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Partial Di¤erential Equations — Remarks on the H Theorem for a non involutive
Boltzmann like kinetic model, by Giulia Furioli and Elide Terraneo.

Abstract. — In this paper, we consider a one-dimensional kinetic equation of Boltzmann type

in which the binary collision process is described by the linear transformation v� ¼ pvþ qw, w� ¼
qvþ pw, where ðv;wÞ are the pre-collisional velocities and ðv�;w�Þ the post-collisional ones and

pb q > 0 are two positive parameters. This kind of model has been extensively studied by Pareschi
and Toscani (in J. Stat. Phys., 124(2–4):747–779, 2006) with respect to the asymptotic behavior of

the solutions in a Fourier metric. In the conservative case p2 þ q2 ¼ 1, even if the transformation

has Jacobian J A 1 and so it is not involutive, we remark that the H Theorem holds true. As a
consequence we prove exponential convergence in L1 of the solution to the stationary state, which

is the Maxwellian.
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1. Introduction

This paper deals with the evolution of a probability density f ðv; tÞ which repre-
sents the density of a gas of one dimensional particles depending only on the
velocity v a R at the time tb 0. We suppose that the binary interaction between
two particles obeys to the law:

v� ¼ pvþ qw

w� ¼ qvþ pw

�
ð1Þ

where pb q > 0 and ðv;wÞ are the pre collisional velocities which generate
ðv�;w�Þ after the collision. The kinetic integro di¤erential equation of Boltzmann
type which modelizes this process is therefore as follows:

qt f ðv; tÞ ¼
Z
R

� 1
J
f ðv�; tÞ f ðw�; tÞ � f ðv; tÞ f ðw; tÞ

�
dwð2Þ

where now ðv�;w�Þ are the pre collisional velocities which generate ðv;wÞ after the
collision:

v� ¼
1

J
ðpv� qwÞ

w� ¼
1

J
ð�qvþ pwÞ

8>><
>>:ð3Þ



and

J ¼ det
qv�

qv
qv�

qw

qw�

qv
qw�

qw

 !�����
�����¼ p2 � q2:

We underline here that the transformation ðv;wÞ 7! ðv�;w�Þ is such that JA 1
and so it is not involutive. The kinetic model (2) was introduced in [BBLR03]
and it is worth comparing it with the Boltzmann equation and its one dimen-
sional Kac model. We start by considering the full Boltzmann homogenous equa-
tion for Maxwellian molecules in the cut-o¤, elastic case which reads

qt f ðv; tÞ ¼
Z
w AR3

Z
n AS 2

ð f ðv�; tÞ f ðw�; tÞ� f ðv; tÞ f ðw; tÞÞb
� v� w

jv� wj � n
�
dn dw:ð4Þ

Here, f ðv; tÞ : R3 � Rþ ! R is the probability density of a gas which depends
only on the velocity v a R3 at the time tb 0 and due to the physical assumptions
that the gas evolves through binary, elastic collisions which are localized both in
space and time, the relations between the velocities ðv�;w�Þ of two particles before
the collision and ðv;wÞ after it are the following:

v� ¼
vþ w

2
þ jv� wj

2
n

w� ¼
vþ w

2
� jv� wj

2
n;

8>><
>>:

where n is a vector in S2, the unit sphere in R3, and parametrizes all the possible
pre collisional velocities.

The collision kernel b, which is supposed to be nonnegative, is the function
which selects in which way the pre collisional velocities contribute to produce
particles with velocity v after the collision and is supposed (this is precisely the
assumption of Maxwellian molecules) to depend only on the cosine of the devia-
tion angle y, namely

cos y ¼ v� w

jv� wj � n:

The cut-o¤ assumption means that b a L1ð��1; 1½ Þ.
If one considers moreover only radially symmetric solutions and one supposes

that the collision kernel bðyÞ is constant (say bðyÞ ¼ 1Þ, the equation (4) simplifies
into the following one dimensional Kac model ([McK66])

qt f ðv; tÞ ¼
Z
w AR

Z
y A ½�p=2;p=2�

ð f ð~vv�; tÞ f ð~ww�; tÞ � f ðv; tÞ f ðw; tÞÞdy dw:ð5Þ

Here, f ðv; tÞ : R� Rþ ! R and the relations between the velocities ð~vv�; ~ww�Þ of
two particles before the collision and ðv;wÞ after it are the following

194 g. furioli and e. terraneo



~vv� ¼ v sin yþ w cos y;
~ww� ¼ v cos y� w sin y:

�

Assuming now the collision frequency to be constant, say y ¼ y, the equation
simplifies once more, obtaining

qt f ðv; tÞ ¼
Z
R

ð f ðv 0�; tÞ f ðw 0
�; tÞ � f ðv; tÞ f ðw; tÞÞ dwð6Þ

where ðv 0�;w 0
�Þ are now

v 0� ¼ pvþ qw

w 0
� ¼ qv� pw

�
ð7Þ

where p ¼ sin y, q ¼ cos y. Accordingly,

v 0� ¼ pvþ qw

w 0� ¼ qv� pw

�
ð8Þ

and so, in this case, the transformation ðv;wÞ 7! ðv 0�;w 0�Þ is involutive and so
its Jacobian satisfies J ¼ p2 þ q2 ¼ 1. This is the major di¤erence between Equa-
tion (6) and Equation (2); we would like to investigate the consequences of this
di¤erence.

