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Abstract. — The nucleation and/or growth of cracks in elastic-brittle solids has been recently de-

scribed in [14] in terms of a special class of measures and with a variational technique requiring the
minimization of a certain energy over classes of bodies. Here, the physical foundations of the theory

and the basic ideas leading to it are described and commented further on. A view on certain possible
developments and shifts toward di¤erent settings is also given. This article has expository character.
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When the adjective ‘variational’ is attributed to models of some physical phe-
nomena, impulsively one may think that the physical situation under scrutiny is
conservative. Variational means, in fact, that one is managing some functional,
essentially an energy, and is asking that it attains its minimum on some function
space. The situation is well known and is typical, for example, of the determina-
tion of ground states of elastic bodies under prescribed boundary conditions. The
energy is defined on the reference place B occupied by the body in the ambient
space, a place fixed once and for all. Its minimum is required to be attained over
a class of one-to-one orientation preserving maps.

Variational descriptions of the nucleation and the evolution of defects like
cracks however exist. At least in principle, the question of their physical appropri-
ateness can be posed, due to the dissipative character of the phenomena they are
referred to. Of course, one can say that the quest of something to be minimized
has rather instrumental character because in nature some economic principle al-
ways appears somewhere and the calculus of variations is at a stage of develop-
ment that it can be desirable to be under conditions of using it. This point of view
can be an answer. However, the answer can be even deeper.

When one think of the nucleation of defects, in fact, one manages a mutant
body. Mutations occur, in fact, in the gross shape of the body at the continuum
level, and they can be naturally pictured as mutations of the reference place B
which is now not fixed once and for all as for example in the standard formula-
tion of elasticity. In principle, one can imagine of having at disposal a class of
possible bodies occupying B, every member of the class di¤ering from the others
by the defect pattern. Once boundary conditions are prescribed, a variational



principle can select the resulting body within a class. This way, a variational
approach to the defect nucleation—the latter imposed by the interplay between
boundary condition and nature of the material—is physically significant when it
involves a minimization process of the free energy (for example) over an entire
class of possible bodies. This point of view is the one adopted here and is also
the answer to the question of physical appropriateness of some variational ap-
proaches. The energy dissipated in the nucleation (or growth) process is individ-
uated in the gap arising from the body in the original shape—the one existing
before the assignment of boundary conditions—and the actual shape (i.e. the
body plus the defect pattern) obtained by the minimization procedure. Of course
the explicit evaluation of this gap can be arduous.

This point of view interprets the physical aspects of two existing variational
models of fracture mechanics. Both models are recalled below. The attention is
focused on the second one in which cracks are described through appropriate
measures, the so-called curvature varifolds. The physical significance of the
approach is discussed here. It is shown also that the point of view can be adopted
in other circumstances dealing with the nucleation of defects stratified over mani-
folds with di¤erent dimensions.

1

Under the suggestion of the pioneering Gri‰th’s approach to fracture in brittle-
elastic solids, a variational model in fracture mechanics has been proposed in
[10]. It is based on a requirement of minimality of the overall energy E which ac-
counts for the macroscopic deformation and the possible presence of cracks, and
is defined by

EðC; uÞ :¼
Z
B

eðx;DuðxÞÞ dxþ
Z
C

f dH2;

where B is the regular1 region occupied in the three-dimensional ambient space
by the body, DuðxÞ the spatial derivative evaluated at x a B of the di¤erentiable
transplacement map x 7! uðxÞ a R3—the map defining the actual (deformed)
place uðBÞ—C the representation in B of a surface-like crack occurring in uðBÞ,
e the elastic energy, f a constant surface energy, dH2 the two-dimensional Haus-
dor¤ measure. The map x 7! u is also assumed, as usual, to be one-to-one outside
C, orientation preserving (i.e. detDuðxÞ > 0), and such that the global invertibil-
ity condition Z

B

~ff ðx; uðxÞÞ detDuðxÞ dxa
Z
R3

sup
x AB

~ff ðx; zÞ dz;

holds for all ~ff a Cl
0 ðB� R3Þ, a condition allowing frictionless self-contact of the

boundary while still preventing self-penetration (for details on this last condition

1The type of regularity is specified later.
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see [17]). In other words, x 7! u is an orientation preserving homeomorphism out-
side the subset of C containing its jump set.

The requirement is then that at each instant t a ½0; t � of a cracking process the
pair ðC; uÞðtÞ realize a minimum of the global energy E with C an admissible
crack. Admissibility is intended in the sense that C is a rectifiable set (specifically
the image of a countable number of Lipschitz maps) with zero volume measure.
The interval of time is then discretized and minimality is required at time steps.
Minimizers are pairs ðC; uÞ: the minimum problem has two variables.

Notwithstanding simplicity and elegance of this model, the evaluation of min-
ima of the energy at each time step involves a number of analytical problems.
The essential di‰culty arises in controlling in three dimensions minimizing se-
quences of surfaces leading to the possible actual crack, or better to its picture C
in the reference place. However, when the entire crack is open, C coincides with
the jump set of the transplacement field x 7! uðxÞ. The convenient simplification
of identifying cracks with the jump sets of displacement fields has been then
adopted. Bounded variation (BV) or special bounded variation (SBV) functions
have been then involved as candidates to be minimizers of the energy considered
as a functional of the sole u. The energy is then considered as the one of a simple
Cauchy’s body2 and minimizers are sought in a space of maps including candi-
dates to be reasonable descriptors of the elastic-brittle behavior. Remind that
the choice of function spaces where one researches minimizers has constitutive
nature. A di‰culty has been however encountered: theorems allowing the selec-
tion of fields with discontinuity sets describing reasonable (physically significant)
crack patterns seem to be not available at least in the current literature (see [4] for
a pertinent review of the results along this line; also [7], [11], [6]). Moreover, this
kind of approach seems to be not able to account for partially opened cracks. In
fact, in this case the transplacement field is continuous across the closed part of
the crack although the material bonds are broken in the actual place. The de-
scription of partially closed cracks can have even stringent interest in the time-
discretized procedure sketched above. In fact, when such a procedure is applied
by taking into account a loading program described by time-dependent boundary
conditions, a program implying even the growth of pre-existing cracks besides the
nucleation of a new fracture at the n-th instant, it can happen that the cracks may
close even partially, and then they re-open at subsequent time steps. Moreover,
the discovery of physically appropriate crack patterns is another key point.

