following Harer and
Zagier [4] one can also compute the virtual Euler-Poincaré characteristic of M, ,
by first expressing it as

(=n™
Aut(l)’

Tvirt(Mg,n) = Z

Te¥,,

where 9, , is the set of isomorphism classes of Strebel graphs of genus g with n
boundary components. Kontsevich, in proving Witten’s conjecture, shows that a
similar method can be used to compute the intersection numbers of tautological
classes on M, , (see [10, 11, 3, 12]).

2. ANNULAR REGIONS AND THEIR MODULI

Throughout this paper we shall make free use of the uniformization theorem,
which says that, up to isomorphism, there are just three simply connected Rie-
mann surfaces, namely the Riemann sphere, the complex plane, and the unit disk.
Every Riemann surface inherits from its universal covering a hermitian metric of
constant curvature. In particular, the Poincaré metric induces on the hyperbolic
surfaces, that is, those whose universal covering is the disk, a hermitian metric
of constant curvature —1; we shall often refer to this as the hyperbolic metric.
From a conformal point of view, a Riemann surface whose fundamental group
is infinite cyclic is isomorphic to the punctured plane C* = {z € C: z # 0} or to
an annulus

Tr={zeC:R<|z|<1}, 0<R<L
The modulus of Ty is defined by

log R
M(TR) = — o

When R = 0, the annulus 7'k coincides with the punctured unit disk and is said to
be degenerate; its modulus equals +c0. An open region Q in a Riemann surface is
said to be annular if it is isomorphic to Tg, with R > 0. As we shall presently see,
R is completely determined by Q, and one defines the modulus M (Q) of Q to be
the one of T;. For example, it is immediate to check that the modulus of the
annulus 7, ,, = {z € C:r; < |z] < rp} is given by

M(Trurz) = log(;;/rl) :
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In general it is not so easy to work with the above definition of modulus. How-
ever, it is possible to give an intrinsic definition of M (Q), that is, one which
clearly depends only on the isomorphism class of Q as an abstract complex man-
ifold. To this end, we will consider the family .%# of all simple closed curves in Q
that are not homotopic to the identity and we will introduce the conformal invari-
ant notion of extremal length Aq(#) for curves in this family. We shall then see
that

B 1
CAa(7)’

) M(Q)

Let S be a Riemann surface, and consider all the metrics of finite area on .S which
are compatible with the conformal structure. We call these metrics admissible.
For a given admissible metric p, we denote by the symbol /,(y) the length of a
curve y and by 4,(Q) the area of a region Q = S. Now let # be a family of
closed curves in S. We set

L(7) = inf ().

yEF

The quantity

AS(F) b (%)
I = su
s admisxgle P A/) (S)

is clearly invariant upon multiplication of p by a positive constant and is called
the extremal length of 7 . There are two ways of rescaling data which lead to use-
ful expressions for Ag(#). First of all one could rescale the area of S to be equal
to 1 and get

3) As(F)=sup  [}(7F).
ps.t. Ay(S)=1

On the other hand, in case /,(#) < 4o for all admissible p, one has

1
4 As(F) = sup .
( ) S( ) ps.t.l(F)=1 AP(S)

From the definition it follows that Ag(%) is a conformal invariant in the sense
that, given an isomorphism ¢ : S — S’ transforming the family % into a family
F', one has Ag/(7') = As(Z). Let us look at an annulus Tk with R > 0, and let
us show that, if # is the family of all closed simple curves contained in 7k and
not homotopic to the identity, then

(5) Ar(F) = = =
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This will show that indeed we can use (2) as a definition of the modulus of an
annular region. To prove (5), let p(z)|dz| be the length element associated to an
admissible metric on Tx. The function p(z) is square integrable. By abuse of
notation we shall write /, and 4, to designate the length and area functions asso-
ciated to the metric. Looking at a circle of radius r in T we get

2n
L,(F) g/ p(re®)rd3.
0

Dividing by r and integrating we get

1 p2n
%)logRs// p(re'®) d9dr,
R Jo

so that, by the Schwarz inequality,

(L,(7) log R)* S/T prdddr . %d&dr:—hzlog(R)A,,(TR).

Hence

A,(Tg) = logR

showing that

2n
log R

A (F) < —

On the other hand, if y is a homotopically non-trivial, simple curve, and if
p(r,9) = 5=, then

1) = /\/ r2+r2d92 /%19
P

Hence /,(#) > 1. Also

rdrd$ log R
A,(TR) = = — .
(Tx) /Tk(zm)z 2
Therefore
2n
Ar (F -
n(F) 2 logR’

proving (5).
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LEMMA 1. Let Q and Q) be two regions on a Riemann surface S. Let F (resp.,
1) be a family of closed simple curves in Q (resp Q1) none of which is homotopic
to the identity. Assume that Q) < Q and F, < F. Then

Ao(F) < Aa(F1) < Mg, (7).

PRrROOF. Since

W(F) = inf L,(y) < inf 1,(3y) = [,(7),

yeF Y1 €T

the first inequality is clear. The second inequality follows from (4) and from the
fact that any admissible metric p on Q such that /,(#) = 1 restricts to an admis-
sible metric on Q; having the same property, so that

£ 4,(Q £ A,(Q
1(1%1 (@) < 1/,@91)1 /(). -

We will use the following terminology. Let y be a simple closed curve in S. An
annular region Q < S has the homotopy type of y if y is freely homotopic to a
simple closed curve in Q which is not homotopically trivial.

LEMMA 2. Let Q be an annular region. Let Q) and Q, be two disjoint annular
regions contained in Q, both having the homotopy type of Q. Then M(Q) >
M(Qy) + M (). In particular M(Q) > M (), fori=1,2.

PRrROOF. Let & (resp., %1, %) be the family of simple closed curves in Q (resp.,

Q;, Q) which are not homotopic to the identity. By assumption % U %, < £
By the previous lemma we have

Ao, 0, (971 U 372) > Ag(fl U 972) > AQ(?).
It then suffices to prove that

1 1 1
AQluQZ(% Uﬁz) B AQl (%)

(6)

Given any admissible metric p on Q; U Q,, with /,(#; U #3) = 1, denote by p; its
restriction to €;, for i = 1,2 and let p; = p;/1, (7). Since [, (#;) > 1, we have

A[,(Ql ) Qz) > A/'I (Ql) + A/’é(Qz)

It then follows from (4) that the left hand side of (6) is greater or equal than the
right hand side. Conversely, given admissible metrics p; on €;, with /, (#;) = 1,

one can simply define an admissible metric p on Q; U Q, with [,(F#; U /2) =1 by
setting pig, = p;, so that 4,(Q1 v ) = 4, (Q1) + 4),(Q2). Thls implies the re-
verse inequality, proving (6). O
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LEMMA 3. Let Q be an annular region and suppose that Q =], Q,, where
Q) < Qp < -+ is an increasing sequence of annular domains having the same ho-
motopy type of Q. Then M(Q) = lim,_,., M(Q,).

PrOOF. Lemma 2 implies that the sequence { M (Q,)} is non-decreasing and that
M(Q,) < M(Q) for any n. We must show that lim,_.., M(,) is not strictly less
than M (Q). It suffices to treat the case when Q is a standard annulus Tk. If k
is any number such that v/R < k < 1, the closure of the subannulus T Tk =
{z € C: R/k < |z| <k} is contained in €, for large enough 7, by compactness.

Thus the limit of {M(€,)} is not less than M (T, i) = M . The conclusion
follows by taking the limit of this inequality for k — 1. |

We now turn our attention to degenerate annular reglons A degenerate annu-
lar region, or a punctured disk, on a Riemann surface S is a region Q which is
analytically equivalent to the punctured unit disk A = {z€ C: 0 < |z| < 1}. We
fix a spe01ﬁc 1somorphlsm @ : A — Q. Suppose that, for any sequence {x,} in A
converging to the origin of A={ze C:|z| < 1}, the image sequence {¢(x,)}
does not converge in S. Then, if we use ¢ to glue the unit disk A to .S, the result-
ing surface S is Hausdorff and is obtained by adding to S a point p, correspond-
ing to the origin of A. We shall refer to the point p € S as a puncture of S. Sup-
pose instead that there is a sequence {x,} in A which converges to 0 and has the
property that its 1mage in S also converges to some point p. We claim that in this
case Q =QuU {p} is open in S, and that the analytic isomorphism ¢ : A—Q
extends to a biholomorphism between A and Q. We may assume that S is con-
nected. It suffices to show that ¢ extends to a holomorphic map from A to S, or
even, by the uniqueness of the limit, from A to some Riemann surface 7 con-
taining S as an open subset. When S'is an algebraic curve, we may take as 7" a
smooth completion of S. Let ¢ be a point of Q, and V" a small neighborhood of ¢
in S. We may choose V" in such a way that it does not meet ¢(A,) for some r < 1,
where A, = {z € C: 0 < |z| < r}. There is a projective embedding 7" — PV such
that there exists a hyperplane H meeting 7 only at g. Hence 7'\ is a bounded
subset of CV = PY\ H, and the restriction of ¢ to A, extends to a holomorphic
map from A, = {z e C: |z| <r} to T, by the Riemann extension theorem. This
argument takes care, in particular, of all the non-hyperbolic Riemann surfaces.
In fact, these are just the Riemann sphere, the complex plane, the punctured com-
plex plane, and the one-dimensional complex tori, which are all algebraic. The
argument for general hyperbolic surfaces is quite different, and uses the following
fundamental result.