At a formal level, we can check the quantities preserved by the solution f ðtÞ of
the non involutive equation (2), as it is usually done with a kinetic model. More
precisely, if we consider an initial datum f0 satisfying

f0 b 0;

Z
R

f0ðvÞ dv ¼ 1;

Z
R

vf0ðvÞ dv ¼ 0;

Z
R

v2f0ðvÞ dv ¼ 1

we can check the evolution in time of these quantities, called respectively the
mass, the momentum and the energy. It is well known that the solution of the
Boltzmann equation (4) preserves mass, momentum and energy, whereas the so-
lution of the Kac equation (5) and of the involutive Kac like equation (6) pre-
serves mass and energy but not momentum, unless it is initially zero. At a formal
level, it is easy to compute the derivatives in time of mass, momentum and energy
of the solution of the non involutive model (2) getting:

d

dt

Z
R

f ðv; tÞ dv ¼ 0

d

dt

Z
R

vf ðv; tÞ dv ¼ ðpþ q� 1Þ
Z
R

vf ðv; tÞ dv

d

dt

Z
R

v2f ðv; tÞ dv ¼ ðp2 þ q2 � 1Þ
Z
R

v2f ðv; tÞ dv
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and so for all t > 0 Z
R

f ðv; tÞ dv ¼
Z
R

f0ðvÞ dv;
Z
R

vf ðv; tÞ dv ¼ eðpþq�1Þt
Z
R

vf0ðvÞ dv;
Z
R

v2f ðv; tÞ dv ¼ eðp
2þq2�1Þt

Z
R

v2f0ðvÞ dv:

ð9Þ

So, mass and momentum (if initially zero) are likely to be preserved for all
pb q > 0, whereas energy could be preserved only if p2 þ q2 ¼ 1 and in the
other cases could grow to infinity or decrease to zero. In this paper we are going
to consider only the conservative case p2 þ q2 ¼ 1.

Concerning the Cauchy problem, the rigorous results of existence, uniqueness
and conservation laws are exactly the same for both the involutive and non invol-
utive conservative models (6) and (2).

Theorem 1 (Existence, uniqueness and conservation laws). We consider an
initial datum f0 b 0 satisfying the following assumptions:Z

R

f0ðvÞ dv ¼ 1;

Z
R

vf0ðvÞ dv ¼ 0;

Z
R

v2f0ðvÞ dv ¼ 1

and the following Cauchy problem:

qt f ðv; tÞ ¼
Z
R

� 1
J
f ðv�; tÞ f ðw�; tÞ � f ðv; tÞ f ðw; tÞ

�
dw

f ðv; 0Þ ¼ f0ðvÞ

8><
>:ð10Þ

where ðv�;w�Þ are the pre collisional velocities defined through the non involutive
relations (3) or the involutive ones (7) and J is the Jacobian of the transformation
ðv�;w�Þ 7! ðv;wÞ.

Then, there exists a unique non negative solution f a C1ð½0;lÞ;L1ðRÞÞ; more-
over, it satisfies for all t > 0:Z

R

f ðv; tÞ dv ¼ 1;

Z
R

vf ðv; tÞ dv ¼ 0;

Z
R

v2f ðv; tÞ dv ¼ 1:

The proof of this theorem follows the same lines as that for the Boltzmann
equation for Maxwellian molecules in the cut-o¤ case, which goes back to
Morgenstern [Mor54], [Mor55] (see also [Ark72]) and so we don’t recall here the
method.

It is straightforward that the normalized Maxwellian

MðvÞ ¼ 1ffiffiffiffiffi
2p

p e�v2=2
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is a stationary solution for the involutive model (6) satisfying all bounds on mass,
momentum and energy; one can check indeed through some calculations that it is
also a stationary solution for the non involutive model (2).

It is interesting to consider also the di¤erential equation satisfied by the Four-
ier transform of the solutions f ðtÞ of the two models, the involutive and the non
involutive one. First of all, one can consider a weak form of both equation (6)
and (2): for all j a CbðRÞ

d

dt

Z
R

f ðv; tÞjðvÞ dv ¼
Z
R

Z
R

f ðv; tÞ f ðw; tÞðjðv�Þ � jðvÞÞ dv dwð11Þ

(it is worth noticing that v� ¼ v 0� in collision rules (1) and (8)). So, both solutions
of the involutive and non involutive models are weak solutions of the same equa-
tion. Now, letting j ¼ e�ivx one gets the equation satisfied by the Fourier trans-
form of both solutions, which reads

qf̂f

qt
ðx; tÞ ¼ f̂f ðpx; tÞ f̂f ðqx; tÞ � f̂f ðx; tÞ f̂f ð0; tÞ:ð12Þ

It is now completely obvious that M̂MðxÞ ¼ e�x2=2 is a stationary solution of (12).
In addition to mass, momentum and energy, there is a fourth quantity which

is very meaningful for the Boltzmann equation and its simplified, involutives
models: the entropy, which reads, for f ðvÞb 0,

Hð f Þ ¼
Z
R

f ðvÞ log f ðvÞ dv:ð13Þ

We remark that for f satisfying

Z
R

v2f ðvÞ dv < l, the entropy Hð f Þ is actually

well defined since 0a

Z
R

f ðvÞ log� f ðvÞ dv < l (see for instance [Tos91]). Let
now

F2 ¼ gb 0;

Z
R

gðvÞ dv ¼ 1;

Z
R

v2gðvÞ dva 1

� �
:ð14Þ

It is straightforward that M a F2. A classical result called Gibbs’ Lemma (see for
instance [BPT88]) says that for all g a F2:

HðgÞbHðMÞ

and equality holds only if g ¼ M. So, since every solution f ðtÞ of the involutive
equation (6) satisfies f ðtÞ a F2 for all tb 0 we get Hð f ÞðtÞbHðMÞ for all tb 0.
The so called H theorem, states more precisely that the entropy of a solution
Hð f ÞðtÞ is non increasing as a function of t (we would like to precise that in a
physical framework, the entropy would be �Hð f ÞðtÞ).
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Let us recall the H Theorem in the Kac like involutive framework.