2 In continuum mechanics a body is considered in primitive sense as a set with elements called the
material elements and identified even vaguely with molecular or atomic aggregates. The selection of

material elements, also called representative volume elements, is matter of modelling. Once even a
rough idea of them is formulated—in a sense one is specifying what are the peculiar physical aspects

of the material texture—the essential step is to furnish geometrical structure to the body which
would be otherwise just an abstract set. The representation of the interactions is then straighforward,

dual in the sense of power. The geometrical representation of the material elements is then matter of
modelling and can be even minimalist: in fact, one can choose to assign to every material element

only the place that it occupies in the ambient space. I use to call Cauchy’s bodies those bodies for
which the minimalist approach summarized above is su‰cient to represent the essential peculiarities

of their morphology, and the representation of inner actions is just in terms of standard stresses.
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Such questions have been tackled from a di¤erent point of view in [14] (see
also additional comments in [15], [13]) by using tools from geometric analysis.
The skeletal features of the theory are listed in the ensuing items.

(i) Distinction is made between cracks and jump set of the transplacement field,
as in [10]. The latter set is however constrained to be contained within the
crack pattern. Di¤erently from all previous proposals, the crack pattern is
described through measures over a fiber bundle with typical fiber the Grass-
manian of ‘planes’ through B, the so-called curvature varifolds.

(ii) A generalized notion of curvature can be associated with curvature varifolds.
It enters the constitutive structure of the surface energy along the crack mar-
gins. The resulting energy di¤ers from Gri‰th’s proposal for the presence of
the generalized curvature of the varifold and the energy along the tip in three
dimensions. In this sense the model is an evolution of Gri‰th’s scheme.

The curvature-dependence of the surface energy has analytical advantages and
permits the control of minimizing sequences. A theorem showing the existence
of pairs of crack patterns and transplacement fields in appropriate measure and
function spaces is then available (see [14]). It has some implications:

(a) The crack pattern results a rectifiable set. Although it can be very irregular, it
has the features that our intuition assigns to a fracture.

(b) Balance equations can be derived in weak form from the first variation even
for a generic rectifiable set. Notice that if a crack is assumed to be coincident
with the discontinuity set of the transplacement field only, to obtain balance
equations, stronger regularity assumptions on the geometry of the crack pat-
tern are necessary (see detailed analyses in [4], [5], [7], [11], [6]).

These consequences imply that, beyond the analytical advantages, the physical
meaning of items (i) and (ii) deserves additional analyses. They can be developed
by going along the essential steps of the theory.

2

Consider the place B of a body, selected as a reference, as an open, connected
set in the three-dimensional ambient space, with surface-like boundary oriented
by the normal at each point, to within a finite number of corners and edges. If a
2D crack is formed in the deformed configuration uðBÞ—u the transplacement—
and crosses a generic point uðxÞ with x in B, its ‘direction’ is locally described by
tangent plane to the crack at uðxÞ, when the crack is smooth. When the crack
margins have a corner at uðxÞ, a cone of planes has to be considered. Crack pat-
terns can be however very irregular. One can accept a set as a representative of a
crack pattern when it is just rectifiable as mentioned hitherto. So, an approximate
notion of tangent plane is available in geometric measure theory (see [9]).

Crack patterns can have a fictitious representation in the reference place B (let
say through sets with zero volume measure)—the reference place is now mutant
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because the macroscopic structure of the body is changing with the nucleation
and growth of a crack pattern. Let P indicate a two-dimensional plane or a
straight line in three dimensional ambient space where B is contained. The pair
ðx;PÞ gives in B local information on the geometry of the crack crossing possibly
uðxÞ. Of course, up to when a real crack is not realized, any P in the star at x can
be a candidate to describe locally the direction of a possible crack pattern. The
pair ðx;PÞ can be viewed as a typical point of a fiber bundle GkðBÞ, k ¼ 1; 2,
with natural projector p : GkðBÞ ! B and typical fiber p�1ðxÞ ¼ Gk;3, the Grass-
manian of 2D-planes or straight lines associated with B. A k-varifold over B is a
non-negative Radon measure V over the bundle GkðBÞ (see [1], [2], [3], [18], [19]).
The measure V has a projection over B obtained by using the projector of
measures—indicated here by pa—associated with the natural projection p defin-
ing the fiber bundle GkðBÞ. Such a projection, namely paV , is Radon measure
over B and is also indicated for short by mV . It is called the weighed measure of
the varifold and defines the so-called mass MðVÞ of the varifold itself through the
relation MðVÞ :¼ VðGkðBÞÞ ¼ mV ðBÞ. For the purpose of describing crack pat-
terns through measures, the essential point is the possibility of constructing vari-
folds over a subset b of B. The subset b can have variegate nature. Here, for the
physical purpose at hand, it is assumed that it is an admissible crack in the sense
sketched above. Let Hk be the k-dimensional Hausdor¤ measure in R3, k ¼ 1; 2.
It is assumed that b is a Hk-measurable, k-rectifiable subset of B. For y a func-
tion in L1ðb;HkÞ, the approximate tangent k-space3 (here 1D or 2D) Txb to b at
almost every x in b is defined for yHk

C b a.e. x a B. The symbol PðxÞ indicates
the orthogonal projection onto Txb. A varifold Vb;y, restricted to b, can be then
defined. It is called the rectifiable varifold associated with b, with density y, and is
such that

Z
GkðBÞ

jðx;PÞ dVb;yðx;PÞ ¼
Z
b

yðxÞjðx;PÞ dHk;

for any j a C0ðGkðBÞÞ. Rectifiable sets can be considered a sort of generalized
surfaces (see [1]). A subclass of them admits a notion of generalized mean curva-
ture vector (see [2], [3]). For members of such subclass (not all) a notion of second
fundamental form can be defined (see [18]). Here the attention is on varifolds
admitting density y with integer values, the so-called integer rectifiable varifolds.
They allow the definition of a special class of varifolds (see [19]) which is essential
for the ensuing developments4.