LEMMA 4. (Generalized Schwarz lemma) Let A be the unit disk, endowed with the
Poincaré metric of constant curvature —1, let T be a Riemann surface endowed
with a hermitian metric whose curvature is everywhere < —1, and let f: A — T
be holomorphic. Then f is distance-decreasing, in the sense that, for any pair of
points x,y € A, the distance between f(x) and f(y) does not exceed the one be-
tween x and y.
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We postpone the proof of Lemma 4, and assume its validity. Put the hyper-
bolic metric on both A and S. Composing ¢ with the universal covering map
A — A we get a holomorphic map from A to S, which is distance-decreasing by
the generalized Schwarz lemma; hence ¢ is also distance-decreasing. A conse-
quence is the following. Set C, = {z : |z| = r}. Since the length of C, in the hyper-
bolic metric of A goes to zero with r, the distance-decreasing property of ¢ implies
that the same is true for the length of ¢(C,) in S. Let D be a geodesically convex
geodesic disk of radius 3¢ centered at p, where ¢ is a small positive number. If 7 is
a large enough integer, the distance between p and ¢(x,) and the length of ¢(C,)
are both less than ¢, for every r < ry = |x,|. Thus ¢(C,,) lies entirely inside the
geodesic disk of radius 2¢ centered at p. Now let r; < ry be such that ¢(C,,)
is contained in D. By the Jordan curve theorem, either ¢(C, ) is enclosed by
¢(Cy,), or p(C,,) is enclosed by ¢(C,,). In the first case, ¢(C,,) is clearly contained
in the disk of radius 2¢ centered at p. The same is true in the second case, since
the length of ¢(C,,) is less than ¢, and ¢(C,,) encloses a point whose distance from
p is less than e. The conclusion is that, for any r < ro, the curve ¢(C,) cannot
escape outside D. By the Riemann extension theorem, then, ¢ extends to a map
A — S, as desired.

PrROOF OF LEMMA 4. In local coordinates, a metric on S is of the form hd{d(,
where £ is positive. If y = hd( A d{ is the corresponding exterior form, the curva-
ture of the metric is —2ddlogh/y. If « = ad{ Ad{ and f=bd{ Ad{ are (1,1)-
forms with @ and b real, we shall, somewhat improperly, write o > f to indicate
that ¢ > b. With this convention, the assumption on the curvature of S translates
into 260logh > . The hyperbolic metric on A, corresponds to the form
2
t=kedzndz=—" __drndz
(2 =2

What must be shown is that ¢*(y) <#,; clearly, it suffices to show that
p*(Y) <n, on A, for every r < 1. Notice that ¢*(y) is bounded on A,, while 7,
goes to infinity at the boundary. Thus, if we write ¢* () = uy,, then u goes to
zero at the boundary, and hence has an interior maximum at some point zo.
This implies that ddlogu < 0 at zy. On the other hand, uk, = |0/dz|*h o ¢, and
hence 60 log(h o ¢) = 00 logu + 80 log k,. Putting everything together we find that

0*(Y) < 2001og(ho ¢) =200 logu + 20dlogk, < 200logk, =1,

at zo, that is, u(z9) < 1. Since « has a maximum at zy, u < | everywhere, hence
@*(¥) < n, everywhere. O

Now let Q be a punctured disk in S. Write Q = Q\{p}, where Q is a disk in S
or in a Riemann surface S = S U {p} containing S as an open subset. Let v be a
non-zero tangent vector to Q at p, let F : Q — A be a biholomorphic map with
F(p) =0, and set

) r——

o(F)
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Since the automorphisms of the unit disk carrying the origin to itself are just the
rotations, the number r does not depend on the isomorphism F, but only on Q
and on the choice of v. It could be equivalently defined as the radius of a disk
A, = {z € C: 0 < |z| < r} for which there exists an isomorphism f : Q — A, with

(8) f(p)=0, (/=1
The reduced modulus of Q with respect to v is defined by:

_logr  —log|o(F)|
2 2n '

©) M,(Q)

Sometimes, if no confusion is likely, we will omit the reference to the tangent vec-
tor v in the notation for the reduced modulus. To connect the notion of reduced
modulus with the notion of modulus of an annular region, pick a local coordinate
{ centered at p and with v = 5.%, denote by y, the preimage in Q of a circle of
radius p centered at the origin in the {-plane, and denote by Q, the annular
region which is the connected component of Q\y, not containing the point p.

Figure 3
We want to show that
. logpy -
(10) lim (m(@,)+ 7) = M,(Q).

Let r be as in (7). Then

FO =S ta s
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Let R', (resp., R”) be the minimum (resp., the maximum) of |F| over y,. Then

(/;)_ |as | p> _) <R <|w()|<R'"< (/;J—l— |a2|p2+...).

By Lemma 2, we have

which implies (10). A corollary of (10) is the following analogue of Lemma 2.

LEMMA 5. Let Q; = Q, be two concentric punctured disks on a Riemann surface
S. Denote by Q the annular region Q,\Q. Then M,(€y) > M(Q) + M,(Q)).

Proor. Consider the annuli

Q;, =Q\{[¢| < p}, i=1,2.

By Lemma 2 we have M(Q, ,) > M(Q)+ M(Q, ,). The result follows from
(10). O

Before proving further results on annular regions, we turn our attention to an-
nular coverings of Riemann surfaces. Denote by # : § — S the universal cover of
a Riemann surface S. Fix points x € S, X € S with (X) = x, and identify 7 (S, x)
with the group of deck transformations of 5. Fix a simple, closed, homotopically
non-trivial loop y in S, based at x, and denote by S, the quotient of S by the cyclic
subgroup of 7;(S, x) generated by [y]. Denote by @ : S — S, the quotient map
and by 7 : S, — S the topological cover corresponding to the subgroup {[y]), so
that 7w = 5. Let y be the image under w of the lifting of y to S with initial point
X. Set y = w(x). The curve y is a loop and is the lifting of y with initial point y.
Clearly, 71(S,, y) = <{[}]>. We are going to prove that, when S is a hyperbolic
surface, then p is the only closed curve in S, which is a lifting of y.
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LEMMA 6. If'S is hyperbolic, the loop 7 is the only closed lifting of the simple loop
y. More generally, if a closed curve o in S has a closed lifting in S,, then this lifting
is unique (and o is freely homotopic to y", for some n).

PrOOF. Let o be a closed loop in S. Suppose o is a closed lifting of ¢ to S,. The
loop o7 is freely homotopic to 9", for some n. As a consequence, o is freely homo-
topic to »". We want to prove that o) is the only closed lifting of o. Suppose there
is another closed lifting g, of . Let z be the base point of o; and w the base point
of 3. Join y to z with a path ;. Let ‘L' be the projection of 7y and 75! the lifting of
7! with initial point w. Then T101T] land 120212 are two closed liftings of 7a7~!
and the base point of 71017 ! is y. Hence, we may as well assume that o is based
at x and o) is based at y. In particular ¢; is homotopic to y”. By the same argu-
ment we used above, we deduce that o, is freely homotopic to " and hence to
1. So, if o is based at y’ € n~!(x), there is a path o from y to y’ such that
ag10~! ~ 5. The projection of « via 7 is a closed loop 8, and [f] commutes
with [y"]. Now, any abelian subgroup of Aut(A) ~ SL,(R)/{+1} is contained
in a one-parameter subgroup. Moreover, as 7 (S, x) is contained in Aut(A) as
a discrete subgroup, there must be a cyclic subgroup containing [f] and [y”].
Since y is simple, {[y]> is the largest cyclic subgroup of 7;(S,x) containing
[y"], and hence [f] is a power of [y]. This implies that y’ = y. But then, by
the uniqueness of liftings, a; = o>. O

COROLLARY 7. Let S be a hyperbolic surface. Let y be a simple, homotopically
non-trivial loop in S. Let Q be an annular region in S with the same homotopy
type as . Then there is a unique annular region | Qc S, such that the covering
n: S, — S restricts to an isomorphism between Q and Q Moreover Q has the
same homotopy type as y.

PROOF. Let F be an isomorphism between an annulus 7k and Q, and let p and
9 be polar coordinates in Tk. By the preceding lemma there is a unique closed
lifting 7, of the curve y, defined by y,(9) = F(p, ). Since = is holomorphic, this
lifting depends holomorphically on the point (p,J) and we define Q to be the
image of the holomorphic map F given by F(p, 9) = 7,(9). O

LEMMA 8. Let y be a simple closed curve on a hyperbolic surface S. Let </ (y) be
the set of annular subregions of S with the same homotopy type as y, and define

(11) M(y) = 7 ){M(Q)}-

Then M(y) =+ if and only if y can be contracted to a point of S or to a
puncture.

PROOF. Only one implication is non-trivial. Let us then assume that M (y) = +co
and that y is not contractible in S. We keep the notation of the previous lemma.
Since S is hyperbolic, S, is either an annulus or a punctured disk. Because of the
previous corollary, we have M(y) = +co. By Lemma 2, M(y) = M(S,). Thus S,
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is a punctured disk. Let Q be the connected component of S,\{y} which is
isomorphic to a punctured disk. The lemma will be proved if we can show that
7 : Q — w(Q) is an isomorphism. Of course it is enough to prove that this map
is injective. We contend that for this it is enough to prove that there is no pair
of points x € = 0Q and y € Q such that z(x) = 7(y). Suppose in fact that there
are z,w € Q with n(z) = n(w). Join z to a point of § with a smooth path « in Q
not passing through w, and let f§ be the lifting of 7(a) with initial point w. The end
points of f and « lie in the same fiber of 7, so that the end point of f cannot
belong to . If f stays inside Q denote by y its final point and by x the final point
of o (picture on the left in Figure 5).

Figure 5

Evidently z(x) = zn(y). If, on the other hand, f does intersect 7, denote by x
the first point of intersection, by A’ the portion of f going from w to x, and by y
the final point of the lifting ' of 7(4’) with initial point z (picture on the right in
Figure 5). The point y cannot coincide with x by the uniqueness of lifting. Since x
and y lie in the same fiber of 7, they cannot both belong to 7. It follows that o' is
a proper sub-path of o, so that y lies in Q. But then again z(x) = n(y).

We claim that 7~ 'z(x) N Q is a finite set. If this were not the case, since the
fiber of 7 over x is discrete, we could find a sequence {x,},., = 7~'7(x) converg-
ing to the puncture of Q. Identify Q with the standard punctured disk A. Assum-
ing, as we may, that the sequence {|x,|} is strictly decreasing, we let C, denote the
circle centered at zero with radius |x,|. Both S, and S inherit the hyperbolic met-
ric from the Poincaré disk. In this metric, the length of C, tends to zero as n tends
to infinity. Since 7 is a local isometry, the same is true for the length of the lifting
g, of n(C,) with initial point x. By Lemma 6 this lifting is not closed and we
denote by y, € n~!(x) its final point.

Figure 6
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Since the length of g, tends to zero as n tends to infinity, we have lim y, = x,
n—oo

which is absurd, since the fiber over x is discrete. Our claim on the finiteness of
nln(x) N Q is proved.