Theorem 2 (H Theorem for the involutive model in the even case). Let
f0 b 0 an even function satisfying the assumptions:

Z
R

f0ðvÞ dv ¼ 1;

Z
R

v2f0ðvÞ dv ¼ 1;

Z
R

f0ðvÞjlog f0ðvÞj dv < l:

Then, the solution f a C1ð½0;lÞ;L1ðRÞÞ of the involutive model (6) with f0 as
initial datum satisfies

f ðtÞ log f ðtÞ a L1ðRÞ; tb 0

and

Hð f ÞðtÞ ¼
Z
R

f ðv; tÞ log f ðv; tÞ dv

is non increasing as a function of t.

The classical proof of this theorem seems to rely strongly on the involutive char-
acter of the impact rule (6) and we will recall it later on. We would like to address
in this paper the following question: is the entropy H meaningful even in the non
involutive framework and in this case, is it possible to avoid involutiveness to
prove the H theorem? The answer is positive and one reason for that is quite
straightforward. Pareschi and Toscani in [PT06] underline that a Cauchy prob-
lem for the Fourier equation (12) has a unique solution in a suitable functional
space and this implies that the solutions of the two Cauchy problems (6) and (2)
are indeed the same. This argument, however simple it may be, does not seem to
have been remarked so far. Another simple proof can be obtained by applying an
argument introduced by Bobylev and Toscani in [BT92]. For a spatially homog-
enous Maxwellian gas, they proved that all convex functionals that satisfy the
so called sub-additivity for convolutions are non increasing in time along the
solution and the entropy functional satisfies this hypothesis. In this note we would
like to stress that other explanations can be given. In particular, the proof of the
H theorem does not depend indeed on the involutive nature of the transformation
(8) and relies on an inequality (see inequality (16)) satisfied by any function and
not only by the solutions of equations (6) or (2). This inequality is related to the
well-known Shannon’s entropy power inequality, and we will underline this link.
Moreover, we will deduce from the H-theorem the exponential L1 convergence of
a solution of both models (6) and (2) to the stationary solution M. We will check
all the details which are scattered in the literature since in the case under analysis
very few is known and the powerful machinery available for the Kac equation is
not allowed. Even though almost all the material contained in this note is already
known, we hope that pointing out the basic ingredients needed in order to prove
the strong convergence to the stationary state will be helpful with other kinetic
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models, dissipative for instance, where the stationary state is not the Maxwellian
and other entropy functionals have to be considered.

Acknowledgements. We would like to thank G. Toscani for many stimulating and fruitful

discussions.

2. H Theorem for the non involutive model

The rigourous proof of Theorem 2 is quite technical and follows once again the
same lines as for the Boltzmann equation ([Ark72]). Let us make nevertheless
some remarks to understand how it works. At a formal level, let us compute the
derivative in time of H. We will drop the time variable t which does not have any
role in the computation. Thanks to the conservation of the mass, we get

d

dt

Z
R

f ðvÞ log f ðvÞ dv ¼
Z
R

ðlog f ðvÞ þ 1Þqt f ðvÞ dv ¼
Z
R

log f ðvÞqt f ðvÞ dv

Z
R

Z
R

log f ðvÞ
� 1
J
f ðv 0�Þ f ðw 0

�Þ � f ðvÞ f ðwÞ
�
dv dw

ð15Þ

where J ¼ 1 and v 0�, w
0
� are like in (7). We stress that this expression makes sense

also for the non involutive model, with ðv�;w�Þ instead of ðv 0�;w 0
�Þ. Now perform-

ing the change of variables ðv;wÞ 7! ðv 0�;w 0
�Þ we getZ

R

Z
R

log f ðvÞ
� 1
J
f ðv 0�Þ f ðw 0

�Þ � f ðvÞ f ðwÞ
�
dv dw

¼
Z
R

Z
R

ðlog f ðv 0�Þ � log f ðvÞÞ f ðvÞ f ðwÞ dv dw:

So formally, the H function will be a non increasing function of t as soon as

Z
R

Z
R

ðlog f ðv 0�Þ � log f ðvÞÞ f ðvÞ f ðwÞ dv dwa 0

or more simply

Z
R

Z
R

log f ðv 0�Þ f ðvÞ f ðwÞ dv dwa

Z
R

f ðvÞ log f ðvÞ dv:ð16Þ

By performing one after the other the two changes of variables ðv;wÞ 7! ðw; vÞ
and ðv;wÞ 7! ðv;�wÞ and remembering that the solution issued from an even
initial datum is even itself (as one can check as a byproduct of the proof of exis-
tence) we get
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Z
R

Z
R

ðlog f ðv 0�Þ � log f ðvÞÞ f ðvÞ f ðwÞ dv dw

¼ 1

2

Z
R

Z
R

ðlog f ðv 0�Þ þ log f ðw 0�Þ � log f ðvÞ � log f ðwÞÞ f ðvÞ f ðwÞ dv dw

¼ 1

2

Z
R

Z
R

log
� f ðv 0�Þ f ðw 0�Þ

f ðvÞ f ðwÞ

�
f ðvÞ f ðwÞ dv dw:

By the conservation of the mass, which reads

Z
R

Z
R

ð f ðv 0�Þ f ðw 0
�Þ � f ðvÞ f ðwÞÞ dv dw

¼
Z
R

Z
R

� f ðv 0�Þ f ðw 0
�Þ

f ðvÞ f ðwÞ � 1
�
f ðvÞ f ðwÞ dv dw ¼ 0

we obtain

1

2

Z
R

Z
R

log
� f ðv 0�Þ f ðw 0�Þ

f ðvÞ f ðwÞ

�
f ðvÞ f ðwÞ dv dwð17Þ

¼ 1

2

Z
R

Z
R

log
� f ðv 0�Þ f ðw 0�Þ

f ðvÞ f ðwÞ

�
� f ðv 0�Þ f ðw 0

�Þ
f ðvÞ f ðwÞ þ 1

� �
f ðvÞ f ðwÞ dv dw:

We finally exploit the involutive property of the collisions (7), which means
ðv 0�;w 0

�Þ ¼ ðv 0�;w 0�Þ and the elementary inequality log x� xþ 1a 0 so that we
can get dH

dt ðtÞa 0. Once this formal calculation is performed, it is possible to
make it rigourous by an approximation procedure which proves in the end that
the H function is non increasing along the solution. What we actually proved
is something stronger: for all f ðvÞb 0, even, independent of the time t, the in-
equality (16) holds true.

