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ABSTRACT. — In this paper we deal with the action of the symmetric group on the cohomology of
the configuration space C,(d) of n points in R¢. This topic has been studied by several authors and it
is well-known that for d even H*(C,(d); C) = 21ndSS;’ 1 while, for d odd, H*(C,(d);C) = CS,,.

On the cohomology algebra H*(C,(d);C) there is, in addition to the natural S,-action, an
extended action of S,1; this was shown for the case when d is even by Mathieu, Robinson and
Whitehouse and the second author using three different methods. For the case when d is odd it was
shown by Mathieu (anyway we will give an elementary algebraic construction of the extended action
for this case).

The purpose of this article is to present some results that can be obtained, in an elementary way,
exploiting the interplay between the extended action and the standard action. Among these we will
recall a quick proof for the formula cited above for the case when d is even and show how to extend
this proof to the case when d is odd. We will also show how to locate among the homogeneous com-
ponents of the graded algebra H*(C,(d); C) the copies of the standard, sign and standard tensor sign
representations and we will give explicit formulas for both the extended and the canonical actions on
the low-degree cohomology modules.

KEey worbps: Configuration spaces, symmetric group, representations.

AMS SUBJECT CLASSIFICATION: 20C30, 55R80.

1. INTRODUCTION

We are concerned with the action of the symmetric group S, on the cohomology
algebra of the configuration space of n points in R?, that is the space

Co(d) = {(p1,....pn) € (RD)" 2 p;i # p;,Vi # j}.

S, acts on C,(d) permuting coordinates and this action induces an action on the
cohomology algebra H*(C,(d); C).

In the particular case d = 2, C,(2) = M(%,) is the complement of the (com-
plex) braid arrangement %,. In [Arn69] Arnol’d gave a presentation for the coho-
mology algebra H*(C,(2); C); he proved that it is the skew-commutative algebra
with generators {4, ; : i < j} of degree 1 and relations:

(1) Ai,in,k — A,‘JAjﬁk —+ Ai,kAjA,k = 0, Vi < ] < k.

This result can be generalized to hyperplane arrangements (cfr. [OS80], [OT92],
[Yuz01] and [BZ92]).
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The action of ¢ € S, on H*(C,(2);C) can be described as g4, ; = A, 5 and
was studied by Lehrer and Solomon in [LS86] and by Lehrer in [Leh87]. Among
other results they proved a formula for the character of this action; precisely the
following holds:

2) XH*(C,(2);C) = 2Indgy (1)

where 1 is the character of the trivial representation of S,. In [Gai96] the second
author gave a quick proof for this formula introducing an action of S,.; on
H*(C,(2); C) which restricts to the natural S, action (this action is called the
extended or hidden action). A similar approach was exploited by Mathieu in
[Mat96] and by Robinson and Whitehouse in [RW96].

In the general case, when d > 2, the algebra H*(C,(d);C) can be presented
as follows (cfr. [CLM76] and [CT93]): it is the associative graded algebra with
generators {4;; : 1 <i,j <n} (with i # j; for convenience of notation we allow
i = j and then 4;; = 0) of degree d — 1 and relations

(3) Aij=(=1)"4;,,
4) AijAne = (1) Ay Ay ),
(5) A[,_/A[,k = Ak,j(Ai,k — A[/) for 1 <i<n and ] < k

Again these results generalize to the complement of a subspace arrangement (cfr.
[FZ00], [dLS01] and [DGMO00)).

The action of S, on H*(C,(d);C) for arbitrary d was studied by Cohen and
Taylor in [CT93] and by Lehrer in [Leh00]. Lehrer provided formulas for the gen-
eralized Poincaré polynomials associated to the representations H*(C,(d);C). It
turns out that there is a qualitative difference between the case when d is even and
the case when d is odd. The argument for the case d = 2 translates literally to the
case when d is even (cfr. [Leh00]) and formula (2) still holds. Also the construction
of the extended action can be translated to the case when d is even. For the case
when d is odd both Cohen and Taylor in [CT93] and Lehrer in [Leh00] proved,
with different arguments, that H*(C,(d); C) is the regular representation CS,.