Now we shall show that 7~ '7(x) N Q is empty. Suppose not, and let x; be one
of its points. By construction, x # x;. The lift of y with initial point x;, which we
denote y,, does not intersect y, by the uniqueness of liftings. In particular, its final
point x, belongs to 7~ !'z(x) N Q. Now let y, be the lift of y with initial point x»,
denote by x3 its endpoint, then lift y to a path p; with initial point at x3, and so
on. Denote by 7 the curve obtained by joining all the y,. As we observed, v does
not intersect j. On the other hand, since 7~'7(x) N Q is finite, it must contain a
simple closed loop o = Q. As ¢ is simple and S, is isomorphic to a punctured
disk, either ¢ is contractible or it is freely homotopic to 9. Since the projection
of g is y*, with k # 0, only the second possibility may occur. But then, by Lemma
6, o = 7, contradicting the fact that ¢ is entirely contained in Q. |

It is useful to introduce a notion of convergence for annular regions.

DEFINITION 9. A sequence {Q,} of annular regions on a Riemann surface S
is said to converge to an annular region Q < S, if there exist a sequence of non-
negative numbers R, < 1 converging to a number Ry < 1 and a sequence of iso-
morphisms f, : Tg, — €,, converging uniformly on compact subsets of T, to an
isomorphism f : Tg, — Q.

LeEMMA 10. Let y be a simple closed loop on a hyperbolic Riemann surface S. Let

{Q,} be a sequence of annular regions with the same homotopy type as y. Assume

that M(y) < +o0 and that lim M(Q,) = M > 0. Then there exists an annular
n—oo

region Q with M (Q) = M such that a suitable subsequence of {Q,} converges to Q.

Proor. Since M(y) < +oo, there is an isomorphism ¢ : Tx — S, with R > 0.
Choose isomorphisms f, : T, — €,. By Corollary 7, there are holomorphic
maps g, : Q, — S, such that 7 o g, is the inclusion Q, — S, whence commutative
diagrams

Tk —— 8,

(12) 14 L}

Tr L Q,cS

Clearly, each /, is an isomorphism onto its image. Set Ry = ¢ 2™ The sequence
{h,} is a uniformly bounded sequence of holomorphic maps. Therefore, passing
to a subsequence if necessary, we may suppose that {/,} converges uniformly on
compact subsets of Tg, to a conformal map 4 : Tg, — T, and hence that {f,}
converges uniformly on compact subsets of Tg, to f =mwopoh: Tg, — S. The
map A is not constant, since /4, is a homotopy equivalence for every n. Thus
h and f are open. To see that f is injective, suppose that f(x) = f(»), with
x # y. Choose small disjoint disks 4 and B around x and y, respectively. We
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claim that f,(4) 3 f(x) for large n, and similarly for f,(B), which contradicts the
injectivity of f,. To prove the claim, we argue by contradiction, and suppose
that f(x) ¢ f,(A) for every n. The distance between f(x) and f,(A4) which, by
our assumption, equals the distance between f(x) and f,(0A4), goes to zero as
n — co. On the other hand, the distance between f(x) and f(0A) is strictly posi-
tive, a contradiction. It follows that f is an isomorphism between Tg, and
Q = f(Tg,), and the lemma is proved. O

COROLLARY 11. Let y be a simple closed curve on a hyperbolic surface S. Sup-
pose M(y) < +co. Then there exists an annular region Q < S with M(Q) = M(y).

The next result is an analogue, for punctured disks, of the preceding lemma.

LEMMA 12. Let y be a homotopically non-trivial simple closed loop on a hyper-
bolic Riemann surface S. Suppose that M(y) = +oo. Let {Q,} be a sequence of
punctured disks with the same homotopy type as ). Let v be a non-zero tangent vec-
tor to the completed surface S U {p} at the puncture p. Assume that the sequence
of reduced moduli M,(Q,) converges to M # —co as n tends to infinity. Then a
subsequence of {Qn} converges to a punctured disk Q with reduced modulus equal
to M.

PROOF. Set Q, =Q, U {p}. Choose 1somorphlsms Joi Ay ={z€ C |z] < rn}
—Q, such that £,(0)=p and v(f,"")=1. Then M,(Q,) = 5 logr,. Set
r=e?M_ Now one looks at the annular cover S, of S, which 1s a punctured
disk, and proceeds exactly as in the proof of Lemma 10. =]

We end this section by proving two topological lemmas that we will need in
the sequel.

LEMMA 13. Let y be a homotopically trivial simple closed curve on a Riemann
surface S. Then there is a region Q < S isomorphic to a disk such that 0Q = 7.
This region is unique, unless S = P'.

PROOF. The case S = P! is the classical theorem of Jordan. If S is not P!, let
7 : S — S be the universal cover. Since S is either C or the unit disk, the curve y
lifts to a simple closed curve y which, again by Jordan’s theorem, bounds a disk
D < S. It now suffices to show that z : D — S is injective. If two points of D map
to the same point of S, there is a deck transformation 7 carrying one to the other.
Thus D and 7T'(D) are not disjoint. By the uniqueness of liftings, 7(5) Ny = 0.
But then either 7(D) = D or D = T(D). In the first case T has a fixed point
in D, by the Brouwer fixed point theorem, and hence is the identity. In the sec-
ond case, replacing 7 with 7!, we reach the same conclusion. Thus D — S is
injective. O

LEMMA 14. Let y and 6 be non-intersecting, freely homotopic and homotopically
non-trivial simple closed curves on a Riemann surface S. Then there is a an annular
region Q < S such that 0Q = y U 0.
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ProOOF. The cases when S is not hyperbolic can be dealt with directly and are
left to the reader. We thus assume that S is hyperbolic. Consider the annular cov-
ering 7 : S, — S, and identify S, with Tk, where R > 0. Let y and J be liftings of
y and 0, respectively. Clearly, y and ¢ bound an annular region Q < Tk. It now
suffices to show that 7 : Q — S is injective, and this is done exactly as in the
beginning of the proof of Lemma 8. O

3. TRAJECTORIES OF QUADRATIC DIFFERENTIALS

Let us briefly recall the geometry associated to a quadratic differential
w e H°(S,K2) on a Riemann surface S. Let Z be the set of zeroes of w. Away
from Z, one can define a hermitian metric, the so-called w-metric, which is the
metric with local expression

|f|dzdz,

where f dz? is a local expression for . On a neighborhood of each point p € S\Z
the quadratic differential @ defines a set of distinguished coordinates, any two of
which differ at most by a sign and the addition of a constant. In a neighborhood
of a point p € S\Z, such a coordinate { is simply defined by

= [ vo

If we impose its vanishing at p, a distinguished coordinate is fixed up to a sign.
These distinguished coordinates are called the w-coordinates. In terms of these
coordinates, the w-metric has local expression d{d{ and therefore Sy = S\Z,
equipped with the w-metric, looks locally like the euclidean plane. Geodesics for
the w-metric will be called w-geodesics. Clearly, a curve is an w-geodesic if and
only if, at each one of its points, it is a straight line in w-coordinates. There is
also an intrinsic notion of horizontal (resp. vertical) geodesic. In terms of an w-
coordinate { = &+ 1ix, the horizontal (resp. vertical) geodesics are the curves
n = constant (resp., ¢ = constant). Figure 7 shows the structure of the horizontal
and vertical geodesics in the neighborhood of a point p € S which is a zero of
order n, with n equal to 1, 2 and 3, respectively.

Figure 7
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A geodesic arc o in Sy locally minimizes distances. In fact, for arcs entirely con-
tained in Sy, the local minimizing property characterizes geodesics. Since it makes
sense to talk about the length of an arc in S (and not only in Sy), one defines an
w-geodesic in S to be a path in S having the property of locally minimizing dis-
tances. Geodesics passing through a zero of w are called singular. It can be shown
that, on a compact Riemann surface of genus g > 1, any two points can be joined
by an w-geodesic, and that such a geodesic is unique within its homotopy class. In
proving this fact the main ingredient is a Gauss-Bonnet-type result which we are
now going to state.

Consider an w-geodesic polygon P in a connected Riemann surface S, so that
P is homeomorphic to a disk and the boundary of P is the union of finitely many
w-geodesic arcs whose interiors do not contain zeroes of w. Let ¢y, ..., g be the
points of the boundary of P where two of these arcs meet, let 4; be the multiplic-
ity of g; as a zero of w, and denote by §; the interior angle formed by the sub-arcs
of 0P adjoining ¢;, for j =1,...,s. By compactness, P contains a finite number
of zeroes of w; let them be py, ..., p,, and let v; > 0 be the multiplicity of p; as a
zero of w. The situation is illustrated in Figure 8.

Figure 8

Set v =7, vi. Then the following Gauss-Bonnet formula holds:

S

(13) (v+2)2m=> (2n— (4;+2)9%).

Jj=1

Let us finally recall that the critical points of w are the zeroes of @ and the punc-
tures of S. A horizontal w-geodesic is said to be a trajectory of w if it does not
pass through any critical point and is maximal with respect to this property. A
trajectory is said to be closed if it is a (simple) loop. A horizontal w-geodesic is
said to be a critical trajectory if it joins two critical points of w. It is a trivial but
important observation that distinct trajectories do not intersect, and that a trajec-
tory crosses itself only if it is closed. We refer the reader to section 5 of Chapter
16 in [1] for the proof of all the above facts.

In our study, we are going to restrict ourselves to the case of admissible
quadratic differential on Riemann surfaces of finite type. Recall that a Riemann



JENKINS-STREBEL DIFFERENTIALS 131

surface S is said to be of finite type if it is obtained from a compact surface S
by deleting a finite number of points

(14) S=8\{yi,--sym}

On the other hand, a quadratic differential on a Riemann surface of finite type is
said to be admissible if S has finite w-area:

(15) /S|a)| < .

It is straightforward to show that an admissible quadratic differential on S ex-
tends meromorphically to a differential on S, having at worst simple poles at
the points y;. Since these simple poles are naturally brought into the picture let
us examine the trajectory structure of w near one of them, call it p. We can al-
ways find a local coordinate { on S near p and vanishing at p, such that, locally

1
w = —

=2

It is then clear that the trajectories of w near p can be described by the picture in
Figure 9.

di? = (d'?)”

Figure 9

In this section we are going to prove two main results. The first one concerns
closed trajectories. We will prove that any such trajectory is contained in a max-
imal annular region which is swept out by trajectories. The second one concerns
trajectories that are neither closed nor critical. We will prove that the closure of
such a trajectory is a set of positive measure.

We fix, for the remainder of this section, a Riemann surface S = S\{y1,... yu}
of finite type and an admissible quadratic differential w on it.