Let us come back to the non involutive model (2) and the corresponding
Cauchy problem. As we have already recalled, the stationary solution of (2) is
again the Maxwellian MðvÞ ¼ 1ffiffiffiffi

2p
p e�v2=2 (given the same bounds on the initial

mass, momentum and energy). One could wonder whether in this case, the func-
tional H still has the physical meaning of an entropy, or there exists some other
functional which would be more adapted to this situation and which would be
proved to be minimized on the stationary state M. The answer of this question
lies in a paper by G. Toscani ([Tos99]), where he proved that if one looks for a
strongly convex functional on the class of probability densities with fixed mass
and energy and which assumes its minimum on a given function, there is only
one possible choice, depending strongly on the minimizer. So, in this case, the
choice is the H functional (13).

In order to prove that the H function is again decreasing along the solution of
the non involutive equation (2), we get
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dH

dt
ðtÞa 0 ,

Z
R

Z
R

log f ðv�Þ f ðvÞ f ðwÞ dv dwa

Z
R

f ðvÞ log f ðvÞ dv

Since v 0� ¼ v� as we already noticed, this is again inequality (16). Now, the colli-
sion rule (1) is not involutive and it wouldn’t be possible to repeat the same argu-
ment as before with the corresponding changes of variables. Nevertheless, from
inequality (16) onward we did not exploit the fact that f ðtÞ was a solution of
the involutive model so inequality (16) have been proved to be true also for even
solutions of the non involutive model (2) and we got the H Theorem in this
framework.

Theorem 3 (H Theorem for the non involutive model in the even case). Let
f0 b 0 an even function satisfying the assumptions:Z

R

f0ðvÞ dv ¼ 1;

Z
R

v2f0ðvÞ dv ¼ 1;

Z
R

f0ðvÞjlog f0ðvÞj dv < l:

Then, the solution f a C1ð½0;lÞ;L1ðRÞÞ of the non involutive model (2) with f0 as
initial datum satisfies

f ðtÞ log f ðtÞ a L1ðRÞ; tb 0

and

Hð f ÞðtÞ ¼
Z
R

f ðv; tÞ log f ðv; tÞ dv

is non increasing as a function of t.

Let us concentrate again on inequality (16), which we rewrite here explicitlyZ
R

Z
R

log f ðpvþ qwÞ f ðvÞ f ðwÞ dv dwa

Z
R

f ðvÞ log f ðvÞ dv:

The change of variables ðv;wÞ 7! ðpvþ qw;wÞ allows us to recognize in this in-
equality a convolution operator. Denoting fpðvÞ ¼ 1

p
f
	
v
p



, we actually getZ

R

fp � fqðvÞ log f ðvÞ dva
Z
R

f ðvÞ log f ðvÞ dv:ð18Þ

We would like now to remark that inequality (18) might be proved in a
completely di¤erent way. We begin by noticing that for all f b 0 such thatZ
R

f ðvÞ dv ¼ 1 the following inequality holds true:

Z
R

fp � fqðvÞ log f ðvÞ dva
Z
R

fp � fqðvÞ logð fp � fqÞðvÞ dv;ð19Þ
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this is a simple consequence of the convexity of the function z log z, which implies
for zb 0 z log zb z� 1 and so

Z
R

fp � fqðvÞ log f ðvÞ dv�
Z
R

fp � fqðvÞ logð fp � fqðvÞÞ dv

¼ �
Z
R

� fp � fqðvÞ
f ðvÞ log

fp � fqðvÞ
f ðvÞ

�
f ðvÞ dv

a

Z
R

�
1� fp � fqðvÞ

f ðvÞ

�
f ðvÞ dv

¼
Z
R

ð f ðvÞ � fp � fqðvÞÞ dv ¼ 0:

So, in order to prove inequality (16), it is enough to prove the stronger inequality

Z
R

fp � fqðvÞ logð fp � fqÞðvÞ dva
Z
R

f ðvÞ log f ðvÞ dv:ð20Þ

But this inequality is a particular case of the well-known Shannon’s entropy
power inequality ([Sha48], [Bla65], [Sta59], [Tos91]) which reads as follows.

Theorem 4 (Shannon’s inequality). Let f b 0, gb 0 such that

Z
R

f ðvÞ dv ¼Z
R

gðvÞ dv ¼ 1 and that

Z
R

f ðvÞðv2 þ log f ðvÞÞ dv < l;

Z
R

gðvÞðv2 þ log gðvÞÞ dv < l:

The following inequality holds true

e�2
R
R
f �gðvÞ logð f �gÞðvÞ dv

b e�2
R
R
f ðvÞ log f ðvÞ dv þ e�2

R
R
gðvÞ log gðvÞ dvð21Þ

with equality if and only if f and g are suitable Gaussian functions.