A new ingredient has to be inserted. It is a third-rank tensor field ðx;PÞ 7!
Aðx;PÞ a R3� nR3 nR3� over GkðBÞ, with components A‘i

j . It plays the role
of a generalized curvature. A varifold V is called a curvature k-varifold with
boundary if (i) V is an integer, rectifiable k-varifold Vb;y associated with the triple

ðb; y;HkÞ, (ii) there exists a function A a L1ðGkðBÞ;R3� nR3 nR3�Þ, and a
vector Radon measure qV such that, for every j a Cl

c ðGkðBÞÞ, one gets

3The choice k ¼ 1; 2 allows one to treat in a unitary way surface and linear cracks.

4See [16], last chapter, for a nimble presentation of varifolds.
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Z
GkðBÞ

ðP i
jDxjjþ Ail

j DP l
j
jþ A

ij
j jÞ dVðx;PÞ ¼ �

Z
GkðBÞ

j dqV iðx;PÞ:

The vector measure qV is called the varifold boundary measure [19]. The subclass
of varifolds with generalized curvature A in LpðGkðBÞÞ is indicated here by
CV

p
k ðBÞ. It is possible to show (see [18]) that if V ¼ Vb;y a CV

p
k ðBÞ, with p > k,

V is locally the graph of a multivalued function of class C1;a, a ¼ 1� p
k
, far from

qV .

• Varifolds with boundary can be used as descriptors of crack patterns: (i) The
set b has the minimal geometrical properties of an admissible crack, at least in
the sense mentioned above. (ii) The density y furnishes information on its pos-
sible faceted shape5. (iii) The local orientation of the crack pattern is accounted
for through P. (iv) Curvature is considered, although in the generalized (weak)
form specified above. (v) The boundary of the crack—it includes the tip—is
described by the boundary of the varifold.

• Consider a smooth crack crossing a body in B and intersecting somewhere
its boundary but maintaining the tip in the interior of B. A two-dimensional
(k ¼ 2) varifold V2 describes the crack, its boundary measure qV2 is supported
by the entire boundary of the crack itself. To represent separately the crack tip,
that is the part of the boundary of the crack in the interior of B, a specific one-
dimensional varifold V1 has to be inserted. It is supported by the tip alone. Its
boundary is supported by possible corners along the tip and the points deter-
mining the intersection of the tip with the external boundary of the body qB.
The insertion of V1 allows one to assign later energy to the tip of the crack.
Di¤erent properties can be also assigned to the corners of the tip by using
qV1. Of course, to capture the intuitive structure of the geometry under scru-
tiny, the varifolds V2 and V1 have to satisfy a certain link. A definition pre-
sented in [14] specifies the link: a family fVkgd�1

k¼1 of k-varifolds with boundary
in d-dimensional ambient space is said to be stratified when pajqVkja mVk�1

for
all k’s. In the special case treated here the condition of stratification reduces to
pajqV2ja mV1

.

• The choice k ¼ 1; 2 for constructing GkðBÞ and the associated varifolds allows
one to consider not only two-dimensional cracks with the relative tips but
also additional linear defects (k ¼ 1) which can be cracks included in very thin
tubes—material bonds are broken along a line for some reason—or even dislo-
cations. In the latter case, through a one-dimensional varifold one can describe
dislocations emanating from a crack tip in a three-dimensional body. In the
former case one manages crack patterns stratified over various dimensions. Of
course, the analogous description can be adopted in space dimension db 2 and
stratification of defects of various nature can be accounted for.

A new form of the energy for a body undergoing fractures, based on the descrip-
tion of cracks in terms of varifolds, has been proposed in [14] (see also comments

5 If in a neighborhood of x there is a smooth surface, y ¼ 1, when there is a net fold, y ¼ 2, and

so on.
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in [15], [13]). Such an energy is indicated below by Eðu; fVkg;BÞ. It di¤ers from
the expression EðC; uÞ coming from the traditional Gri‰th’s proposal and is an
extension of it. For a three-dimensional body it reads:

Eðu; fVkg;BÞ :¼
Z
B

eðx; uðxÞ;DuðxÞÞ dxþ
X2

k¼1

ak

Z
GkðBÞ

jAðkÞjpk dVk

þ
X2

k¼1

bkMðVkÞ þ gMðqV1Þ;

where ak, bk, g and pk are constitutive coe‰cients. In particular, ak, bk, g are pos-
itive numbers, so the contribution of the generalized curvature of the varifolds is
always present, even if it can be extremely small. The density eðx; u;DuÞ is defined
as the di¤erence eðx; u;DuÞ :¼ ~eeðx;DuÞ � wðuÞ between the bulk elastic energy
~eeðx;DuÞ and the potential wðuÞ of external body forces. A number of comments
on its physical meaning are necessary.

• The addendum b2MðV2Þ has the role of the last integral in EðC; uÞ, that is the
role of Gri‰th’s surface energy: b2 has the same meaning of f in EðC; uÞ. Of
course, the first addendum is the bulk elastic energy with density eðx;DuÞ—
the body is then simple but anisotropic—and coincides with the first integral
in EðC; uÞ. The other terms are not standard.