We will describe (section 2) in an elementary way an S,.; action on
H*(C,(d); C) for the case when d is odd (the same action was pointed out with
a different method in [Mat96]) and use it in section 3 to prove quickly some results
of [CT93] and [Leh00]. In addition we will show how the extended action can be
used, both in the case when d is even and in the case when d is odd, to locate the
copies of the standard, sign and standard tensor sign representations of S, on
the homogeneous components H*“~1)(C,(d); C) (section 4) and to prove explicit
formulas for the decomposition of the degrees d — 1 and 2(d — 1) (section 5).

2. THE EXTENDED S, ;| ACTION

We now discuss the definition of an extended action on H*(C,(d);C). We dis-
tinguish the case when d is odd and the case when d is even. In the former
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case we see from relations (3)—(5) that there is an isomorphism of graded S,-
modules

(6) H'(C,(d);C) — H'(G,(2);C) ® 1

where 1 is the graded S,-module whose only non-zero component is the trivial
representation at degree d — 1. There are (at least) three different ways to ex-
tend the action of S, on H*(C,(2);C) to an S,4i-action (see [Gai96], [Mat96]
and [RW96)); the isomorphism (6) allows us to carry this extended action to

H*(C,(d); C).
In the case when d > 3 is odd we can rewrite the relations (3)—(5) as follows:
Aij = —4j,
Ai jAp i = AnrAi j,
A jAik — AijAj i+ AikAj e =0

We first look at the degree d — 1; let V' = C" be the permutation representa-
tion, we have an equivariant isomorphism of .S, modules

NV — H*N(C,(d); C)
e; N\ ¢ — Ai,j-

The action of S,, on V' can be extended to an S, -action; from Pieri’s rule we
see that any extended action must be isomorphic to the standard representation
of Sy, that is V{, 1) = ker(xo + -+ x,) S C"!'. We choose a basis for Vin 1)
of elements {vy,...,v,} where v; = ¢; — e; identifying S, = {o € S,;1 : 6(0) = 0}
we have an S,-equivariant isomorphism
Reséj*‘ Vin1y =V

v ¢

(7)

and we can define the S, action on V" as the unique action that makes (7) into
an equivariant isomorphism V, 1) — V.

The S, action on V' induces an S, action on A V ~ HI '(C,(d);C). We
can describe this action as follows: if o € S, then 64, ; = A, , and

(8) 0,04 ;=4 —A1;+A1; ifl<i<j
©) (0,1)4y ;= —Au .
These formulas are obtained easily from the observations that (0,1)(v; Av;) =
(v —v1) A (v; —v1) when 1 <i < jand (0,1)(v; Avj) = —v1 A (v; — 01).

In particular we are able to decompose H¢~!(C,(d); C) for every n and d odd
(d = 3):
PROPOSITION 1. There is an isomorphism of S,.1-modules

2
AVi1) = Vier,1,1)-

12

H"Y(C(d); C)
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REMARK 1. Using Pieri’s rules we obtain the following isomorphism of S,-
modules

H*(Cy(d); C) = Viee1,1) @ Vin2.1,1)-
From relations (3)—(5) we see that there is an equivariant isomorphism
H*(Cy(d);C) = S(H" 1 (C,(d); C))/1n.a

where S(H?~'(C,(d); C)) is the symmetric algebra on H~'(C,(d);C) and I, 4 is
the ideal of relations:

I”hd = <A,"’in7k — A/(7_1'(A[7k — Ai,j): for 1 <i<n and ] < k>

In particular, in order to extend the S, action on H*(C,(d);C) we only need
to prove that the ideal [,,; is invariant under the action of S,;; on
S(H*'(C,(d); C)). This is indeed the case and is proved with a short explicit
computation. One has to check the equalities (in H*(C,(d); C))

(0, 1)A4; jA; k= (0, 1) Ay j(Aix — Aij)-

We notice that, since the expression above is symmetric in j and k, it suffices to
distinguish three cases: the case when i = 1, the case when j =1 and the case
when i, j, k # 1.

3. THE CHARACTER OF THE S, ACTION ON H*(C,(d); C)

In this section we will recall some results and proofs from [Gai96], [Mat96] and
[RW96] and use them to show a quick proof of formula H*(C,(d);C) = CS, for
d odd.