Letting f ¼ fp, g ¼ fq and remembering that

Z
R

fpðvÞ dv ¼
Z
R

fqðvÞ dv ¼ 1, we
obtain Z

R

fpðvÞ log fpðvÞ dv ¼ log
1

p
þ
Z
R

f ðvÞ log f ðvÞ dv
Z
R

fqðvÞ log fqðvÞ dv ¼ log
1

q
þ
Z
R

f ðvÞ log f ðvÞ dv
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and so, by (21) and p2 þ q2 ¼ 1 we get

�2

Z
R

fp � fqðvÞ logð fp � fqÞðvÞ dv

b logðe logðp2Þ�2
R
R
f ðvÞ log f ðvÞ dv þ e logðq

2Þ�2
R
R
f ðvÞ log f ðvÞ dvÞ

¼ logðe�2
R
R
f ðvÞ log f ðvÞ dvÞ ¼ �2

Z
R

f ðvÞ log f ðvÞ dv

which is nothing but inequality (20).

2.1. The Fisher Information

We would like to recall here another functional: the Fisher information, which
reads

Ið f Þ ¼
Z
R

ð f 0ðvÞÞ2

f ðvÞ dv ¼ 4

Z
R

� d

dv

ffiffiffiffiffiffiffiffiffi
f ðvÞ

p �2
dv:

In the classical case of the Kac equation, Mc Kean proved in [McK66] that
the Fisher information is a decreasing functional. His proof depends on the
form of the Kac equation and does not apply unmodified to the Kac-like models.
Nevertheless, the result still holds true for any solution f ðtÞ of the Kac-like in-
volutive model (6) or the non involutive one (2).

Proposition 5. Let f0 b 0 an even function satisfying the assumptions:

Z
R

f0ðvÞ dv ¼ 1;

Z
R

v2f0ðvÞ dv ¼ 1;

Z
R

f0ðvÞ jlog f0ðvÞj dv < l;

Z
R

� d

dv

ffiffiffiffiffiffiffiffiffiffi
f0ðvÞ

p �2
dv < l:

Then, the solutions f a C1ð½0;lÞ;L1ðRÞÞ of both Kac-like models (2) and (6) with
f0 as initial datum satisfy

Z
R

� d

dv

ffiffiffiffiffiffiffiffiffiffiffiffi
f ðv; tÞ

p �2
dv < l; tb 0

and

Ið f ÞðtÞ ¼
Z
R

� d

dv

ffiffiffiffiffiffiffiffiffiffiffiffi
f ðv; tÞ

p �2
dv

is non increasing as a function of t.
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The proof relies on the following result, relating the H functional to the
Fisher information for a function f ðvÞ, established by Mc Kean in [McK66]
(we underline that in the original paper by Mc Kean, the H functional is

�
Z
R

f ðvÞ log f ðvÞ dv).

Proposition 6 ([McK66]). Let f b 0 such that

Z
R

f ðvÞ dv ¼ 1,

Z
R

v2f ðvÞ dv
< l. Let

Hð f Þ ¼
Z
R

f ðvÞ log f ðvÞ dv; Ið f Þ ¼
Z
R

ð f 0ðvÞÞ2

f ðvÞ dv

and fdðvÞ ¼ f � jdðvÞ, where jðvÞ ¼ 1ffiffiffiffi
2p

p e�v2=2 and jd ¼ 1ffiffi
d

p j
	

vffiffi
d

p


. Then, Hð fdÞ is a

decreasing convex function of db 0 with slope � 1
2 Ið f Þ:

lim
d#0

1

d
ðHð fdÞ �Hð f ÞÞ ¼ � 1

2
Ið f Þ

and Ið f Þ < l only if Hð f Þ < l.

Proof of Proposition 5. We are going to explain how to modify the classical
proof by Mc Kean. As we have already stressed, the following equality (17) holds
true for both models:

d

dt
Hð f ÞðtÞ ¼ � 1

2

Z
R

Z
R

f ðv 0�Þ f ðw 0
�Þ

f ðvÞ f ðwÞ � log
� f ðv 0�Þ f ðw 0�Þ

f ðvÞ f ðwÞ

�
� 1

� �
f ðvÞ f ðwÞ dv dw

where, following the notations already used in the Introduction,

v 0� ¼ v 0� ¼ pvþ qw

w 0� ¼ w 0
� ¼ qv� pw

�

and we dropped the t variable just in order to simplify the expression. In what
follows we will write v� instead of v 0� ¼ v 0� and w� instead of w 0� ¼ w 0

�. We are
going to prove that for d > 0 fixed

d

dt
ðHð f ÞðtÞ �Hð fdÞðtÞÞa 0; t > 0

which reads preciselyZ
v AR

Z
w AR

� fdðv�Þ fdðw�Þ
fdðvÞ fdðwÞ

� log
� fdðv�Þ fdðw�Þ

fdðvÞ fdðwÞ

�
� 1
�
fdðvÞ fdðwÞ dv dwð22Þ

a

Z
v AR

Z
w AR

� f ðv�Þ f ðw�Þ
f ðvÞ f ðwÞ � log

� f ðv�Þ f ðw�Þ
f ðvÞ f ðwÞ

�
� 1
�
f ðvÞ f ðwÞ dv dw:
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Assuming therefore that (22) holds true, we get

ðHð f Þðt1Þ �Hð fdÞðt1ÞÞ � ðHð f Þðt2Þ �Hð fdÞðt2ÞÞa 0; t1 b t2

and so, by Proposition 6,

lim
d#0

1

d
ððHð f Þðt1Þ �Hð fdÞðt1ÞÞ � ðHð f Þðt2Þ �Hð fdÞðt2ÞÞÞ

¼ 1

2
ðIð f Þðt1Þ � Ið f Þðt2ÞÞa 0:

That means precisely that Ið f ÞðtÞ is decreasing in time.
In order to prove inequality (22), we remark first that for v, w, x and h in R we

have

ðv� � x�Þ2 þ ðw� � h�Þ
2 ¼ ðv� xÞ2 þ ðw� hÞ2:ð23Þ

Since the function gðsÞ ¼ s� log s� 1 is convex on s > 0 we would like to apply
Jensen’s inequality. We write for fixed v;w a R:

fdðv�Þ fdðw�Þ
fdðvÞ fdðwÞ

¼
Z
x AR

Z
h AR

e�ðv��xÞ2=2dffiffiffiffiffiffiffiffi
2pd

p e�ðw��hÞ2=2dffiffiffiffiffiffiffiffi
2pd

p f ðxÞ f ðhÞ
fdðvÞ fdðwÞ

dx dh ¼ A:

Performing the change of variables ðv;wÞ 7! ðv�;w�Þ which is involutive and
using equality (23), we get

A ¼
Z
x AR

Z
h AR

e�ðv��x�Þ2=2dffiffiffiffiffiffiffiffi
2pd

p e�ðw��h�Þ2=2dffiffiffiffiffiffiffiffi
2pd

p f ðx�Þ f ðh�Þ
fdðvÞ fdðwÞ

dx dh

¼
Z
x AR

Z
h AR

f ðx�Þ f ðh�Þ
f ðxÞ f ðhÞ

e�ðv�xÞ2=2dffiffiffiffiffiffiffiffi
2pd

p e�ðw�hÞ2=2dffiffiffiffiffiffiffiffi
2pd

p f ðxÞ f ðhÞ
fdðvÞ fdðwÞ

dx dh:

Now, for all v;w a R fixed we denote

dmðx; hÞv;w ¼ e�ðv�xÞ2=2dffiffiffiffiffiffiffiffi
2pd

p e�ðw�hÞ2=2dffiffiffiffiffiffiffiffi
2pd

p f ðxÞ f ðhÞ
fdðvÞ fdðwÞ

dxdh

and so

A ¼
Z
x AR

Z
h AR

f ðx�Þ f ðh�Þ
f ðxÞ f ðhÞ dmðx; hÞv;w

with Z
x AR

Z
h AR

dmðx; hÞv;w ¼ 1:
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Since g is convex, by Jensen’s inequality we get

g
� fdðv�Þ fdðw�Þ

fdðvÞ fdðwÞ

�
a

Z
x AR

Z
h AR

g
� f ðx�Þ f ðh�Þ

f ðxÞ f ðhÞ

�
dmðx; hÞv;w

and so

fdðvÞ fdðwÞg
� fdðv�Þ fdðw�Þ

fdðvÞ fdðwÞ

�

a

Z
x AR

Z
h AR

fdðvÞ fdðwÞ
� f ðx�Þ f ðh�Þ

f ðxÞ f ðhÞ � log
� f ðx�Þ f ðh�Þ

f ðxÞ f ðhÞ

�
� 1
�
dmðx; hÞv;w

¼
Z
x AR

Z
h AR

� f ðx�Þ f ðh�Þ
f ðxÞ f ðhÞ � log

� f ðx�Þ f ðh�Þ
f ðxÞ f ðhÞ

�
� 1
�
f ðxÞ f ðhÞ

� e�ðv�xÞ2=2dffiffiffiffiffiffiffiffi
2pd

p e�ðw�hÞ2=2dffiffiffiffiffiffiffiffi
2pd

p dx dh:

Integrating in v and w we get inequality (22) (with x, h instead of v and w).

Remark. A simpler proof of the non increasing property of the Fisher informa-
tion can be obtained as for the entropy by applying the general result by Bobylev
and Toscani [BT92].

3. An application: exponential convergence in L1

to the stationary state

We are interested now in the long time behavior of the solution f with respect to
the stationary solution. We would like to show that the solution f ðtÞ of the non
involutive equation (2) satisfies the following convergence result.

Theorem 7. Let pb q > 0 such that p2 þ q2 ¼ 1. If f0 is an even, positive func-
tion satisfying the following bounds: for s a ð2; 3� and r > 0 suitably chosen,

Z
R

f0ðvÞ dv ¼ 1;

Z
R

v2f0ðvÞ dv ¼ 1;

Z
R

jvjsf0ðvÞ dv < l;

jj
ffiffiffiffi
f0

p
jjH 1 < l; jj f0jjH r < l;
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then the solution f ðtÞ of the Cauchy problem for the non involutive model (2) con-
verges exponentially fast to the stationary solution in L1. More precisely, there
exist two positive constants C1, C2 such that

jj f ðtÞ �MjjL1 aC1e
C2ðpsþqs�1Þt; tb 0:

In [PT06], L. Pareschi and G. Toscani have proved that both the solutions
of (6) and (2) converge exponentially fast to the stationary solution M in a
Fourier based distance. Let us recall their framework. Let s > 0, As ¼ fk a N :
0a ka bscg (or As ¼ fk a N : 0a ka s� 1g if s a Nnf0g) and Ik be fixed non
negative numbers for k a As. We introduce

Ms ¼ f b 0 :

Z
R

ð1þ jvjsÞ f ðvÞ dv < l;

Z
R

vkf ðvÞ dv ¼ Ik; k a Ak

� �

and let

dsð f ; gÞ :¼ sup
x AR

j f̂f ðxÞ � ĝgðxÞj
jxjs :

It is easy to show that if f ; g a Ms, then dsð f ; gÞ < l. So, if f0 is the initial datum

of the Cauchy problem (10),

Z
R

jvjsf0ðvÞ dv < l for 2 < sa 3 and I0 ¼ 1, I1 ¼ 0,

I2 ¼ 1, then we get dsð f0;MÞ < l. It is worth remembering that Pareschi and

Toscani in [PT06] proved also that the s-th moment

Z
R

jvjsf ðv; tÞ dv is uniformly
bounded in time along the solution f ðtÞ.

The convergence result by Pareschi and Toscani is as follows.