• The addendum b1MðV1Þ counts energy along the tip. Such an energy is propor-
tional to the length of the tip itself, namely to the mass MðV1Þ of the one-
dimensional varifold supported by the tip itself.

• The term gMðqV1Þ adds possible energy concentrated at the tip corners where
material bonds can be entangled in principle in a way di¤erent from the other
parts of the tip.

• The two addenda

a2

Z
G2ðBÞ

jAð2Þjp2 dV2 þ a1

Z
G1ðBÞ

jAð1Þjp1 dV1

mark in a more pronounced manner the di¤erence with respect to EðC; uÞ.
They have pure configurational nature: they do not involve directly the gradi-
ent of deformation DuðxÞ. The first one accounts for the (generalized) curvature
of the varifold describing the surface of the crack, the second one includes the
curvature of the varifold describing the tip. Influence of the curvature of the
crack, above all in the proximity of the tip, has been recognized in [24], a
work devoted however to other aspects of fracture processes, namely Grinfeld’s
instability. The curvature here aims to account at macroscopic level of local
microstructural e¤ects at low scale, occurring in the cracking process. Curva-
ture energy can be associated with bending e¤ects in breaking material bonds
when a crack is determined—consider for example a material in which the
inner bonds are modeled through beam-like interactions. A point has to be
stressed: Bending occurs in the current configuration uðBÞ while, as a function
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of x, A is defined over the reference configuration B. However, when bending
of material bonds in the actual configuration breaks the bonds themselves, such
a bending has a configurational e¤ect because it contributes to the mutation of
B due to the nucleation and possible propagation of a crack. All configura-
tional e¤ects are measured in B, as it is commonly accepted. Additionally,
analogies with di¤erent approaches to crack analyses in complex bodies (see
[21]) and bodies with strain-gradient e¤ects (see [25], [20]) can be called upon
to enforce the interpretation of the presence of A as a configurational indicator
of the e¤ects due to latent microstructures. The terms including A in the energy
tell us essentially that, once boundary conditions are prescribed, one has to pay
in energy for curving the crack. Consider a rectangular planar sheet of a homo-
geneous material half of it including a straight crack in the middle as in Figure
1. Apply boundary conditions in terms of transplacement (Dirichlet boundary
conditions) in mode 1. If the boundary conditions are such that the crack can
growth, it remains straight, unless some additional agency occurs paying en-
ergy in curving it.

• Consider a body in an initial configuration in which no crack is present. For
example, B is a three-dimensional ball. After some loading program, a certain
configuration in which a crack occurs is reached. Clearly one could consider
such a configuration as the initial one. The possibility stresses the point that
‘being cracked’ is only a relative concept. Configurations—or better states—
have to be compared to a‰rm that a body is cracked. Moreover, in sequences
of configurations (or states) in which one excludes the possibility of restoring
cracks by gluing the matter across crack facies, an order relation has to be con-
sidered. Such an order is given by monotonicity in crack patterns: if in a certain
configuration there is a crack with respect to an uncracked configuration in the
sequence, a subsequent configuration can have a crack pattern that coincides
with or includes the previous crack. In terms of varifolds such a point of view
is expressed by a‰rming the existence a family of comparison varifolds f ~VVkg
such that the family of varifolds fVkg describing the actual crack pattern is
constrained by m ~VVk

a mVk
for any k and ~VVk a CV

pk
k ðBÞ. The assignment of

f ~VVkg does not mean that one is considering in a given configuration a pre-

Figure 1. Clamped two-dimensional sheet with a horizontal crack in the middle, sub-
jected to Dirichlet boundary conditions—the arrows represent applied transplacements,
the black zone is the clamping device.
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existing crack pattern always, because the comparison varifold family can be
also empty.

• The assumption used so far that the ambient space is three-dimensional has
been accepted only to be close to the standard physical intuition. There is no
obstruction to consider higher dimensional spaces. Consider the dimension of
the ambient space to be db 2. The previous treatment can be extended to this
case straight away. The only modification, including the expression of the
energy is that the range of k must be considered to be 1a ka d � 1, at least
in principle. The rest remains unchanged. This choice allows one to consider
stratified families of defects at various scales with various physical meanings,
depending on the circumstance. Of course, there could be cases in which k
could not take all the natural values from 1 to d � 1. Even in three-dimensional
ambient space one could have only k ¼ 1, for example, being in the condition
to consider only linear defects like nets of dislocations. Such a case would
deserve perhaps a treatment a part. The case of four manifolds, d ¼ 4, could
be called upon when the description of crack in relativistic elastic bodies is con-
sidered, with all the necessary changes in the representation of the energy,
adapted to the relativistic setting. In this case, however, care must be taken be-
cause in the relativistic setting a representation of continuous bodies based on
the back-to-label representation seems to be preferable. The circumstance then
would change the stage and would include a sort of ‘mixed’ representation of
the energy.

In the setting described so far, a minimality requirement is prescribed for the
energy:

Minimize Eðu; fVkg;BÞ with Vk in CV
pk
k ðBÞ, comparison varifolds f ~VVkg, u in

an appropriate function space, with assigned boundary conditions.

Solution to this problem, if any, is a pair ðu; fVkgÞ. Minimization over a class
of varifolds has the meaning of minimization over a class of bodies: every possi-
ble crack pattern represented over B (remind that nucleation and/or growth of
cracks occur in the current place) defines a body. Di¤erent crack patterns indicate
di¤erent bodies: B, in fact, changes. The family of varifolds fVkg represents the
crack pattern—so it selects a body—and the field x 7! uðxÞ describes the defor-
mation of such a body. The two ‘objects’ are correlated. In fact, in the actual
configuration possible nucleation, growth and/or opening of a crack are conse-
quences of the deformation, the varifolds over B are representatives of what
happens in the actual configuration. The choice of the function space hosting
the generic u is then another key point of the treatment. It has to be linked to
the varifolds supported on B.