Let o be a trajectory of w. We view o as a path p : I — S parametrized by arc-
length, where I is an open interval which may be finite or infinite. Let { be a dis-
tinguished coordinate at a point p(z). Recall that { is well defined only up to sign
and translation. We can get rid of these ambiguities by asking that {(p(7)) = ¢.
Denote by v, the unit tangent vector to S at p(¢) orthogonal to « and pointing
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in the direction of increasing Im({); by the way { has been chosen, v, depends
smoothly on 7. Then let s — f,(s) be the geodesic with initial point p(¢) and initial
tangent vector v,. It is a vertical geodesic, which we think of as extending in both
directions as far as, and excluding, the first critical point encountered, or indefi-
nitely, if none is met. We denote by J, the interval on which f, is defined, and by
u,, £, its upper and lower endpoints. It is useful to notice that, if { is a distin-
guished coordinate as above, then, by definition, {(f,(s)) = ¢+ is for small s.
We now regard ¢ and s as the real and imaginary parts of a complex coordinate
z = t+is, and set W(z) = f,(s). This defines a map from a connected subset D of
the z-plane to S. By what we just observed, W is defined and holomorphic on a
neighborhood of 7. Moreover, near any point of 7, it has a local inverse which is
a distinguished coordinate.

We now wish to show that this is true on all of D. We shall prove that D is
open and that, locally near any point of D, the map W is the inverse of a distin-
guished coordinate, so that in particular it is holomorphic. For any 7 € I let u,
(resp., /) be the supremum (resp., the infimum) of all points s € J;, s > 0 (resp.,
s < 0) such that ¥ is defined and equal to the inverse of a distinguished coordi-
nate on a neighborhood of 7 + i for every o between 0 and s. We must show that
u; = u, and // = ¢, for all ¢ € I. We shall deal only with u/, the argument for //
being just the same. We begin by noticing that u; > 0, by what we observed
above. Suppose u;O < uy, for some #y € I; then p = ¥(t +iu,’0) is not critical.
Let { be a distinguished coordinate in a geodesically convex neighborhood U
of p. If so <u, is large enough, W(# +isp) € U. On the other hand, by com-
pactness, V¥ is defined and locally equal to the inverse of a distinguished coor-
dinate at every point of a rectangle R={r+is: 70 —e¢ <t <1t)+¢&0 <s<s5};
moreover, if ¢ is small enough, ¥ maps the entire top edge of R into U. Since
distinguished coordinates are unique up to sign and translation, on this edge
the composition { o ¥ is of the form z — +z + ¢, where ¢ is a constant; chang-
ing  if necessary, we may thus suppose that {(W(z)) =z for all z belonging
to the top edge of R. But then the vertical geodesic Re({) = ¢ is part of the
geodesic f, for tp —e <t <ty+e¢ Hence ¥ is defined and equal to ( 1 on
{(U)n{z: 10— e <Re(z) <ty + ¢}, which is a neighborhood of 7 + iu; . This
contradicts the definition of u; , and establishes our claim.

Figure 10
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It is important to notice that ¥ sends segments in D to pieces of geodesics and
horizontal segments to pieces of trajectories. Moreover, ¥*(w) = dz>. To better
understand the nature of the domain D we need to make a preliminary remark.
By construction, D is contained in the infinite strip

T={t+iseC:tel}.

If u, < +o0 (resp., if 4, > —o0) we set z, = t + i, (resp., w, = ¢ + i/). The set D is
just the complement, inside 7', of the vertical closed half-lines extending upwards
from each z, and downwards from each w,. Since D is open, the functions ¢ — u,
and ¢ — ¢, are, respectively, lower and upper semicontinuous. We can be even
more precise.

LEMMA 15. The points z, and w, are isolated in T.

Proor. We shall deal only with z,; the proof for w, is no different. Suppose
uy,, < +00. Then W(#, + is) has a limit p as s — u,,. By the very definition of u,,,
the pp is a critical point of . As we know, there is a coordinate { centered at p
such that @ = " d{* near p, where either n = —1 or n > 0. Let U be the disk
{I¢| < r}, for some small r. If s is close enough to u,,, then f, (so) = ¥ (to + iso)
belongs to U. Hence, if ¢ is small enough, the horizontal geodesic segment L =
{W(t+1s0) : to —& < t < tp + ¢} is entirely contained in U. We set J = u;, — 5.
We claim that the only point of the form z, contained in the rectangle
{z e C:|Re(z) — ty| < & |Im(z) — u,| <O} is z,. This will clearly follow if we
can show that u; > u,, +9J when |t —#)| < ¢ and ¢ # ;. We shall give a proof
“by pictures”. The case in which n = —1 is clear. We can then assume that
n > 0. Recall that the pattern of horizontal and vertical geodesics in the { co-
ordinate is as shown in Figure 7. Then look at Figure 11. This illustrates what
happens for n = 1, but things are no different for arbitrary positive 7.

Figure 11

The curves y, ' and y” are horizontal geodesics, and L is contained in y. The
geodesic y” is chosen so that its distance from p equals the distance between p
and y. Thus the piece of the vertical geodesic /5, between y’ and y” is just as long
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as the one between y and y’. This, in turn, has the same length as the part of f,
between y and p, that is, 0. This means that u, > sy + 20 or, equivalently, that
Uy > Uy +0. O

Figure 12 is the picture of a domain D = C\{dotted lines} when 7 = R.

D
Zy
t, |t
Wy
Wi
Figure 12

It is important to notice that W cannot be extended holomorphically (or for
that matter even continuously) to a neighborhood of z, or w,, for any .

Our next task is to examine the case in which o is a closed trajectory. In this
case, we have / = R and the map W : I — o is periodic. We let a € R, be its
period. Keeping the notation introduced above, we set

by =max{/,:0<t<a}, by=min{y,:0<1<a},
and we consider the infinite strip
(16) R={t+iseC:b <s< by} =D.

LEMMA 16. Let o be a closed trajectory for an admissible quadratic differential «
on a Riemann surface S of finite type. Two cases can occur.

1) S is a genus 1 curve, that is, the quotient of C by a lattice A, R = D = C, and ¥
can be identified with the quotient map C — C/A.

i) If z1, zo belong to R, then ¥ (z\) = W(z2) if and only if z, — z\ is an integral
multiple of a. Moreover, Q = Y(R) is an annular region, or a copy of C*, con-
taining a, it is swept out by closed trajectories of w, and is the maximal region
with these properties.

In either case, ¥*(w) = dz°.
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PrOOF. If x € C, we denote by 7, the translation by x. Since ¥ (¢ + a) = ¥(¢)
for all real 7, and D nt_,(D) is connected, analytic continuation implies that
Y(z+a)=Y(z) for all ze Du1_,(D). On the other hand, D = 7_,(D), since
otherwise W(z + a) would provide a holomorphic extension of ¥ across some
of the z, or w,. Now suppose that there are points z; # z, of R such that
Y(z1) = ¥(z2) but u = z; — z; is not an integral multiple of a. We can assume
that these two points have minimal distance with respect to this property, so
that in particular |Re(u)| < a. We denote by L the piece of the line joining z
and z, lying inside D. The image of L under YW is a closed geodesic. Hence, if z
and z + u both belong to L, then ¥(z) = W(z + u); this implies, in particular, that
Y(z) = ¥(z + u) for any point z belonging to L and sufficiently close to z;. Argu-
ing as for a, we conclude that D = 7_,(D) and that ¥(z + u) = ¥(z) for any
z € D. Since |Re(u)| < a and a is a period, u cannot be a real number. Since D
is equal to 7_,(D), a consequence is that D must be the whole plane. If A is the
lattice generated by a and u, the minimality of |u| shows that ¥ induces an iso-
morphism C/A — S, as desired. We can now assume to be in case ii). From the
construction it follows that Q is an annular region, or a copy of C*, containing ,
that it is swept out by trajectories, and that it is maximal with respect to these
properties. O

The region Q in the statement of the preceding lemma is called the maximal
annular domain associated to the closed trajectory «. This is a slight departure
from our customary usage of the word “annular”, since it may well be that Q is
isomorphic to C*. Clearly, Q is completely determined by «. Setting

a

n=exp(-2mb), ) =¥ (5=

log(),

then @ is a biholomorphic map between the annulus 7, ,, and Q, and ®*(w) is of
the form

(17) (%dlog@)z.

It may well be that r; = 0 and , = +o0. In this case S is the Riemann sphere and
Q = C*. On the other hand, when r; =0, r, < +00 or r; > 0, r, = +00, the re-
gion Q is a punctured disk.

From the proof of the lemma it follows that both boundary components of Q
must contain critical points of w, otherwise one could continue ¥ either above
the line y = b, or below the line y = by, or both. The following can also be de-
duced from the proof of the lemma. Suppose that o’ is another closed trajectory
of w, and let Q' be its associated maximal annular domain. Then either Q' = Q
orQnQ =0.

As we anticipated, we shall now study the case of a trajectory which is neither
closed nor critical.
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PROPOSITION 17. Let w be an admissible quadratic differential on a Riemann
surface S of finite type. Let o be a trajectory of w. Assume that o is neither closed
nor critical, and denote by & the closure of o. Then the measure of & is strictly
positive.

Before proving the proposition we need a couple of remarks. We keep the no-
tation introduced so far in this section. Since « is not closed, ¥ gives a bijection
between / and «. Since « is not critical, / cannot be finite. Without loss of gener-
ality, we may then assume that b = +00. We set a™ = ¥[0,+0), a~ = ¥(qa,0],
and pyo = W(0). Recall that ¥ maps horizontal and vertical segments in D to hor-
izontal and vertical w-geodesics. By positive direction along a horizontal segment
in D or its image in S we shall mean the direction of increasing Re(z), z € D. We
need three lemmas.

LeEMMA 18. Let f§ be the portion of vertical w-geodesic which is the image of a
vertical segment J = {is : s € R,0 < s < ¢} under Y. Then, for every t € [0,+0)
there exists t; € [0,+00), with t; > t, such that o™ cuts  in Y (t1) in the positive
direction.