When d is even isomorphism (6) provides us an analogous of [Gai96, Theorem
4.1] (see also [Mat96] and [RW96)), i.e.

H*D(Cy(d); ©) = HMD(C,1(d); ©) @ (H*V=D(C, 1 (d); C) ® Vinoi 1))

which connects the canonical S,-action (on the left) with the extended S,-action
on H*(C,_1(d); C) (on the right).

Consider now the case when d is odd; let 7 : H*(C,—;(d); C) — H*(C,(d);C)
be the map 4; ; — A, ; (i.e. the map induced by the projection on the first n — 1
factors C,(d) — C,—1(d)). If we call s; = (j, j + 1) € S,+1 we have from formulas
(8) and (9) that the map # is {so, . .., S,_2 y-equivariant. Recall the following well
known result (see [CT93]):

PROPOSITION 2. The algebra H*(C,(d); C) has a basis given by the elements
Ai]aleiZ:jZ s Ai/cvjk

withiy < jpand 1 < ji < o < -+ < jr < n.
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Such elements are usually called admissible monomials. We will write y(n, k)
for the character of the action of S, on H¥(C,(d); C) and j(n, k) for the character
of the extended action of S,,; on H*(C,(d); C).

With these ingredients we can translate almost verbatim the proof of [Gai96,
Theorem 4.1] to obtain the following result, which we state for arbitrary d > 2
(see also [Mat96, Theorem 4.4]).

THEOREM 3. For any n, k (and for any d > 2) it holds:
ymk)=yn—1,k)+ py(n—1k—1),
where p, is the character of the standard representation of S,,.

Proor. We discuss only the case when d is odd. Consider the {sg,...,S,_2>-
submodule Q, | x = n(H*(C,_1(d); C)) € H*(C,(d); C). We can write

(10) H*(Co(d);C) = @ 1k ®N - Q4
where N = 6—)" 1CCA, » 18 certainly {sy,...,s,_oy-invariant but, in general, is not
an <{sg, ..., 2> submodule.

Now cons1der the case k = 1, we have

Hl(Cn(d)7(D) = anl,l ®N = anl,l ®T

where 7' is an {so, ..., S,_2y-invariant complement of Q,_; | (in particular its re-
striction to <sy,...,s, 2y is isomorphic to N). But S,,_; = {s1,..., s, 2 permutes
the elements A4y ,,...,A,-1 , and therefore

Resg' TNV, 1) ® Vi

where V,_y) is the trivial representation and V{,_, 1) is the standard representa-
tion. By Pieri’s rule we have T" = V(,_; 1) as S,-module.
We can still write

HY(Cy(d);C) =Qu 1 s ®T - Qp 141,

indeed we have 4;, € H'(C,(d);C) = A, = yl( ) + yl( with ylw € Q, 11 and

yf e T. Now let z = zo + Yo Ajnzj € Hk( w(d); C) with zy € Q,_; x and for
Jj >0,z €Q, 1 1; then we have

n n
1 2
z=z0+ ) 15+ ) 0y
J=1 =1

J=
——
€1k eT-Q 1 k1

Therefore H*(C,(d);C) = Q1+ T-Q, 1,1 and the sum is direct by a di-
mension argument. In particular we have dim7" - Q,_; ,—; = dim(7 ® Q1 x-1)
and therefore there is an equivariant isomorphism 7" - Q,_j 1 = T ® Q1 k1.
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We have proved a decomposition of <{sy,...,s, > y-modules
H*(C,(d);C) = H*(C,1(d); C) ® (P, ® H*'(C,_1(d); C)).

Now consider the subgroups H, = {sg,...,8,—2y and Hy = {s1,...,8,—1 of S;.1;
these are conjugate subgroups and therefore

Resy;' H¥(C,(d); C) = Resj;" H*(C,(d); C)
and the term on the right is the natural S, action on H*(C,(d); C). O
As a consequence we immediately have the following.

COROLLARY 4. For any n>?2 and any d > 2 the following equality of S,-
modules holds:

H*(C,(d);C) = Indg" H*(Cy-1(d); C).