3

In continuum mechanics the choice of function spaces as ambient for solutions to
equilibrium or evolution problems has constitutive nature. The properties of the
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members of a given space carry a physical meaning about. The characteristic
physical features of the problem under scrutiny have then to address the func-
tional choice. In the case under analysis, the idea is that the material is elastic-
brittle. It means that the material is elastic up to a certain threshold after which
a crack is created while outside the crack the material is still in elastic phase. The
threshold can be expressed in terms of deformation, stress, energy, depending on
circumstances. Moreover, as it will be clear later, the threshold can be also not
expressed directly. It is, in a sense, included in the choice of the function space
that one selects.

Let us focus the attention on pure elasticity first. If the material is purely elas-
tic, it can deform at will, without any threshold and, in principle, without end.
The deformation can be also perfectly recovered, after unloading. In this sense,
phenomena like cavitation in solids are ascribed to elastic-brittle behavior rather
than perfect elastic setting. If this view is accepted, the consequence would be that
a perfectly (hyper)elastic body should be such that any compatible transplace-
ment (or displacement, depending on the choice) field does not describe the nucle-
ation of fractures or holes.

It is well known that under conditions of polyconvexity of the elastic energy
density, minimizers of the elastic energy of a simple body can be found in the
Sobolev space W 1;pðB;R3Þ—a space hosting maps with first distributional deriv-
ative having integrable p-power, i.e. the first derivative is in Lp. However, when
p < 3 non negligible is the presence of transplacement maps with graphs admit-
ting boundaries with projections into the interior of B. Such boundaries describe
the formation of ‘holes’ and/or open ‘fractures’ of various nature, so they are
undesirable when a purely elastic material is under analysis, at least if the view
on elasticity sketched above is accepted.

The di‰culty can be overcame. In fact, there is a global way to check—
eventually to control—the presence of boundaries in the graph of a map with
projection into the domain of the map itself through linear functionals. Indicate
them by Gu, with the indices u suggesting that the functional G is associated with
the transplacement u. In the case treated here, such functionals are linear over
smooth 3-forms with compact support in B� R3. The general technique, which
is valid in any finite dimension d of the ambient space, is described in the mono-
graph [17]. Here, I sketch only minimal ideas, furnishing the essential picture and
physical interpretations in the case under scrutiny.

Preliminarily, remind that a r-vector over a linear space E is a rank-r skew-

symmetric tensor, that is an element of the skew-symmetrization of E n � � �n
zfflfflfflfflffl}|fflfflfflfflffl{r

E.
The space of r-vectors is indicated here byLrðEÞ. It has a natural dualLrðEÞ. Any
map of the type o : B ! LrðEÞ is called a r-form6. The space of all r-forms of the
type just defined is indicated by DrðEÞ.

For the mechanics treated here interesting is the case of 3-vectors over R3 �R3,
the space hosting the graph of the deformation. Consider a deformation (trans-

6More specifically, one should consider E as a real vector bundle over B of fiber dimension d,

that is a family of d-dimensional vector spaces parametrized by points of B.
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placement) x 7! uðxÞ a R3, x a B. Amid all possible 3-vectors over R3 � R3, it is
possible to define at every x a B the 3-vector MðDuÞ associated with the gradient
of deformation Du. Detailed definition and various properties can be found in
[17], here, for the expository purposes declared at the beginning, it is only neces-
sary to know that at each x its components are the entries of DuðxÞ, adjDuðxÞ,
detDuðxÞ. In MðDuÞ, then, all elements characterizing the deformation of lines,
areas, and volume of the body in B are included. In this sense, MðDuÞ character-
izes completely the deformation. Its dual counterpart—the value at the same x of
some form in D3ðR3 � R3Þ—is then a sort of generalized stress.

Given a transplacement x 7! uðxÞ a R3, x a B, the 3-current integration Gu

(current for short) over the graph of u is defined to be a linear functional over
smooth 3-forms o a D3ðR3 � R3Þ with compact support in B� R3, namely

GuðoÞ :¼
Z
B

3oðx; uðxÞÞ;MðDuðxÞÞ4 dx;

where the angle brackets indicate the natural action over MðDuÞ of its dual coun-
terpart7. Essentially, GuðoÞ plays the role of generalized internal power. The
number MðGuÞ indicates here the so-called mass of the current and is defined by

MðGuÞ :¼
Z
B

jMðDuðxÞÞj dx;

where jMðDuðxÞÞj is the modulus of MðDuðxÞÞ, evaluated in the standard way
for tensors. The symbol jGuj indicates the total variation of the current and is
defined as usual for functionals. A boundary current can be associated with Gu:
it is indicated by qGu and defined by duality, that is8

qGuðoÞ :¼ GuðdoÞ; Eo a D2ðB� R3Þ;

with D2ðB� R3Þ the space of 2-forms over R3 � R3 with compact support9 in
B� R3. The notion of boundary current has not only formal nature. It has an
immediate physical interpretation: when the graph of u is free of boundaries in-

side the interior of B, qGuðoÞ ¼ 0 for any o a D2ðB� R3Þ. Essentially, this zero
boundary condition prevents the formation of cracks or holes inside the actual
place uðBÞ of the body. Such a condition has been used (see [17] and the other
references of its authors mentioned therein) to define a class of transplacements—
the so-called weak di¤eomorphisms—which is ‘constitutively’ an appropriate
choice for describing what one imagines to be a pure elastic deformation, as
sketched above.

7A bit more precisely, the current is defined by taking the rectifiable part of the graph of u, that is
the part of the graph that can be seen as the graph of Lipshitz maps.

8The so-called external di¤erentiation over forms is indicated by d and acts as d : DnðEÞ !
Dnþ1ðEÞ.

9The definitions of currents and related boundaries can be also available in spaces with higher

dimension (see [17] for the complete theory).
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Here the situation is a bit more complicated. The deformation has to be a
weak di¤eomorphism outside a subset of the support of the varifolds describing
the crack pattern, if the minimizing procedure provides a non-empty family of
minimizing varifolds. Inside that subset, the transplacement admits jumps, so it
is not purely a weak di¤eomorphism.