PrOOEF. Clearly, if the conclusion of the lemma holds for a certain value of ¢, it
also holds for all larger values of ¢. Hence we may assume that the map ¥ gives a
bijection between J and f. Also, it suffices to prove that there exists #; > 0 such
that o™ cuts ff in W(¢;) in the positive direction. Let K = J be defined by
K — {z cJ- the horizontal ray starting at W(z) in the positive direction }
" hits a critical point before hitting £ in the positive direction

We claim that K is finite. Since there are only a finite number of critical points
and a finite number of trajectories leading to any one of them, it suffices to
show that each trajectory leading to a critical point contains only one ray with
the above property. In fact, suppose that y* and J* are two rays contained in
the same trajectory. Then either y* = 6" or y* o 7. Say that the former holds,
and say that 6" starts at ¢ € W(K) while y* starts at p € ¥(K). This means that
0" starts at ¢ (in the positive direction), passes through p (in the positive direction)
changing its name into ™, and then hits a critical point. But then ¢ ¢ ¥(K), con-
trary to our assumption.

In conclusion, there exists a subinterval J' = J containing po and having
empty intersection with K. We let ' be the image of J’ under ¥. We claim
that there exists a point p € ' such that the horizontal ray starting at p comes
back to f in the positive direction. We argue by contradiction. Suppose this
is not the case. Since J' N K = (), every ray starting at a point of ' can be
continued indefinitely. Fix a point p = ¥(ib) € f’. Look at the infinite strip
Y={z=t+1ise C:0 < s < b}. By what we just observed, the map ¥ is defined
on all of X. Since we are assuming that no ray starting at a point of ' comes back
to S, and a fortiori to ', the restriction of ¥ to £ must be injective. But this is
absurd, since W(X) would be a region in S with infinite w-area. Let us denote by
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y* a horizontal ray starting at a point p € 8’ and coming back to f8 in the positive
direction. Figure 13 illustrates the three cases that can occur; in each, one sees
the rays oo™ and y* departing from the right of f and then coming back to the
left of f. If the top two cases occur, the ray o™ hits f in the positive direction
and we are done. In the third case, we denote by a’ the length of portion of y*
between the initial point and the point where it hits § in the positive direction,
and by b’ the vertical distance between the endpoints of this portion. We also
set R, ={z€eC:0<Re(z) <a,0<Im(z) <b'}, for any positive a. We then
look at the portion of the ray o~ inside the image of the strip X, and we trace it
back to the point of f where it started. This portion of &~, a segment of a™, a
segment of f and its vertical mirror bound a region which is the image of R,
under ¥, as shown in Figure 14.

B o+
At o,
oy at
ot
Figure 14

Exactly as before, we look at the map ¥ : R, — S as « tends to infinity, and
we observe that it cannot be injective for all values of a. So we are back to the
three cases of Figure 14, but now, in all cases, we get that ray o™ comes back to
[ in the positive direction. O

The second lemma we need is the following.
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LeMMA 19. The closure of o is

(18) a= {p e S: H{t,} = Rwith hm ty = +o0 and lim ¥(t,) = p}.

n— oo

PRrOOF. Denote by A the set on the right-hand side of (18). Clearly, 4 < &. The
set A is closed. In fact, suppose that p = lim p,, p, € A. Then, for each n, there
n— oo

is a real number 7, > n such that the distance between W(z,) and p, is less
than 1/n. But then 11m Y(t,) = p and llm ty = +oo. It then suffices to show

that o = 4. This follows immediately from the preceding lemma. In fact if p
is any point in o, the lemma tells us that there exists a sequence of points

pn = Y(1,), lying in the vertical w-geodesic through p, such that hm Pn=7p
and lim 7, = +o0. O
n—oo

The third lemma is the following.
LemMmA 20. If p € a is a regular point, then & contains the trajectory through p.

PRrROOEF. Let y be the trajectory through p. Consider an arbitrary point ¢ € y and
denote by a the w-length of the closed subinterval of y going from p to ¢. This
subinterval is contained in the middle interval of a small rectangle 7" = S swept
out by segments of trajectories (Figure 15). By Lemma 19, there is a sequence
{t,} = R such that lim ¢, = 400 and hm Y(t,) = p. But then, possibly after

n—oo
replacing {t,} with a subsequence, either hm Y(t, +a)=qor 11m W(ty—a) =q,
proving that g € a. |
T
p Y q
U(t,) U(t, + a)
Figure 15

We are now ready to prove Proposition 17. We keep the notation of the pre-
ceding lemmas. Let p be a point in «. We are going to prove that there is a rect-
angle 7' < & swept out by trajectories and having as one side a subinterval of «
centered at p (Figure 16). Let § be a segment of a vertical w-geodesic starting at

8 T
q
r

« p

Figure 16
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p and not containing critical points. If the vertical interval £ is entirely contained
in &, we are done, since by Lemma 20 all trajectories passing through a point of 8
are entirely contained in a.

If the vertical interval f is not entirely contained in &, let ¢ be a point of f
which is not in &. Since & is closed, there is a largest subinterval of § containing
¢ and not contained in &. Let r be the endpoint of this interval lying between p
and ¢, and s the other endpoint. Since r € &, the trajectory y through r, can not be
closed, otherwise o would be closed too. By Lemma 18, y crosses the interval
(r,s). This is absurd, since y = & by Lemma 20.

4. HOLOMORPHIC JENKINS-STREBEL DIFFERENTIALS

Throughout this section, S will denote a compact Riemann surface. A holo-
morphic quadratic differential on a Riemann surface is called a holomorphic
Jenkins-Strebel differential if all its non-critical trajectories are closed. Suppose
a holomorphic Jenkins-Strebel differential @ is given on a Riemann surface
S = S\{y1,..., ym} of finite type with x(S) < 0. There are finitely many critical
trajectories of w, each joining a pair of critical points of w. Their union forms a
graph I which is called the critical graph of w. Let

S\['=Q;uU---uQy

be the decomposition of its complement into connected components. The as-
sumption that all trajectories are closed, together with Lemma 16, tells us that
each €Q; is a maximal annular region. Moreover, if Q = €; is one of these regions
and if

7, —-Q
is a biholomorphic map from a standard annulus 7, then

(19) (o) = (iarlogz)2

27l

where a is the w-length of the trajectories in Q. We recall that the modulus of Q is
given by

1
M(Q) = ~5 logr,
while the w-area is given by

AQ) =a*M(Q).

Before stating the main theorem of this section, we need a remark and a couple of
definitions.
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REMARK 21. For a quadratic differential on an annulus Q, to be of the form
(19) is an intrinsic property, in the sense that it does not depend on the choice of
the 1somorph1sm f between T, and Q. In fact, if 4 is any automorphism of 7;,
then /*(d logz)* = (dlogz)?%; this follows immediately from the observation that
any such automorphism is of the form z — ¢z or z — cr/z, where ¢ is a constant
of absolute value 1. There are several ways of proving the latter assertion; here is
a possible argument. We write C, to indicate the circle of radius p centered at the
origin of C. For any given ¢, if  is small enough, /({z e C:r+0 < |z] < 1 —6})
contains the closed annulus {z € C: r+¢ < |z| < | — &}, as this is compact and /
is onto. Moreover, i({z€ C:r+0 < |z| < 1 —}) is bounded by the images of
the circles C,.5 and Cj_g, since & is injective. The image of one of these two
circles is on the outside of {ze C:r+e<|z] <1 —¢}, and the other on the
inside; which side they are on does not depend on ¢, again since 4 is injective.
A consequence is that the function |h| extends continuously to the closure of
T,, and takes on the value 1 on its outer boundary and the value 7> on the inner
one, or conversely. In the ﬁrst case we set g( ) = z, and in the second g(z) = r/z.
The function log|h|* — log|g|* is harmonic in the interior of T}, and vanishes at its
boundary; therefore, by the maximum principle, it vanishes identically. In other
words, |A/g| is identically equal to 1, and hence /1/g is a constant of absolute
value 1, which is exactly what had to be proved.

DEFINITION 22. Let S be a Riemann surface. An admissible system of curves
on S is a collection (yy,...,y;) of simple closed curves which are mutually dis-
Joint, homotopically non-trivial, and such that y; is not freely homotopic to y; if
i#j.

The straightforward proof of following topological lemma is left to the reader.

LEMMA 23. Let S = S\{y1,...,ym} be a Riemann surface of finite type and of

genus g. Assume that y(S) < 0. Let (y,,...,7:) be an admissible system of curves
on S; then k < 3g — 3 + m, and one can find simple closed curves y_y,...,73, 3m
such that (yy,...,73,_34m) is admissible.

DEFINITION 24. Given an admissible system of curves (y;,...,7,) on a
Riemann surface S, a collection (Q,..., Q) of disjoint subsets of S is said to
be a system of annular regions of type (y;,...,y;) if Q; is either the empty set or
an annular region with the same homotopy type as y;, fori=1,... k.

The result we want to prove in this section is the following.

THEOREM 25. Let S be Riemann surface of finite type with y(S) < 0. Let
(71, ---, %) be an admissible system of curves on S and let ay, ..., a; be positive
real numbers. Then there exists a unique admissible Jenkins-Strebel differential «
having the following properties.

1) If T is the critical graph of o, then S\I' = Qq U - -+ U Qy, where (Q,...,Q) is
a system of annular regions of type (1., Vi)-
i) If'Q; is not empty, it is swept out by trajectories whose w-length is a;.
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Before turning to the proof of this theorem we need to establish a number of
lemmas. In particular, the next three lemmas will provide the essential tool in
proving the uniqueness part of Theorem 25.

LEMMA 26. Let S = S\{y1,..., ym} be a Riemann surface of finite type and of
genus g. Assume y(S) < 0. Let w be an admissible differential on S. Let o be a
closed trajectory of w and let y be a closed curve on S which is freely homotopic
to o. Then l,(y) = 1,(), and equality holds if and only if one of the following two
cases occurs. Either vy is a trajectory belonging to the maximal annular domain Q
defined by w, or else it coincides with one of the two boundary components of Q. In
particular, in the second case, y is a cycle inside the critical graph of Q.