ProOOF. Cally, = ,’j;(l) x(n, k) the character of the action of S,, on H*(C,(d); C)

and y, = E,’;é 7(n, k) the character of the extended action. Then from theorem 3
and from the fact that y(—1,n — 1) =y(n — 1,n — 1) = 0 we have

T
L

n—1

Xn = ZX(nvk) = ()Z(n - lvk) +pni(n —1,k— 1)) = (1 +pn>in—1'
k=0 0

>
Il

Recall that if H< G is a subgroup and M is a G-module we have
Indj Resg M = M ® Indj;(1). In our case we have

Ind:s‘s‘:,l An-1 = Indg:,l Resg:,’,l )anl = (Indg,’;,l l)infl = (1 + pn)jgnfl = Xn |

As remarked in [Gai96, Theorem 4.4], corollary 4 provides a quick proof
of Lehrer and Solomon result for d even: H*(C,(d);C) :2Ind§;’ 1, since
H*(Cy(d); C) consists of two copies of the trivial representation of S>. Analo-
gously, when d is odd we can now prove the following result of [CT93] and
[Leh00]:

THEOREM 5. When d is odd we have:
H*(C,(d);C) =~ CS,.

PROOF. When d =1 the connected components of C,(1) are in bijection with
the Weyl chambers and the action of S, on H°(C,(1);C) is naturally identified
with the regular representation CS,,. When d > 3 we proceed by induction on #;
it is easy to check that H*(Cy(d);C) = CS, (we have H°(C,(d); C) =~ m™ and
H1(Cy(d); C) = H). Now, using the inductive hypothesis and corollary 4 we
have

H*(Cy(d);C) = Indg" H*(C,-1(d);C) = Indy" CS, | = CS,. O
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Table 1. Decomposition of H*(M (d.</,_);C).

degrees 0 1 2 3
n=2 can. O
ext. HO
n=3 can. D S
ext. OO H
n=4 can. o Hag@H" e
ext. O HF i

n=5can omm F i 2o eofeol Moleof ool

For low n, the recursive relation of Theorem 3 allows us to compute the
graded character of the S, action, as is shown in tables 2 and 3.

4. LOCATING SOME IRREDUCIBLE REPRESENTATIONS

Using the recursive formula of theorem 3 it is possible to locate some irreducible
representations of S, in the homogeneous components H*“~1(C,(d); C); namely
we will locate the copies of the standard, the sign and the standard tensor sign
representations. As before we need to distinguish the case when d is even and
the case when d is odd.

4.1. The case d even

Using isomorphism (6) we reduce ourselves to study the action of S, on
H*(M(4%,); C); more precisely we study the action of S, on the cohomology of
the complement of the essential braid arrangement </, (i.e. the arrangement
in C"/{(1,1,...,1)) induced by %, or equivalently the Coxeter arrangement of
type A,_1).

Recall the deconing construction from the theory of arrangements; i.e. the de-
coning of the essential braid arrangement is the arrangement ./, | on the vector
space C"~2 such that M(d.</,_) =~ M(<Z,_)/C*. There is an S, -equivariant
isomorphism of graded algebras ([Gai96, Proposition 2.2])

(11) H*(M(ty-1); C) = H*(M(d/y-1); C) @ Cel /&

where & has degree 1 and S, acts trivially on C[e]/e*>. Futhermore theorem 3
and corollary 4 still hold for the S,-module H*(M (d./,_,); C). There is an anal-
ogous of (2) for H*(M(d.</,-1); C), namely:

(12) H*(M(d</y-1);C) = Indy’ 1.

Moreover isomorphism (11) allows us to know the location of an irreducible rep-
resentation in H*(M (.<Z,_;); C) once we know its location in H*(M(d.<Z,_);C).
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REMARK 2. We recall that a formula for the generalized Poincaré series associ-
ated to the S, action on H*(M (d.«/,_1);C) has been shown in [Get95], given
that M(d.</,_;) is homeomorphic to the moduli space M, of genus zero
n+ 1-pointed curves (and its minimal De Concini-Procesi wonderful model—
see [DCP95]—is isomorphic to the Deligne-Mumford compatification of My ,,+1).