Extended weak di¤eomorphisms are then necessary. They must have the phys-
ical properties just indicated. Such properties can be summarized in a formal
definition.

Definition 1. Assigned a stratified curvature varifold V ¼ fVkgn�1
k¼1 with bound-

ary, i.e., Vk a CV pk , a map x 7! u is said to be an extended weak di¤eomorphism
(in short u a dif 1;1ðB;V ;R3Þ), when

(i) u a L1ðBÞ and is a.e. approximately di¤erentiable,
(ii) jMðDuÞj a L1ðBÞ,
(iii) detDuðxÞ > 0 for almost every x a B,
(iv) for any f a Cl

c ðB� R3Þ
Z
B

f ðx; uðxÞÞ detDuðxÞ dxa
Z
R3

sup
x AB

f ðx;wÞ dw;

(v) pajqGuja
P2

j¼1 mVk
þ pajqV1j as measures on B.

The definition has natural extension in Rd : the summation in the item (v) should
be extended up to d � 1. Of course, the definition of currents and related bounda-
ries holds in dimension d: in that case MðDuÞ is tested over d-forms. Here and
in the whole paper, the restriction d ¼ 3 is essentially motivated by the physics
under scrutiny (see [14] for the abstract theory). The first item indicates the possi-
bility of evaluating the gradient of deformation. The second item is another reg-
ularity condition. It implies that one can in principle measure the average of the
gradient of deformation, the volume change, the overall deformation of surfaces.
The third item is the standard condition that a transplacement be an orientation
preserving map. Item (iv) is the condition mentioned at the beginning of Section
1. It permits to move B along u into a region uðBÞ in such a way that self-contact
between parts of the boundary qB be allowed while self-penetration excluded.
Notice that in item (v) the action of the projector pa on the total variation of
the boundary current is motivated by the fact that the latter behaves substantially
as a measure. Essential properties for the space of extended weak di¤eomor-
phisms are shown in [14] (see there the relevant theorems and proofs).

Standard weak di¤eomorphisms are W 1;1ðB;R3Þ maps that satisfy the items
(ii), (iii), (iv) in previous definition while item (v) which is substituted by the zero
boundary condition qGuðoÞ ¼ 0 for any o a D2ðB� R3Þ. From a kinematic
point of view, in going from dif 1;1ðB;R3Þ to dif 1;1ðB;V ;R3Þ, one transits from
pure elastic setting to elastic-brittle behavior.

In this sense, the requirement of minimality of the energy includes the possibil-
ity of finding minimizers—if any—in terms of weak di¤eomorphisms and null
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varifolds, and in terms of extended weak di¤eomorphisms and non-null varifolds.
The transition from a situation to another is morally the threshold from the elas-
tic to the elastic-brittle behavior. In this sense, also, there is no need in principle
of adding another condition defining the threshold itself. There could be also
minimizers for which the transplacement field is simply a weak di¤eomorphism
but the varifolds are not null. This situation describes presence of closed cracks
only: in other words, material bonds are broken but the crack remains closed
and the transplacement field does not jump across the crack facies. Such a situa-
tion can occur in a step-by-step minimization program obtained by updating in
time steps the boundary conditions and requiring minimality of the energy at
each step. At the step n� 1 a crack pattern can occur, at the step n the deforma-
tion closes the cracks, at the step nþ 1 there is a purely elastic continuation, then,
at further steps, new crack patterns accrue.

Of course, proving existence of minimizers is a crucial step for attributing
sense to the previous reasonings. Existence depends on the characteristic proper-
ties of the energy and the boundary conditions. Once the existence of minimizers
is established, the characterization of them along the physical suggestions col-
lected above is matter of regularity theorems. The question is open. Actually,
any regularity theorem is available. Di¤erent is the case of the existence problem.

4

The existence result for the minimum problem stated above for the energy
Eðu; fVkg;BÞ of an elastic brittle solids has been proven in [14]. Boundary con-
ditions of Dirichlet type can be presumed. They are given by prescribing the
transplacement field along the boundary qB of B.

The discussion of the existence is developed by taking first a subspace of
dif 1;1ðB;V ;R3Þ, precisely the space dif p;1ðB;V ;R3Þ defined by

dif p;1ðB;V ;R3Þ :¼ fu a dif 1;1ðB;V ; R̂R3Þ j jMðDuÞj a LpðBÞg;

for some p > 1. Essentially, the choice of dif p;1ðB;V ;R3Þ with p > 1 is a request
of additional regularity which is sometimes necessary for physical needs. Combi-
nation with the space of varifolds allows one to recognize a natural ambient in
which the existence of minimizers of the energy Eðu; fVkg;BÞ can be investigated.
Such a space is indicated by Aq;p;K ;f ~VVkgðBÞ and defined by

Aq;p;K ;f ~VVkgðBÞ :¼ fðu; fVkgÞ jVk a CV
pk
k ðBÞ; u a dif q;1ðB;Vk;R

3Þ;
fVkg is stratified; jjujjLlðBÞ aK ; m ~VVk

a mVk
; Ek ¼ 1; 2g;

where ~VV1 and ~VV2 are comparison varifolds describing possible initial cracks. In
particular, the subspace

Au0
q;p;K ;f ~VVkg

ðBÞ :¼ fðu; fVkgÞ a Aq;p;K ;f ~VVkgðBÞ j uðxÞ ¼ u0ðxÞ; x a qBug;
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with qBu the part of the boundary of the body where the transplacement field is
prescribed, takes into account the boundary conditions of Dirichlet type men-
tioned above.