PrOOF. We may of course assume that y is different from «. First of all we re-
mark that o is not homotopically trivial for, if this were the case, « would bound
a disk contained in S, by Lemma 13, which would contradict the Gauss-Bonnet
formula (13). We can then consider the annular covering = : S, — S attached to
o. We may identify S, with an annulus centered at the origin in the complex
plane. We set o’ = n*(w), and denote by «’, y’ the unique closed liftings of o
and y to S,. Clearly, @’ is a holomorphic Jenkins-Strebel differential and o' is a
closed trajectory for it. We also recall that o’ and y’ map isomorphically to « and
y via 7. Pick two concentric sub-annuli 7" and 7’ of S, with the property that T
contains both o’ and y’, the closure of T is contained in 7", and the closure of T’
is contained in S,. By compactness, only a finite number of zeros of @’ are con-
tained in the closure of 7”7, and in fact we may assume that they are all contained
in 7’. We let ¢ > 0 be the w’-distance between the boundaries of 7" and 7'. Let B
be the subset of o’ consisting of all points 5 such that one of the two vertical geo-
desic rays beginning at b hits a zero of w’ before leaving T’; clearly, B is finite.
Let a be a point of '\ B, and let § be one of the vertical geodesic rays starting at
a. We observe that ff does not meet o’ again before leaving 7’. Suppose in fact
that it did; let @’ be the first point of intersection between 8 and o', and ' the
part of f# between a and a’. The curve o’ bounds a region D in the complex plane
which is biholomorphic to a disk. If f/ = D, then 8’ divides D in two connected
components. One of these contains the bounded component of the complement
of T in C. The other component is a region contained in 7', bounded by geo-
desic segments, and isomorphic to a disk. This is impossible, again by the Gauss-
Bonnet formula (13). If S/ n D = 0, then 8’ and a segment of o’ between a and a’
bound a disk, which is again impossible.

Let 7 be any segment of length strictly less than ¢ contained in o\ B. Draw all
the vertical geodesic segments of given length J starting at points of 7 and lying
on a given side of «’. If § is small these segments sweep out a subset Rs = T". This
subset is the locally isometric image of a euclidean rectangle, and is actually a
homeomorphic image. In fact, the only way for this not to happen would be if
one of the vertical geodesic rays starting on I did meet I, and hence o', again
without leaving 7’. But we already excluded this. Since 7" has finite «w’-area,
the rectangle R; cannot stay inside 7" for every J > 0. Let 6’ be the first value
of ¢ for which R; ¢ T'. Since the length of the top side of Ry is strictly less
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than ¢, that is, strictly less than the distance between the boundaries of 7' and 7,
this side of Ry is entirely outside the closure of 7. If 6 is sufficiently close to &',
but smaller than it, then Ry is contained in 7", but its top side does not meet the
closure of T. Now we perform the same construction on the other side of «’. The
end result is a rectangle R entirely contained in 7’ whose top and bottom sides do
not intersect the closure of T and whose intersection with o’ is 1. Every one of the
vertical segments spanning R has one endpoint in each of the two components
of the complement of T, and hence must meet y’. This situation is depicted in
Figure 17.

Tl
71
Iar & L
R
a/
I

Figure 17

Elementary euclidean geometry then says that the portion of " intercepted by
R is longer than 7, and strictly so unless it is a connected piece of trajectory. Since
all this can be done everywhere in o'\ B, and B is finite, the conclusion is that

lo(7) = 1o () = L (2) = L(),

and that to have equality in the above 7’ must be the union of segments of trajec-
tories. The first statement of the lemma is proved. Now assume that /,,(y) = /(o).
As we just observed, y’ must necessarily be a union of pieces of trajectories. A
first consequence is that it cannot intersect o', since the latter does not contain
zeros of w’. Since o’ divides T in two annular subregions, y’ is contained in one
of them, which we denote by T”. One of the boundary components of T is a; we
denote by 7 the other one. What we must show is that, for any a € o', the vertical
ray in 7" issuing from a meets y’. We have seen that this is the case if a ¢ B. As-
sume then that @« € B. Let I be a small interval centered at ¢ and containing no
other point of B. Draw the vertical segments 5, and 5, connecting the endpoints
of I to points ¢; and ¢, of . The portion of 7" bounded by I, f,, ,, and one of
the two arcs into which ¢; and ¢, divide # is topologically a disk. We denote by
»" the portion of y’ lying inside this region. Notice that the w’-length of y” equals
the one of 1. Moreover, y” is made up of at most two pieces of trajectories, meet-
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ing at a point y. The region D bounded by I, y” and the two pieces of 5, and f3,
connecting them is also a disk, and is bounded by geodesic arcs. Moreover, I and
»” meet ff; and f, at right angles.

Figure 18

We denote by 3 and u the interior angle and the order of vanishing of @’ at y,
and by v the cumulated order of zero of ' in the interior of D. We then apply
(13) again to D, and get 27(v + 2) = 4(27 — 2%) + (27 — (u + 2)9), that is

2ny =21 — (u+2)8.

Since 9 > 0, this says that @’ has no zeros in the interior of D. Thus the vertical
geodesic ray based at ¢ and directed towards the interior of D reaches y. In con-
clusion, two cases can occur. Either g = 0 and 7’ is an unbroken trajectory at y,
or y is one of the zeros of @’ lying on the boundary of the maximal annular do-
main Q' determined by o’ and, near y, y’ consists of two pieces of the boundary
of Q'. The lemma follows by observing that 7 induces an isomorphism between Q

and Q'. O
Given an admissible system of curves (y;,...,7,) on a Riemann surface of fi-

nite type, we will denote by .«/(y,,...,7;) the set of all systems of annular regions
(Qp,...,Q) of type (y;,-..,7). Given a system of annular regions (Qj, ..., )
of type (y;,...,7;) and positive numbers aj, . .., a, an important invariant is the
quantity

k
(20) S @ M(©Q).

=1

We recall its significance. The quantity a>M(T,) is the w-area of the standard
annulus T}, where o = (a/27i)*(d logz)*.
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LEMMA 27. Let (yy,...,7) be an admissible system of curves. Let ai, ..., a;x be
positive numbers. Set
k
N = sup > a; ML)

Then there exists (Qi,...,Q) € L (yy,..., ) with

k
N=> aM(Q).
i=1

PrOOF. Choose a sequence {(Q7,...,€Q;)} such that
k
. 2 ny __
nlglalO ,-E=1 a;M(Q') = N.

Recall that M(Q]") < M(y;) < 40, by Lemma 8. Possibly passing to a subse-
quence, we may then assume that M; = lim M (Q/) exists for each i. If M; =0,
we set Q; = (). Again passing to a subsequeice, Lemma 10 tells us that {Q/'} con-
verges to an annular region Q; of type y; whenever M; > 0, and that M(Q;) = M,.
The annular regions €; are disjoint because the regions Qf, ..., are disjoint
for each n. O

We are now in a position to prove the results which are at the basis of the
uniqueness statement in Strebel’s theorem.

LEMMA 28. Let w be an admissible, holomorphic Jenkins-Strebel differential on a
Riemann surface S = S\{p1, ..., pm} of finite type. Assume y(S) < 0. Let T be the
critical graph of w and let

§\F:§21u---qu

be the decomposition of its complement into annular regions. Let a; be the w-length

of a horizontal trajectory in Q;, for i =1,... k. Let (Ey,...,Z) be a system of
annular regions with the same homotopy type as (Qi,...,8y). Then

k k
(21) Y aM(E) <Y alM(Q).

i1 =1

Moreover, equality holds in (21) if and only if E; = Q; for all i.

PrOOF. For each i, we choose an isomorphisms z; between E; and a standard
annulus 7, = {ze C:r; < |z| < 1}. We also set E=J", E;, and let z be the
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complex-valued function on E which restricts to z; on E; for each i. On E, we may
then write @ = @dz*. For any fixed i = 1,...,k, let r be such that r; < r < 1, and
let C! be the circle |z;| = r in E;. From Lemma 26 it follows that

(22) w=1(C) = [ Vi

Let a be the function on E whose restriction to =; is @;. Using the previous in-
equality, and writing x and y for the real and imaginary parts of z, we get

Za M(‘—‘l Zzn/ 2dr /27'E| |\/‘?dX/\dy

Using the Schwarz inequality we get

(23) (Zlale(El))2 < (/E (%M)zdx/\dy> . (/E|go|dx/\dy>
(3w

i=1

[1]

IA

))- 4u(S)

k

:(ZazME) (ZazM )

i=1

proving the first part of the lemma. If equality holds in (21), then it must hold in
(23), and in (22) for almost all r. But then, by Lemma 26, C! is a trajectory in ;.
This implies that E; < Q;, so that M (E;) < M(€;). The equality in (21) now im-
plies that E; = Q; for all i. O

We now want to study how the basic invariant (20) changes under an ad-
missible diffeomorphism. Recall that, given a diffeomorphism F: S — S, the
Beltrami differential y is the vector-valued (0, 1)-form locally defined by

and that F is said to be admissible if |up| < 1. If x is a Beltrami differential with
local expression v— ® dz and w is a quadratic differential with local expression
hdz?, contraction glves a tensor wy with local express1on hvdzdz. We also let ||
be the w-metric, that is, the tensor with local expression |h|dz dz, and we recall
that the area form dAw associated to the w-metric can be Written locally as
|h| dx A dy.
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LEMMA 29. Let S be a Riemann surface. Let F : S — S be an admissible diffeo-
morphism and let u = uy be the associated Beltrami differential. Let (y,,...,7;) be
an admissible system of curves on S. Let (Q,...,Qr) € A (y1,..., 7). Let w be
the holomorphic differential defined in the region Q = QU --- L Q. and equal to
(a;/2mi)* (dog z;)* in Q. Then

(24) ZazM (/Ugw )(ZazM ).

el

Before proving the lemma it is useful to make a few remarks. First of all, we
may notice that the absolute value of x is a C* function, and so is wu/|w|. The
second remark is that, when F is biholomorphic, then # = 0 and (24) is an iden-
tity. Finally, as an example, suppose that i = 1, that Q = Q, is the image of an
injective holomorphic map f : R — S, where R is the rectangle R = {z =x + iy :
0<x<a0<y<l1}, and that f*(w) = dz>. Also suppose that the diffeomor-
phism F : Q — F(Q) lifts to the affine map G: R — G(R) < C given by G(z) =
z+ kZ with k < 1. Then (24) is nothing but the intuitively clear relation

1 +k
<

a= Aw(F(Q))

PrROOF OF LEMMA 29. We set 5, = F(Q;), i = 1,...,n. For each i we fix, once
and for all, isomorphisms z; : Q; — T}, and w; : E; — T, where, as usual, 7, de-
notes the standard annulus {z € C: r < |z| < 1}. We also set Q = [ J;_, ©; and let
z be the complex-valued function on Q which restricts to z; on ; for each i. We
similarly define Z and w. By abuse of notation we indicate by F. and F: the
correspondlng derlvatlves of wo F. The restriction of the differential w to ; is
(a;/2mi)*(d log Z,) In more compact notation, we can say that the restriction of
w to Qis (a/2ni)*(dlogz)?, where a stands for the function on Q which restricts
to the constant a; on €; for each i. We put on E the hermitian metric

Notice that, in this metric, the length of any simple, closed, homotopically non-
trivial curve in Z; is at least 1. Thus, if we denote by C; the circle |z;| = r in Q;, we
have that

1 <L,(F(C))) = /’_(ozoF)

On the other hand,

op  ZF:
lo|  zF.°
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2nM(Qi):[1%dr£[1/{(aoF)
_/Q,.(OCOF) |I;|

Recalling that the Jacobian determinant of F is J =

Hence

1
F.dz + F:dz|-dr
r

1+ﬁ

F|* -

dx ndy.