As before theorem 3 suffices to compute the graded character of the S, action
on H*(M(ds<t,-,),C) for low n, as is shown in table 1. As a first observation
we see that formula (12) and Frébenius reciprocity allow us to know the number
of copies of each irreducible representation in the whole H*(M(d.</, );C); in
particular

(i) there is only one copy of the trivial representation in H*(M(d.</,—;); C) (and
must be at the degree 0),
(ii) there are n — 2 copies of the standard representation in H*(M(d.</,_;); C),
(iii) there are no copies of the sign representation in H* (M (d.<Z,_1); C),
(iv) there is one copy of the standard tensor sign representation in
H*(M(d<t,—1);C).

We will use the notation y*(n,k) for the character of the action of S, on
H*(M(d.</,_1);C) and 7*(n, k) for the character of the extended action of S,
on H¥(M(d.<#, 1);C).

PROPOSITION 6. For n > 3 there is exactly one copy of the standard representa-
tion Vi, 1) in HX(M(d</,); C) for each 0 <k <n— 1.

PrOOF. By induction on n, for n = 3,4,5 it follows from an explicit computa-
tion (see table 1). Let n > 5; we have

<X*(n7k)apn> = <}Z*(l’l - lvk)vpn> + <Pn)?*(” - 17k - 1)7pn>~

If kK = 1 we know from theorem 3 that H' (M (d.</,_);C) =~ H' (M (d.</, ,);C) ®
Vin-1,1) and there is (at least) one copy of the standard representatlon at the de-
gree 1. Cons1der the case k > 1. By inductive hypothesis ResS m—1k—-1)=

2 (n—1,k — 1) contains exactly one copy of the standard representatlon there-
fore ;Z*(n — 1,k — 1) must contain an irreducible representation which restricts
to the standard representation of S, _1; V(,_y 1) 1s not suitable because there is no
copy of the trivial representation in y*(n— 1,k —1), so 7*(n— 1,k —1) must
contain exactly one of the following

V2,2 Vin2,1,1)-

Using Pieri’s rule we see that both V{5 1,1) ® V(,—1,1) and V(22 ® Vi1, 1)
contain exactly one copy of the standard representation.

In particular H*(M (d.<#,_,);C) contains exactly one copy of the standard
representation for every 1 < k <n—1 and since there are n — 2 copies of the
standard representation in H*(M (d.</,_1);C) also H'(M(d.</,_);C) contains
exactly one copy of the standard representation. O
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REMARK 3. Proposition 6 can be used for instance to compute the cohomology
of the quotient space M(.</,—1)/S,—1. Indeed, using the theorem on transfer we
know that there is an isomorphism of graded algebras H*(M(.o,—1)/Sy-1;C) =
H*(M (Mn_l);C)S”*‘. So, in order to compute the C-vector space structure of
H*(M(2y—1)/Ss-1;C) we need to look at those representations of S, whose
restriction to S,_; contain a copy of the trivial representation, i.e. the trivial rep-
resentation and the standard representation. Therefore, when k =0 ork=n—1
H*(M(.o#,-1)/S,-1;C) is one dimensional, while H*(M(.<Z,_1)/S,_1;C) is two
dimensional when 0 < k <n — 1.

PROPOSITION 7. For n >3 the copy of the standard tensor sign representation
Via1,..,1) appears in the top cohomology H"2(M(d.<#, ,);C).

PrOOE. By induction on #; as in proposition 6 for n = 3,4, 5 it follows from an
explicit computation. Let n > 5, from theorem 3 we have

H" 2(M(dty_1);C) = Viy1.1) @ H" (M(d-cy_5); C).

Again there must be exactly one irreducible representation of S, in
H"3(M(d.<#, »);C) whose restriction to S,_; contains a copy of Via1,...1)- This
can’t be V(1. 1) because there is no copy of the alternating representation of
S,_1in H"3(M(d.#, »);C). Therefore H"—*(M (d.<Z, ,); C) must contain one of
the following representations of .S,:

Vooai,..1, Ve,

But Vioo1,..1) ® Viuo1,1y and Vi3 1, 1) ® V(,_1,1) contain exactly one copy of
V2,1,...1): therefore H""%(M(d<#, ,);C) contains exactly one copy of Vi,
O

4.2. The case d odd

From theorem 5 we know that H*(C,(d);C) is the regular representation, in
particular it contains dimV/,_; 1) = n — 1 copies of the standard representation,
dimV(y,, 1) = n — 1 copies of the standard tensor sign representation, one copy
of the trivial and one copy of the sign representations.