In all these definitions, another regularity requirement is prescribed. In fact,
the condition jjujjLlðBÞ aK imposes that the essential supremum of u is almost
everywhere—with respect to the Lebesgue measure—bounded. In fact, a priori
it is not possible to exclude that, if one is able to prove under some conditions
the minimality of the energy Eðu; fVkg;BÞ over some space of extended weak
di¤eomorphisms and varifolds, the minimizing varifold does not describe a frag-
mentation of the body—let say a crack cutting a piece of matter from the rest. In
this case, a transplacement field could be such that the cut piece, now free from
boundary conditions, can be translated rigidly to infinity. By imposing that
jjujjLlðBÞ aK, with K a real number, then, one wants to avoid the situation just

sketched. So, in this sense the assignment of K has not properly constitutive
nature. It is not related to some property of the material, rather it is a parameter
selecting admissible deformation processes, admissibility considered with refer-
ence to the possible unconstrained extraction of pieces of matter from the body.

For d the dimension of the ambient space and k ranging from 1 to d � 1, anal-
ogous definitions of Au0

q;p;K;f ~VVkg
ðBÞ hold and the theory can be generalized (see

relevant results in [14]).
Another crucial point in the path leading to the proof of existence theorem

of minimizers of the energy is the discussion of the structural properties of the
energy. They have constitutive nature, of course.

In non-linear elasticity of simple Cauchy’s bodies, common assumptions about
the structure of the energy eðx; uðxÞ;DuðxÞÞ are well known. By indicating by
Mþ

3�3 the space of 3� 3 matrices with positive determinant, the energy density e
is considered as a map

e : B� R3 �Mþ
3�3 ! ½0;þl�

with values eðx; uðxÞ;DuðxÞÞ. Remind that positiveness of the determinant of
DuðxÞ is the condition assuring that the transplacement be orientation preserving.
The properties H1–H4 below are then assumed to hold.

H1 e : B� R3 �Mþ
3�3 ! ½0;þl� is continuous in ðx; uÞ.

H2 The map DuðxÞ 7! eðx; uðxÞ;DuðxÞÞ is polyconvex: that is there exists a Borel
function Pe acting as

Pe : B� R3 �L3ðR3 � R3Þ ! �RRþ;

with values Peðx; uðxÞ; xðxÞÞ, which is continuous in ðx; uÞ for every x a
L3ðR3 � R3Þ, convex and lower semicontinuous in x for every ðx; uÞ, and
such that10 Peðx; u;MðDuÞÞ ¼ eðx; u;DuÞ for any list of entries ðx; u;DuÞ a
B� R3 �Mþ

3�3 with detDu > 0.

10The dependence of u and Du on x is now suppressed for the sake of brevity.
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H3 The energy density e satisfies the growth condition

eðx; u;DuÞbC1jMðDuÞjr:

H4 For every x a B and Du a Mþ
3�3, if for some u a R3 the inequality

eðx; u;DuÞ < þl is satisfied, then detDu > 0.

The physical nature of these assumptions is discussed in various treatises (see [22],
[23]). The standard presence in the polyconvex energy of the determinant of the
gradient of deformation and the relevant adjugate is summarized here in the func-
tional dependence on MðDuÞ. The choice is not only formal. It furnishes a rapid
path toward the extension of the treatment to d-dimensional cases (see [17]).

However, the essential point is to underline that, in the setting explored here,
H1–H4 do not need to be supplemented by additional structural assumptions on
the energy to assure the existence of minimizers of Eðu; fVkg;BÞ. The relevant
theorem reads as follows:

Theorem 2 ([14]). Assume K > 0; q; pk > 1, and ~VVk a CV
pk
k ðBÞ for any k. If

there exists ðu0; fV 0
k gÞ a Au0

q;p;K;f ~VVkg
ðBÞ such that Eðu0; fV 0

k g;BÞ < þl, then

Eðu; fVkg;BÞ attains in that space the minimum value.

Proof is presented in [14]. Here just comments have to be added.

• Since no additional structural hypotheses besides H1–H4 of standard non-
linear elasticity need to be added, the information about the possible nucleation
of a crack or growth of an existing one is furnished by the presence of the terms
ruled by varifolds in the energy and the constitutive choice of Au0

q;p;K ;f ~VVkg
ðBÞ as

functional setting. It is just the latter choice that avoids the introduction of an
external criterion for the nucleation of a crack or the growth of an existing one.
In fact, the energy is minimized over a class of possible bodies.

• More in general than other descriptions, it is possible to determine the weak
form of balance equations for crack patterns which are just rectifiable sets.
The result is not discussed here for the sake of conciseness. It is presented in
[14] and opens the way to computational opportunities not explored yet. The
balance equations derived naturally in [14] for very general crack geometries—
as mentioned above the crack pattern has to be just a rectifiable set—are the
ones obtained by horizontal variations, that are variations of the reference
place11. Thus they have configurational nature: they involve in fact the
Hamilton-Eshelby tensor and non-standard terms deriving from the variations

11See [8] for clear explanations on the connection between horizontal variations describing the
potential movement of defects and the balance of configurational forces. Take into account also

that there is basic di¤erence between the balance of configurational actions associated with macro-
scopic mutations of the reference place and the balances of standard actions generated by the

deformation. In the conservative case and with reference to smooth fields, the former balances are
essentially the pull-back in the reference place of the latter balances. In general it is not so. The

di¤erence has been evidenced first in [12] vol. 1, pages 152–153.
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of the terms including the varifolds, the ones directly related with the geometry
of the crack pattern.

• The existence result holds also at dimensions greater than 3, provided that the
obvious variations in previous definitions (see [14], [15] for the abstract theory).

• An analogous result holds also for the generalized energy

Eðu; fVkg;BÞ :¼
Z
B

eðx; uðxÞ;DuðxÞÞ dxþ
Xd�1

k¼1

ak

Z
GkðBÞ

fkðjAðkÞjÞ dVk

þ
Xd�1

k¼1

bkMðVkÞ þ gMðqV1Þ;

with fkð�Þ a convex real-valued function satisfying the condition fkðtÞb ctpk .
The interest of this remark is not only technical. It gives a grater degree of
freedom in selecting further constitutive structures under the suggestions of
possible experimental evidences and numerical tests.