F:|%, we get

ZazM / « (oo )\/j'l—i-—‘ IF| ~dx Ady.

27|z|

Using Schwarz’s inequality we then get

(ZklaizMi(Qi))z < (/Qaz(ocoF)Zde/\dy)
.(/g)(znat'Z')zl(lﬂ:cj/L/lllczol)l d“dy)

~(yame) ([ el ) g
i=1

ue 1=yl

In the proof of Strebel’s theorem, we will use a corollary of the preceding
lemma. If in addition to the assumptions of the lemma we also assume that F' is
homotopically trivial and that (Q;,..., Q) and (ay,...,a;) are as in the state-
ment of Lemma 27, we immediately get the following result.

COROLLARY 30. Under the assumptions of the preceding lemma and assuming
that

(1) F is isotopic to the identity,
(2) (Q4,...,Q) and (ay,. .. ,a;) are as in the statement of Lemma 27,

then:

k 2

1
S @MQ) < / %%_
i1 ue 1=yl

PrROOF OF THEOREM 25. Using Lemma 27, choose a system of annular regions
(Q1,...,Q) of type (y,...,y;) maximizing the quantity El LA M), If
Q; # (Z), choose an isomorphism f; from Q; to a standard annulus 7,,. Define a
(discontinuous) quadratic differential " on S by setting it equal to

(e
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on Q; and to zero on S\|J, Q. If we could show that o’ coincides almost
everywhere with 2 holomorphic quadratlc differential w, we would conclude
that v = @’ in U 1 Q; and that S\ U Q; has measure zero. From Proposition
17 it would then follow that the trajectorles of w are either closed or critical, and
the theorem would be proved. The almost everywhere holomorphicity of a)’ isa
local question. Let U be an arbitrary coordinate neighborhood in S and write
' = fdz* in U, with f € L'(U). We shall prove that f: = 0 in the sense of dis-
tributions. Weyl’s lemma, which asserts that a harmonic distribution is neces-
sarily C*, then shows that f coincides almost everywhere with a holomorphic
function. We must prove that

(25) /th-de/\dyzo

for every C® function /i with compact support in U. For any such function, we
define an admissible homotopically trivial diffeomorphism F : S — S in the fol-
lowing way. Fix a small real number ¢, set F(z) = z + ¢h(z) for z € U, and extend
F to all of S by setting it equal to the identity on S\ U. For sufficiently small ¢, F
is an admissible diffeomorphism. The Beltrami differential associated to F has
compact support contained in U, and is given by

eh; ﬁ@dz
K= e, oz

A straightforward computation yields
|1+ op/|o| |”
1= |u?

where, as usual, dA4,, stands for the area form associated to the w-metric. From
Corollary 30 it follows that

dAo = (|f]+2Re(eh=f) + O(c?)) dx A dy,

ZazM /dA +/(Re(eh £) + O(2)) dx A dy

k
Z a?M / Re(eh:f) dx ndy + O(e?).
i=1 U
We conclude that
Re(/ shz—fdx/\dy) >0,
U

for every ¢ and every /4 with compact support in U, proving (25) and the existence
part of the theorem.

The uniqueness of w is a direct consequence of Lemma 28. Suppose in fact
that ¢ is another holomorphic Jenkins-Strebel differential satisfying i) and ii),
let T be its critical graph, and S\I" = Q; U - - - U Q; the decomposition of its com-
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plement in annular regions. Lemma 28 implies that Q; = Q; for every i. Thus w
and @ have the same critical graph, and hence in particular the same zeroes. It
follows that w and @ are proportional and, since they have the same critical tra-
jectories, that the constant of proportionality is a positive real number. But then
w and @ must be equal, since they have the same trajectories, and the w-length of
any one of these is equal to the @-length, by assumption. O

5. JENKINS-STREBEL DIFFERENTIALS WITH DOUBLE POLES

In this section we are going to prove the theorem we announced in the introduc-
tion. We must first introduce the notion of admissible meromorphic quadratic dif-
ferential on a Riemann surface of finite type S = S\{y1,..., yn}. Let us fix a
meromorphic quadratic differential w on S. The first requirement for w to be
admissible is that it should extend to a meromorphic quadratic differential on S
having at worst simple poles at the points p;. The second is that the only poles of
w on S should be second order poles with negative quadratic residues. To explain
this terminology, let p be a pole of order two for w and let z be a local coordinate
centered at p. A local expression for w is (h dz/z)z, where /1 is holomorphic and
¢ = h(0) is not zero. Write 1 = ¢(1 + zh;), and let k be a primitive of /;. We then
have

h% = c(dlogz + hy dz) = cd(logz + k) = cdlog(ze¥).

Thus, in terms of the local coordinate { = ze*, a local expression for w is
A(dlogl)?.

We shall say that { a distinguished parameter at p; it is unique up to multiplica-
tion by non-zero constants. Notice that the constant ¢ is intrinsically attached to
o and does not depend on the choice of coordinate. We will call it the quadratic
residue of w at p; in fact, ¢ is nothing but the residue of \/w at this point.

DEFINITION 31. Let S = S\{y1,..., ¥} be a Riemann surface of finite type. A
meromorphic quadratic differential «w on S is said to be admissible if it satisfies
the following conditions:

(1) w extends to a meromorphic quadratic differentials to S having at worst sim-
ple poles at the points y;;
(2) the only poles of w in S are double poles with negative residue.

The geometrical implication of the negativity of the residue is the following.
The local expression of an admissible meromorphic quadratic differential @
near any one of its double poles must be of the form (17), where ( is a suitable
local coordinate and « is a positive real number. The geodesics of w near a pole
p are particularly easy to describe. Consider the neighborhood U of p given by
{|{| < ¢}, and set U = U\{p}. The universal covering of U can be identified with
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the half-plane H = {w € C: Im(w) > —(a/2n)loge}, and the universal covering
map 7 with

W — e(Zni/u)w _ C

One checks immediately that #*(w) = dw2: Thus 7 is a local isometry between H,
endowed with the euclidean metric, and U, endowed with the w-metric. In fact,
U is biholomorphic and isometric to the half-infinite cylinder which one obtains
by taking the quotient of H modulo translations by multiples of a. This has sev-
eral interesting consequences. The first is that p lies at infinite distance from all
other points of S; in particular, no geodesic reaches it. The w-geodesics in U are
the images of pieces of straight line in H. The horizontal geodesics are the
images of the horizontal lines, and hence are just the circles |{| = constant. A
consequence is that any trajectory of w is contained in a compact subset of
S\{poles of w}. The vertical geodesics in U are the radii arg({) = constant, while
the remaining geodesics are the logarithmic spirals in U wrapping around p.

DErFINITION 32. Let S be a Riemann surface of finite type. An admissible mer-
omorphic quadratic differential on S is said to be a meromorphic Jenkins-Strebel
differential if its non-critical trajectories are closed.

We are now in a position to state and prove the result we announced in the
introduction.

THEOREM 33. Let S = S\{y1,..., ym} be a Riemann surface of finite type and of
genus g. Let x1,...,x, € S. Assume that y(S\{x1,...,x,}) <O0. Let a,...a, be
positive real numbers. Then there exists a unique meromorphic Jenkins-Strebel qua-
dratic differential w on S having the following properties.

1) w is holomorphic on S\{x\,...,x,} and has poles of order two at the points x;,
with residues (a;/2m)*, i=1,...,n.

it) If T is the critical graph of w, then S\T is the union of n disjoint disks
A, ... AL withx; e Ajyi=1,...,n.

Given a meromorphic Jenkins-Strebel differential w, the vertices of its critical graph
T are its critical points. These are the zeros and the simple poles of w in S. More-
over, a vertex p of I has valency v(= 1) if and only if v = ord,w — 2. Finally
ord,,w > 1, for i =1,...,m and the only vertices of valency <2 are among the
pOInts yi, ..., Ym-

Y2

n
Ys

Figure 19
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Before proving this theorem we need to recall the construction of the double
of a Riemann surface with boundary. A Riemann surface with boundary is a
connected, 2-dimensional manifold R with boundary 0R, together with a struc-
ture of Riemann surface on the open set R\0R and a family % of homeomor-
phisms ¢ : U — V, where U is an open subset of R whose intersection with 0R
is non-empty and V' is an open subset of the closed upper half plane
{z € C: Im(z) > 0}, with the following properties.

1) (UndR)=p(U)nRforany ¢p: U — Vin Z.
ii) The domains of the homeomorphisms in .7 cover dR.
iii) If ¢ is any element of #, then the restriction of ¢ to U\(U n dR) is holo-
morphic.
iv) The family % is maximal with respect to the above properties.

It should be remarked that property i) is actually redundant, since it is a conse-
quence of the invariance of domain theorem. It is also helpful to notice that, if ¢
and ¢’ are two charts in .7, then the composition ¢’ o ¢! is the restriction of a
holomorphic function on an open subset of C, and hence is real analytic on the
real axis; this will follow from the construction of the double below.