With the same argument as in proposition 6 we can prove the following:

PrROPOSITION 8. For n >3 and d odd (d = 3) there is exactly one copy of the
standard representation in the degree k(d — 1) for each 1 <k <n— 1.

REMARK 4. As in remark 3, proposition 8§ can be used to compute the
cohomology algebra of the quotient space H*(C,(d)/S,_1;C). In particular
H*4=1(C,(d)/S,_1;C) is one dimensional for every 0 < k <n — 1.

Next we look at the sign representation; this was located by Lehrer in [Leh00]
using a formula for the generalized Poincaré polynomial. Our proof is different:
we show an explicit generator.
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PROPOSITION 9. Let n =2k or n =2k + 1 and d odd (d > 3), then the copy of
the sign representation appears in the component H*4=1)(C,(d); C).

Proor. Consider the case n = 2k and the following antisymmetrizer
X = Z (=) A1), 02) Ao (3),04) - - - Aot 0tn) € H"V(Co(d); ).
ge s,

Of course S, acts on Cx as 7x = (—1)"x, the non trivial part of the argument con-
sists in proving that x # 0. Consider the action of S, on the set of 2-partitions
of {1,...,n} (that is partitions in which every block has cardinality 2); let A be
a 2-partition and consider the following ordering on A

A= {Al,...,/\k}, Ay, = {i},,jh} with iy, < jjand j; < -+ < Ji.

In particular we can associate to every A a permutation oa € S, such that
an{{1,2},{3,4},...,{n—1,n}} = A as follows

oa(2s) = js,  oa(2s+ 1) =g

Note that from this definition we have that ga(A4; 2434 ... 4,1 ,) is an element
of the basis of admissible monomials (proposition 2).

Using the fact that H*(C,(d); C) is commutative and relation 4; ; = —A4; ; it
can be easily seen that if 7 € S, and 7{{1,2},{3,4},...,{n — 1,n}} = A then

(_l)rAr(l),T(Z) .- 'Ar(n—l),f(n) = (_I)JAO'A(AI,ZASA .- ~An—1,n)~

In particular the expression of x with respect to the basis of admissible mono-
mials appears as follows

(13) x:mZ(—l>JAO'A(A172A3,4...Anfl.’n)
A

where A runs over the 2-partitions of {1,...,n} and m = k!2¥ is the number of
permutations of S, that fix the partition {{1,2},...,{n — 1,n}}, from which we
conclude x # 0.

Now consider the case n = 2k + 1 and the element

r= Z (_1)0A01.02A03.,J4 i ~A(m—2,(m—1 € Hk(d?l)(cn(d); C)
geS,

With a similar argument as before we see that an analogous of (13) applies and
therefore x # 0. O

Next we look at the standard tensor sign representation Vo . 1).
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ProrosiTION 10. Consider d > 3 odd and k > 2, if n = 2k there is one copy
of Vio,1,..,1y in H&DE-D(C,(d); C), one copy in H*“-V(C,(d);C), one copy in
H- 1)(d- 1)(C (d);C) and 2 copies in each H/\?~V)(C,(d);C) for each k < j <
n—1. If n=2k+1 there is one copy of Via1,.1) in H*4=D(C,(d); C), one
copy in H=VW=1(C,(d);C) and 2 copies in each H'“~V(C,(d);C) for each
k<j<n—1.

PrOOF. By induction on k; the case k = 2 is trivial (see table 3). When k > 2, we
use the recursive formula of theorem 3:

HI4(C,(d); €) = HID(C, 1 (d); ©) @ (HUD(C 1 (d);€) ® Vigor ).

Consider the case n = 2k.

(i) If j = (k — 1) then, by proposition 9 we know that the extended action on
H/"1(C, 1(d); C) must contain a copy of Vi,

(i) If j=k then by inductive hypothesis the extended action of S, on
H*=DW@=1)(C, | (d);C) must contain an S,-irreducible representation that
restricts to V{1, . 1y and as in proposition 6 we know that H*4=1(C,(d); C)
must contain a copy of Vi1, . 1).