• The existence result does not exclude the possibility that the minimization pro-
cedure foresees stratified varifolds supported on the boundary of B. In this case
one can say that a boundary crack appears. The meaning of such a boundary
cracks is not exotic. In fact, on a part of the boundary where the transplace-
ment is imposed a crack can occur so that the boundary condition is ‘broken’.
Consider for example a beam jointed at one of its ends. Boundary conditions
and properties of the material can be such that a crack occurs just at the inter-
face between the joint and the beam. However, in principle a boundary crack
can appear on a free part of the boundary. Such a situation can describe the
fragmentation of a thin film at the boundary, which is, essentially, the abrasion
of the boundary itself.

5

The technique discussed previously is a general tool for the description of phe-
nomena in which energy can in principle be concentrated over submanifolds of
a certain manifold, and this energy depends on the geometry of the submanifold
itself. It can be used to analyze either specific situations of physical interest or to
formulate and analyze abstract mathematical problems.

• Phenomena of physical interest that can be described by using the tools men-
tioned hitherto deal for example with the mechanics of linear defects like dislo-
cations and discontinuity surfaces. For dislocations the choice of the varifolds
play a crucial role. For interfaces, the functional setting has to be changed and
a new special class of extended weak di¤eomorphisms arises. The new choice
requires proof of completeness of the new functional class and evaluation of
the applicability of lower semicontinuity results.

• Another point of discussion is also the evaluation of the crack nucleation and
growth in complex bodies. The adjective ‘complex’ distinguishes bodies charac-
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terized by a prominent influence of changes in material texture (the microstruc-
ture) on the macroscopic behavior, an influence exerted through inner actions
requiring a representation going beyond the common picture in terms of stan-
dard stresses. Quasicrystals, ferroelectrics, magnetoelastic materials, polymeric
bodies of various nature, including elastomers, fullerene-based composites, po-
rous bodies, bodies with continuous distributions of dislocations, multiphase
materials are paradigmatic examples. Notwithstanding the variety of special
models, a unitary picture of the mechanics of complex bodies exists. Within it,
the representation of bodies goes beyond standard Cauchy’s approach in the
sense that every material element is viewed as a system rather than a black
box individuated by a single point in the ambient space, which is Cauchy’s
view. Such a description is multifield and intrinsically multiscale. A morpholog-
ical descriptor field x 7! nðxÞ, x a B, of the essential geometrical features of the
material microstructure is then introduced. To construct the essential structures
of the relevant mechanics, it is just necessary to presume that nðxÞ is an element
of a set M which has just the structure of a di¤erentiable manifold. It is as-
sumed to be finite-dimensional for the sake of simplicity. M is called the mani-
fold of substructural shapes. The interest of mentioning here complex bodies is
motivated by data showing that the microstructural changes may influence
in non negligible way the force driving crack tips along evolution processes.
Theoretical analysis of this phenomenon within the setting of the general model
building framework of the mechanics of complex bodies (that is without speci-
fying the type of microstructure) has been developed in [21]12 from a point of
view di¤erent from the one adopted here. The simplest extension of the theory
discussed here to complex bodies is given by an energy of the type

Eðu; fVkg;BÞ :¼
Z
B

eðx; uðxÞ; nðxÞ;DuðxÞ;DnðxÞÞ dx

þ
X2

k¼1

ak

Z
GkðBÞ

jAðkÞjpk dVk þ
X2

k¼1

bkMðVkÞ þ gMðqV1Þ;

with the natural modifications in generic dimension d. In analyzing the exis-
tence of minimizers, an essential point is the choice of the space hosting the
morphological descriptor maps. Such a choice could require the embedding of
M into a linear space. Such embedding always exists because M is finite dimen-
sional, also it can be isometric when M is Riemannian. In all cases, however, it
is not unique so that it becomes a ingredient of the model, a sort of constitutive
choice. Another point is the link of the jump set of the morphological descrip-
tor field with the varifolds. Here the underlying physics is subtle. In principle
one can accept that x 7! nðxÞ may have jumps even outside the support of the
varifolds and there it may be even continuous. Jumps outside the varifolds can
be justified by the formation of domains of microstructures, like polarization or
magnetization domains. The meaning of the possible continuity on the support

12There one can find appropriate references to works presenting and discussing experimental
data.
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of the varifolds is associated with the question whether in cracking a body one
alters along the margins of the crack the microstructure, in a sense determining
a new type of microstructure, or, else, the microstructure remains the same
across the margins of the crack. In the philosophy of continuum mechanics,
the remark above coincides with asking whether a crack just divides neighbor-
ing material elements or breaks the material elements met in front of the tip.
The answer cannot be definitive and is matter of modelling. The situation be-
comes also more complicated when the structure of the surface energy involv-
ing the generalized curvature of the varifold is enriched by making more articu-
lated assumptions. Relevant investigations are actually open.

• A point which may deserve to be noted is that the scheme discussed in previous
sections has intrinsic similarity with the general framework of the mechanics of
complex bodies which has been sketched rapidly in the last item. In fact, when
curvature k-varifolds with boundary are chosen to represent cracks, in principle
the region where they localize is not known—in other words one does not
know where the support of the varifolds is placed in B, that is where the crack
is. In this setting, every point can be crossed in principle by a crack. The mini-
mization procedure tells us that the crack is here or there, before nothing is
known about its position. Instead of assigning to each material element a mor-
phological descriptor n selected in a finite dimensional di¤erentiable manifold
M, one is then assigning to each material element a measure . In this sense, the
scheme discussed here is driven by the ideas of the mechanics of complex
bodies, and, in some sense, it goes beyond them a bit.
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