The conjugate (R*,0R*) of (R, JR) is the surface whose underlying topologi-
cal space is the same as the one of (R, dR), whose charts in R*\0R* are the com-
plex conjugates of the charts of R\@R, and whose charts at boundary points are
of the form —@, where ¢ varies in . The identity gives an antiholomorphic map
o:(R,0R) — (R*,0R"). X

The double of R is the surface (without boundary) R obtained from the dis-
joint union of R and R* by identifying dR and 0R* via g. There is a natural struc-
ture of Riemann surface on R which agrees with the given ones on R\J0R and
R*\OR*. One can construct charts for this structure at points p € R = 0R* as
follows. Let ¢ : U — V be an element of & such that p € U. Then, writing V'*
for the image of ¥ under complex conjugation, a chart for R at p is the homeo-
morphism ¢ : Uua(U) — V' u V* which agrees with ¢ on U and with ¢ on
a(U). The only thing that has to be shown is that, if ¢’ : U' — V"’ is another
chart such that p € U’ then ¢’ o ¢~ is holomorphic. This is obvious everywhere,
except along the real axis. We may then appeal to the following well-known fact.
Let f be a continuous complex-valued function defined on an open subset 4 of
the complex plane; if f is holomorphic on 4\ (4 N R), then it is holomorphic on
all of A. This can be proved, for instance, by checking that Cauchy’s theorem
holds for f. X

The map ¢ extends to an involutive antiholomorphic automorphism 7 of R
whose fixed point set is IR = dR*.

PrOOF OoF THEOREM 33. For each i=1,...,n, let y; be a small simple loop
around x;, and let v; be a non-zero tangent vector in 7, (S). We denote by

L (p,...,7,) the set of n-tuples Q,...,Q, of disjoint punctured disks of type
(P1se sy 0 S\{x1,...,x,}. Set
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N = ‘ ~sup. (Xn:aiszf(Qi))

Qs ) € (71,00 70) =1

Since 2g — 2 4+ n > 0, the n-pointed surface (S, x;...,x,) is not the twice punc-
tured sphere, and hence N < +o0. Itis also evident that N # —o0. Using Lemma
12, and proceeding exactly as in the proof of Lemma 27, we find (Q,...,Q,) €
M(yl, ...,7,) such that

S a2, (€)=
i=1

In particular, the ©; are all non-empty. We denote by Q; the disk Q; U {x;}, and
pick an isomorphism f; : Q; — A,, with fi(x;) = 0 and |v;(f;)| = 1, so that the re-
duced modulus of Q; is log r;/27. As in the proof of Theorem 25, we will be done
if we can show that the complement of | J;_, ©; has measure zero, and that there
is a holomorphic quadratic differential on S\{xi,...,x,} which agrees with

(26) o= 17 ((5%) (@iog2)?)

on Qi, for i=1,...,n. We may assume that, for each i, the cycle y; Q; is the
preimage under f; of a circle of radius r < min{rl, .., ry} centered at the origin
of A,,, and we let B; = Q; denote the preimage, under Ji, of the open disk of
radius 7 in A, so that 0B; = y;. Set B=J", B;, y =, 7;, and denote by R

the double of the Riemann surface with boundary R = S\B. Then, with a slight
abuse of notation, we can write R = R! Uy U R?, where R! and R are the inte-
riors of R and R*, respectively, and dR' = 6R2 =y (see Figure 20). The anti-
holomorphlc 1nvolut10n 7 interchanges R! and R?, and leaves y fixed. We can
view Q;\ B; as a subset of R, and we define the annular region €; < R by setting

Qi = (Q\B) LT Q\B), i=1,....n

Q~B;

(el

([

Figure 20

Clearly, (Qi,...,Q,) is a system of annular regions in R of type (y,...,7,).
Since R is a compact Riemann surface of genus 2g +n — 1 > 1, Theorem 25
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applies; we denote by ¢ the holomorphic Jenkins-Strebel differential associated to

the admissible system (y,,...,7,) and to the constants (ay, ..., a,). The trajectory
structure of ¢ defines a system of annular regions (Zy,...,&,) of type (y,...,7,)
such that

R\{critical graph of ¢} = U B;.
i=1

Moreover, (Z,...,5,) maximizes the quantity > a?M(Q;) among all
(Q1,..., Q%) € A(y,...,7,). In particular,

(27) ian(E,-) > ian(Q,)
i1 i1

Observe that, since 7(y;) = 7;, the uniqueness part of Theorem 25 implies that
@ = (). In particular we must have 7(Z;) = E; for i = 1,...,n. We claim that
7; is contained in E;. To prove this, we look at the annular covering  : R, — R.
Lemma 6 and Corollary 7 / say that y; has a unique closed lifting 7,, that there is
a unique annular region Z; in R which is mapped isomorphically to E; by #,
and that E; has the same homotopy type as j,.

Since 7 leaves y; pointwise fixed, it lifts to an involutory antiholomorphic auto-
morphism 7 : R — R ~carrying E; to itself. The surface Ry is an annulus, and 7;
cuts it into two sub annuh R1 and Rf which are interchanged by 7. If a boundary
component of E; intersects yl, it is carried to itself by 7, since the points of inter-
section are fixed by 7. If instead a boundary component of E; does not intersect
yl, the two boundary components are interchanged by 7. Hence one of them lies
in R1 and the other in R2 so E; contains ;. In conclusion, it suffices to exclude
the case when each boundary components of E; is carried to itself by 7, and cuts
7;. Suppose this case occurs, and let o« be one of the boundary components. Then
the portion of o lying between two successive points of intersection with y,, which
we call @, and one of the two arcs of y; bounded by these two points, which we
call b, bound a region D homeomorphic to a disk (see Figure 21). Since b is left

Figure 21



154 E. ARBARELLO AND M. CORNALBA

pointwise fixed by 7, D U 7(D) is a disk bounded by a and 7(«). It follows that « is
equal to the union of @ and 7(a) and is homotopically trivial. But this contradicts
the fact that o is homotopic to ;.

We have seen that y; is contained in E;. Furthermore, we can find an isomor-
phism between E; and a standard annulus under which the quadratic differential
¢ corresponds to (a;/2xi)?(dlogz)?. We need the following lemma.

LEMMA 34. Let T = Ty = C be a standard annulus. Let y = T be a homotopi-
cally non-trivial, simple closed curve. Let t: T — T be an antiholomorphic involu-
tion which is the identity on y, and assume that t*(dlogz)* = (dlogZz). Then
©(z) = s/Z, and y is the circle of radius /s centered at the origin. Thus, if T' and
T? are the connected components of T\y, then M(T") = M(T?) and M(T) =
M(T") + M(T?).

PRrROOF. The condition that 7 carries (d log z)2 to its conjugate translates into

dlogt +610g2
0z T oz
Thus t(z) equals either ¢Z or ¢/Z, where ¢ is a constant. The condition that
7=t~ ! implies that |¢| = 1 in the first case, and that c is real in the second. In
the first case, however, the set of fixed points is contained in the line 2 arg(z) =
arg(c), and hence cannot contain y. On the other hand, in the second case, ¢
must equal +s if 7 is to carry 7T to itself. Moreover, if ¢ were equal to —s, T would
have no fixed points. The conclusion is that 7(z) = s/Z and that y is the circle of
radius /s centered at the origin. The remaining assertions of the lemma follow at
once. O

Set 2! = E;n R'. Lemma 34 and formula (27) imply that

n _ 1 n _ 1 n . n
(28) > a?M(E]) = EZan(:i) > EZa,?M(Qi) = " a?M(Q\B)).
i=1 i=1 i=1 i=1

Now let Z; be the punctured disk Z! U (B;\{x,}) in S. From Lemma 5 we get

C logr
M, (5) > M(E +—=—,
(i) (8;)+ =
while
L 1
M, () = M(QA\B;) + %,

hence (28) gives

n n
Zaiszi(Ei) = ZaizMUf(Qi)'
i=1 i=1
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By the very choice of (y,...,€,), this must be an equality, and therefore (28)
and (27) must also be equalities. If follows that Z; = Q; for all i, by Lemma 28.
But then the complement of [ J;_, ©; in S\{x1,...,x,} is equal to the complement
of U, Ein R in R! = S\ /L, B;, and hence has measure zero. The restrictions
to Eil = Q,;\B; of ¢ and of the differential w; defined by (26) are both of the form
(a;/2mi)*(dlogz)* and hence, in the light of Remark 21, are equal. The differen-
tial w whose existence is asserted by the theorem can thus be constructed by set-
ting it equal to ¢ on R! = S\B and to w; on Q;, fori=1,...,n.

The existence part of the theorem is now proved. As for uniqueness, recall that
in the proof of Theorem 25 this followed directly from Lemma 28. In the case at
hand, the same argument applies, provided we replace Lemma 28 with the fol-
lowing analogue.

LeEmMMA 35. Let (S,x1,...,x,) be an n-pointed Riemann surface of finite type
with y(S\{x1,...,x,}) < 0. Let v; € Ty, (S), i = 1,...,n, be non-zero tangent vec-
tors. Let w be a meromorphic Jenkins-Strebel differential on S, holomorphic on
S\{x1,...,x,} and with double poles at the x;. Let T be the critical graph of w,

and assume that its complement is the disjoint union of n disks Q,...,Q,, with
x; € Q; for every i. Set Q; = Q;\{x;}, and let a; be the w-length of a horizontal tra-
Jectory in Q;, fori =1,...,n. Let Zy,...,E, be disjoint disks in S such that x; € Z;

for every i, and set E; = E\{x;}. Then
(29) ZaleLz(El) = Zazsz,<Ql)
-1 i1

Moreover, equality holds in (29) if and only if E; = Q; for all i.

We leave to the reader the simple proof of this lemma, which can be de-
duced from Lemma 28, again considering the double of a suitable Riemann
surface. |

One way to rephrase Theorem 33 is the following.

THEOREM 36. Let S be a compact Riemann surface. Let P be a finite set and
x: P — S an injective map. Assume that y(S\x(P)) < 0. Let h: P — Rxo be
a non-zero function. Write h=1(0) = {p1,..., pm} and P\h=1(0) = {q1,...,q.}.
Set Y ={x(p1),...,x(pm)} and X, ={x(q1),...,x(qn)}. Then there exists a
unique meromorphic Jenkins-Strebel differential w on S\'Y which is holomorphic
in S\x(P) and has a double pole at x(q;) with quadratic residue equal to — (@)2,
foreachi=1,...,n Inparticular, w is meromorphic in S and has at worst simple
poles at the points of Y. Finally, let T be the critical graph of w. The vertices of
I" of valency v > 3 are the zeros of w of order v — 2. The bivalent and univalent
vertices of I are among the points of Y. A univalent vertex corresponds to a simple
pole of w. A bivalent vertex is a point of Y which is regular for « and where w does
not vanish. The points of X, are in one-to-one correspondence with the boundary
components of T.
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