Theorem 8 (Weak Fourier-based convergence [PT06]). Let 2 < sa 3; we
consider an initial datum f0 b 0 satisfying the assumptions:

Z
R

f0ðvÞ dv ¼ 1;

Z
R

vf0ðvÞ dv ¼ 0;

Z
R

v2f0ðvÞ dv ¼ 1;

Z
R

jvjsf0ðvÞ dv < l

and the solutions f a C1ð½0;lÞ;L1ðRÞÞ of the Cauchy problems (10) for both
the non involutive and involutive models and MðvÞ ¼ 1ffiffiffiffi

2p
p e�v2=2. Then, we get

dsð f ðtÞ;MÞa eðp
sþqs�1Þtdsð f0;MÞ; tb 0:

In order to convert this weak Fourier based convergence of f to the stationary
state into a strong L1, one possible method, which has been successfully per-
formed in several papers ([CGT99], [BCT05], [CT06]) is the following: starting
from a smooth initial datum (belonging for instance to some Sobolev space) one
proves first the uniform propagation of the smoothness along the solution and

207remarks on the H theorem for a non involutive boltzmann like kinetic model



then, by interpolating between the very weak Fourier based distance decreasing
exponentially fast and the strong uniform bound, one gets the L1 distance de-
creasing exponentially fast at a rate depending on the spaces involved.

Proof of Theorem 7. The proof of Theorem 7 is classical and is detailed for
the Kac equation in [CGT99]. Nevertheless we go here through this proof for the
reader’s convenience, because there are a few points which are scattered in the
literature and we found it not trivial to track every detail. First of all, it is easy
to prove the two following interpolation bounds (see Theorems 4.1 and 4.2 in
[CGT99]): for s a ð2; 3�, there exists a positive constant C such that

jjhjjL1 aCjjhjj2s=ð1þ2sÞ
L2 jj jvjshjj1=ð1þ2sÞ

L1

and there exist positive constants M, N, a and b such that

jjhjjL2 aC
�
sup
R

jĥhðxÞj
jxjs

�a
ðjjhjjHM þ jjhjjHN Þb:

So, letting h ¼ f ðtÞ �M, we get

jj f ðtÞ �MjjL1 aCdsð f ðtÞ;MÞ ~aaðjj f ðtÞjjHM þ jj f ðtÞjjHN þ jjMjjHM

þ jjMjjHN Þ
~bbðjj jvjsf ðtÞjjL1 þ jj jvjsMjjL1Þ~gg

for suitable exponents ~aa, ~bb, ~gg. Therefore, knowing the exponential convergence of
f to M in the ds distance as in Theorem 8 and the uniform boundedness of the
s-th moment ([PT06]), we will get the L1 exponential convergence if we are able
to prove the uniform boundedness of f in a suitable Sobolev spaceH r. Of course,
we need to assume f0 a H r.

Let us recall how to prove the uniform boundedness of f in a Sobolev space
H r. First of all it is easy to prove that if f0 a H r, than f ðtÞ a H r for all t > 0,
without any uniformity in time. The goal is therefore to get the following di¤er-
ential inequality: for two positive constants H and K

d

dt
jj f ðtÞjj2H r a�Hjj f ðtÞjj2H r þ K ; tb t0ð24Þ

so that

jj f ðtÞjj2H r aCmaxðjj f ðt0Þjj2H r ; 1Þ; tb t0:

In order to get inequality (24), we consider Equation (2) in the Fourier variable

qf̂f

qt
ðx; tÞ ¼ f̂f ðpx; tÞ f̂f ðqx; tÞ � f̂f ðx; tÞ
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where f̂f is a real (because f is even) and write

d

dt
jj f ðtÞjj2H r ¼

d

dt

Z
R

jxj2rf̂f ðx; tÞ2 dx

¼ 2

Z
R

jxj2r f̂f ðx; tÞqt f̂f ðx; tÞ dx

¼ 2

Z
R

jxj2r f̂f ðx; tÞð f̂f ðpx; tÞ f̂f ðqx; tÞ � f̂f ðx; tÞÞ dx

¼ 2

Z
R

jxj2r f̂f ðx; tÞ f̂f ðpx; tÞ f̂f ðqx; tÞ dx� 2

Z
R

jxj2rf̂f ðx; tÞ2 dx

¼ 2

Z
R

jxj2r f̂f ðx; tÞ f̂f ðpx; tÞ f̂f ðqx; tÞ dx� 2jj f ðtÞjj2H r

a�2jj f ðtÞjj2H r þ
Z
R

jxj2rf̂f ðx; tÞ2 dxþ
Z
R

jxj2rf̂f ðpx; tÞ2f̂f ðqx; tÞ2 dx

¼ �jj f ðtÞjj2H r þ
Z
R

jxj2r f̂f ðpx; tÞ2f̂f ðqx; tÞ2 dx:

Now, it would be enough to obtain the following inequality

Z
R

jxj2r f̂f ðpx; tÞ2f̂f ðqx; tÞ2 dxa 1

2
jj f ðtÞjj2H r þ K; tb t0ð25Þ

where K > 0 is independent of t. We split the integral in (25) into two parts

Z
R

jxj2rf̂f ðpx; tÞ2 f̂f ðqx; tÞ2 dx ¼
Z
jxjaR

þ
Z
jxj>R

¼ Aþ B

where R will be chosen later. Let us estimate first the term in A. Since
j f̂f ðx; tÞja 1 for x a R and tb 0 we simply get

Z
jxjaR

jxj2hf̂f ðpx; tÞ2f̂f ðqx; tÞ2 dx

a

Z
jxjaR

jxj2h dx ¼ 2

2hþ 1
R2hþ1; tb 0:

Let us come to the term in B, where we are going to exploit the H functional. It is
crucial that not only Hð f ÞðtÞ is a decreasing function, but more precisely that

lim
t!l

Hð f ÞðtÞ ¼ HðMÞð26Þ
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where M is the Maxwellian MðvÞ ¼ 1ffiffiffiffi
2p

p e�v2=2. We will come back to this point
afterward. As a consequence, thanks to the Csiszár-Kullback-Pinsker inequality

jj f ðtÞ �Mjj2L1 a 2ðHð f ÞðtÞ �HðMÞÞ; t > 0

we get

j f̂f ðx; tÞ � e�x2=2j2 a 2ðHð f ÞðtÞ �HðMÞÞ; x a R; t > 0

so that, for all e > 0 there exists t0 > 0 such that

f̂f ðx; tÞa eþ e�x2=2; x a R; tb t0:

We remark therefore that

j f̂f ðpx; tÞja eþ e�ðpxÞ2=2
a eþ e�ðpRÞ2=2; jxj > R; tb t0

so, if R2 ¼ 2
p2

log 1
e
we get

j f̂f ðpx; tÞja 2e; jxj > R; tb t0:

We can deduce for tb t0:Z
jxj>R

jxj2rf̂f ðpx; tÞ2f̂f ðqx; tÞ2 dxa ð2eÞ2
Z
jxj>R

jxj2rf̂f ðqx; tÞ2 dx

a
e

q2rþ1

Z
R

jxj2rf̂f ðx; tÞ2 dx ¼ ejj f ðtÞjj2H r :

We have obtainedZ
R

jxj2rf̂f ðpx; tÞ2f̂f ðqx; tÞ2 dxa ejj f ðtÞjj2H r þ
2

2hþ 1
R2hþ1; tb t0:

Letting e be fixed such that ea 1
2 , we get the desired estimate.

At this point, let us recall how to prove that

lim
t!l

Hð f ÞðtÞ ¼ HðMÞð27Þ

where M is the Maxwellian MðvÞ ¼ 1ffiffiffiffi
2p

p e�v2=2.

A classical procedure shows that if there exists s > 2 such that jj jvjsf ðtÞjjL1 aC
for all t > 0, then f ðtÞ * M for t ! l in weak L1 ([Mor55]) and so HðMÞa
lim inf t!lHð f ÞðtÞ ¼ limt!l Hð f ÞðtÞ ([Elm84]).

In order to conclude that limt!l Hð f ÞðtÞ ¼ HðMÞ one can pass through an
approximation procedure by convolution with a Gaussian kernel, as is done for
example in [Mor55]. We recall hereafter the steps and the suitable references for
the reader’s convenience.
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• First of all we remark that among all the positive, even functions with pre-
scribed values of mass, momentum and energy, inequality (16) is an equality if
and only if f is a Gaussian function. This is due to the fact that in (17) we have
f ðv 0�Þ f ðw 0�Þ
f ðvÞ f ðwÞ ¼ 1 if and only if f is a Gaussian function (see [Vil02], chapter 2.C,

section 4.3).

• Then, for d > 0 fixed, we consider the convolution fdðtÞ ¼ f ðtÞ � jd where
jd ¼ 1ffiffiffiffiffiffi

2pd
p e�v2=2d and we remark that fdðtÞ is the solution of Equation (2) with

f0 � jd as initial data. In this case, the energy becomesZ
R

Z
R

v2f ðv� wÞjdðwÞ dw dv

¼
Z
R

Z
R

ðv� wþ wÞ2f ðv� wÞjdðwÞ dw dv

¼
Z
R

Z
R

ðv� wÞ2f ðv� wÞjdðwÞ dw dvþ
Z
R

Z
R

f ðv� wÞw2jdðwÞ dw dv

¼
Z
R

jdðwÞ
�Z

R

ðv� wÞ2f ðv� wÞ dv
�
dwþ

Z
R

w2jdðwÞ
�Z

R

f ðv� wÞ dv
�
dw

¼ 1þ d

Z
R

1ffiffiffiffiffi
2p

p v2e�v2=2 dv ¼ 1þ d:

• We remark that since f ðtÞ * M for t ! l in weak L1, then fd ! M � jd uni-
formly on compact sets and therefore limt!lHð fdÞ ¼ HðM � jdÞ, for fixed d. It
is crucial here to stress that M � jd is a Gaussian function itself (see [Mor55]).

• Since limd!0 M � jd ¼ M in L1, it is possibile to prove that limd!0 HðM � jdÞ
¼ HðMÞ (see [Tos91]).

• Following McKean [McK66], we remark that Hð fdÞaHð f Þ for all d > 0.

• For t > 0 fixed, thanks to Proposition 6 we write

0aHð f ÞðtÞ �Hð fdÞðtÞ ¼
1

2

Z d

r¼0

Iðð frÞðtÞÞ dr

and remembering that Iðð frÞðtÞÞa Ið f ÞðtÞ ([McK66]) and that Ið f ÞðtÞ is de-
creasing in t, as we showed in Proposition 5, we can get

1

2

Z d

r¼0

Iðð frÞðtÞÞ dra
1

2

Z d

r¼0

Iðð f ðtÞÞ dr

a
1

2

Z d

r¼0

Ið f0Þ dr ¼
1

2
dIð f0ÞÞ ! 0; d ! 0

and so limd!0ðHð f ÞðtÞ �Hð fdÞðtÞÞ ¼ 0 uniformly in t > 0. We stress that it
is essential here to assume jj

ffiffiffiffi
f0

p
jjH 1 < l for the Fisher functional to be finite

along the solution.
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• The last step is as follows. Let e > 0; we get

jHð f ÞðtÞ �HðMÞja jHð f ÞðtÞ �Hð fdÞðtÞj þ jHð fdÞðtÞ �HðM � jdÞj

þ jHðM � jdÞ �HðMÞja 3e

for da d0ðeÞ fixed and tb t0ðeÞ and this achieves the goal.
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