(iii) If j = (n—1) then H"DU=1(C,(d); C) = H"2=1(C,(d); C) @ V1.1
and as before H"~D=-1)(C, (d); C) must contain a copy of Via1,...1).

(iv) ifk<j<mn—1thenk —1< j—1<n—2and by inductive hypothes1s the
extended action on H/(?~ )(C _1(d); C) must contain two irreducible repre-
sentations whose restrictions contain a copy of V(51 . 1); as before we con-
clude that H/“~1(C,(d); C) contains at least two coples of Vior,..1)-

Observing that H*(C,(d); C) = CS, contains n — 1 copies of V(5. 1) we obtain
the thesis. Now consider the case n = 2k + 1.

(i) If j=k then by inductive hypothesis we know that the S, j-action
on H*-DW@-1(C, |(d);C) contains a copy of Vi21,.,1) and as before
H*4=1(C,_,(d); C) contains a copy of V5.1, )

(ii) If j = k + 1, we know that the S,_; action on H*@-(C,_(d); (C) contains
a copy of the alternating representation and a copy of V(5 1, 1). Anyway
the extended action of S, on H*(~1(C,_;(d);C) cannot contam a copy of
Via,1,..,1) because Va1, 1) ® V(,—1,1) contains a copy of the alternating rep-
resentation (contradicting proposition 9). Therefore the extended action on
H*(4=1)(C,_|(d); C) must contain a copy of the alternating representation
of S, and an irreducible representation of S, whose restriction contains a
copy of Va1, 1. The copy of the alternating gives, after tensoring with
Vin—1,n), one copy of V(5 1 1) and the other irreducible representation gives
another one.

(i) If k+1<j<n—1 then k< j—1<n and as before we have that
H/@=D(C,(d); C) contains 2 copies of V(21 ).
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(iv) If j=n—1 we have H" D-1(C,(d);C) = H"2IU-D(C, »(d);C) ®
V(n—1,1), which contains a copy of Va1, 1).

Again we conclude using the fact that H*(C,(d); C) =~ CS, contains n — 1 copies
of Viou,..1)- 0

5. THE DEGREES d — 1 AND 2(d — 1)

It is interesting to notice that the recurrence formula of Theorem 3 suffices to de-
termine, for every n > 3 and d > 2, an explicit decomposition of H/~'(C,(d);C)
and H*“-1(C,(d);C), both as S, and as S, ;-modules.

5.1. The case d even

As in section 4.1 it suffices to study the cohomology algebra of the deconed braid
arrangement H*(M(d.</,_,); C); the isomorphism (11) allows to infere formulas
for the decomposition of H'(M(.<Z, 1); C) and H*(M (.o, );C) from the analo-
gous formulas for M (d.o,_1).

PROPOSITION 11. For every n > 3 the following equality of S,1 modules holds:
I{1 (M(d&{n_l), (]:) = V(n71,2)~
In particular we have the following decomposition of S,-modules:
H' (M(dsty-1);C) = Vi1 1) @ Vioa,o)-

PRrROOF. By induction on n; we have already discussed the case n = 3 (see table
1). Let n > 3, from theorem 3 and the inductive hypothesis we have

H'(M(d<t,-1);C) = H' (M(dty-1);C) ® Viuor.1) = Vipea,2) @ Viuer1)

and it is easily seen, using Pieri’s rule, that V(,_; ») is the only representation of
Su+1 that restricts to Vi,_5 2) @ Vi1, 1).- O

Next we look at H?(M (d.Z,_,); C); its decomposition can be recursively com-
puted for n < 6 using theorem 3 and observing that for every m < 6 there exists a
unique action of S, that restricts to H*(M (d.Z,,_1);C) (see table 1). This way
we obtain the following decomposition of Sz modules:

H*(M(d+/5);C) = 287 @ 20 © H8 @ 0 @ BH.
Again there is only one S7-action that restricts to H?(M (d.</s); C), namely

H*(M(d«/s);C) =~ FHo - o .

THEOREM 12. For n > 6 the following equality of S,.1-modules holds:
H*(M(dst,1);C) = Vine1,1,1) @ Vin-3,3,1) @ Vina,2,1)-
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PrROOF. By induction on #; for n = 6 the result follows from our previous discus-
sion. Let n > 6, from theorem 3 and the inductive hypothesis we have

H*(M(dty-1);C) = V1) @ Vinas 1) ® Vi) ® Vin2.2 ® Viu-1.1))
Next we notice that
V22 @ Ve, = Vin-32.1) @ Vi, 3) @ Vi, 1,1) @ Vine2,2) @ Vi-1,1)-
and therefore

H*(M(d.cty1);C) = 2Vu-32,1) @ Vin33 @ 2Vu-21,1)
D V22 D@ Viu-1,1) ® Vin-a3,1)

Using Pieri’s rule we see that the only irreducible representations of S,
whose restriction contains V,_3 1) that can appear in the decomposition of
the extended action on H?(M(d</,_,);C) are V,_33 1) and V(, 5 1) and they
must both appear with multiplicity one. This forces the extended action of S,
on H*(M(d.</, 1);C) to be

Vine1,1,1) @ Vin=3,3,1) @ Vip2,2,1)- O

REMARK 5. In particular for n > 7 we have the following decomposition of S,,-
modules:

H*(M(dty-1);C) = Vip1.1) @ 2Vina11) @ Vins3)
D2V (=321 ® Vina31) @ Vin-2,2)
5.2. The case d odd
We have already discussed the decomposition of H~!(C,(d); C) (proposition 1),

so we only have to treat the degree 2(d — 1).
As before with an explicit computation it can be seen that

HY(Cs(d); C) = E of e o2 02P 0 f.

So, at first sight, there are two possible actions of Sg that restrict to
H>4=D(C5(d); C), namely:

Ej@zﬁ@ﬁm@zaﬂ and Ej@@j@@@aaﬂ.

Anyway if the first case holds we would have

HY(Ci(d)0) = [ @2 02f T 2B e F o F ™ o 0 FF

which is not the restriction of an S; action; therefore the second case must hold.
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THEOREM 13. For n>5 and d odd (d = 3) there is an isomorphism of Sy 1-
modules

H>(C,(d); C) =~ Vi3 1.1, @ V221 @ Vin-3,2,2) @ Vin-1,2)-
Proor. First we observe that for every # it holds:
V2,10 @ Vie1,) £ V2, @ Vi3 2.1) @ Vin3,1,1.1) @ Vine1,1) @ Vin2,2)-

We prove the thesis by induction on #n; we have already discussed the case n = 5.
Let n > 5, from theorem 3 and the inductive hypothesis we have

H*V(Cy(d); ©) = H D (Cot (d); ©) @ (V1,1 ® H ! (Comi (d); C©))
= Vi-a1,1,11) @2V (0-3.2,1) @ Vin-4.2,2) @ 2V (42,2
S V211D Vs 1,11 @ V1,1

The copy of V{(,_422) can not appear as a component of the restriction of
Vin-a,2,2,1) OF V(y_432 (the latter makes sense only for n > 7) because there
are no copies of V(,_421,1) and V43 ) in H>4=D(C,(d);C). Therefore the
extended action must contain a copy of V(,_3,) and his restriction gives a
copy of Vi,_4 2 and a copy of V,_351). The other copy of V(,_3 1) must
appear as a component of the restriction of ¥, 5, ) because there is only
one copy of V{,_42 ) and there are no copies of V(,_421,1) and V(,_43 1) in
H?>=D(C,(d);C). The restriction of Vin-2,2,1) contains a copy of V5, a
copy of V5 1,1) and a copy of V(3 1. Analogously the other copy of
V(n—2,2) must appear as a component of the restriction of V,_; 5); this gives a
copy of V{,_2 ) and a copy of V(,_ 1). At this point the copies of V(,_4 11,11
and V{,_3 1,1,1) must come from the restriction of V{,_3 1 1,1,1)-

Summarizing, there is only an action of S,.; that restricts to the action
S, M H*4=D(C,(d); C), namely:

Vi3 1.1, @ V221 @ Vin-3,2,2) @ Vin-1,2)- O

REMARK 6. In particular, for » > 6 and d > 3 odd the following decomposition
of S,,-modules holds:

H>D(C(d);€) = Vipa111) @ Vins 1) @2V 3210 @ Vi1
@ 2V(1-2,2) D Vin-4,2,2) ® Viu1,1)-
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