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Abstract. — In this paper we deal with the action of the symmetric group on the cohomology of

the configuration space CnðdÞ of n points in Rd . This topic has been studied by several authors and it
is well-known that for d even H �ðCnðdÞ;CÞG 2 IndSn

S2
1 while, for d odd, H �ðCnðdÞ;CÞGCSn.

On the cohomology algebra H �ðCnðdÞ;CÞ there is, in addition to the natural Sn-action, an
extended action of Snþ1; this was shown for the case when d is even by Mathieu, Robinson and

Whitehouse and the second author using three di¤erent methods. For the case when d is odd it was
shown by Mathieu (anyway we will give an elementary algebraic construction of the extended action

for this case).
The purpose of this article is to present some results that can be obtained, in an elementary way,

exploiting the interplay between the extended action and the standard action. Among these we will
recall a quick proof for the formula cited above for the case when d is even and show how to extend

this proof to the case when d is odd. We will also show how to locate among the homogeneous com-
ponents of the graded algebra H �ðCnðdÞ;CÞ the copies of the standard, sign and standard tensor sign

representations and we will give explicit formulas for both the extended and the canonical actions on

the low-degree cohomology modules.
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1. Introduction

We are concerned with the action of the symmetric group Sn on the cohomology
algebra of the configuration space of n points in Rd , that is the space

CnðdÞ ¼ fðp1; . . . ; pnÞ a ðRdÞn : pi A pj; EiA jg:

Sn acts on CnðdÞ permuting coordinates and this action induces an action on the
cohomology algebra H �ðCnðdÞ;CÞ.

In the particular case d ¼ 2, Cnð2Þ ¼ MðBnÞ is the complement of the (com-
plex) braid arrangement Bn. In [Arn69] Arnol’d gave a presentation for the coho-
mology algebra H �ðCnð2Þ;CÞ; he proved that it is the skew-commutative algebra
with generators fAi; j : i < jg of degree 1 and relations:

Ai; jAi;k � Ai; jAj;k þ Ai;kAj;k ¼ 0; Ei < j < k:ð1Þ

This result can be generalized to hyperplane arrangements (cfr. [OS80], [OT92],
[Yuz01] and [BZ92]).



The action of s a Sn on H �ðCnð2Þ;CÞ can be described as sAi; j ¼ Asi;sj and
was studied by Lehrer and Solomon in [LS86] and by Lehrer in [Leh87]. Among
other results they proved a formula for the character of this action; precisely the
following holds:

wH �ðCnð2Þ;CÞ ¼ 2 IndSn

S2
ð1Þð2Þ

where 1 is the character of the trivial representation of S2. In [Gai96] the second
author gave a quick proof for this formula introducing an action of Snþ1 on
H �ðCnð2Þ;CÞ which restricts to the natural Sn action (this action is called the
extended or hidden action). A similar approach was exploited by Mathieu in
[Mat96] and by Robinson and Whitehouse in [RW96].

In the general case, when db 2, the algebra H �ðCnðdÞ;CÞ can be presented
as follows (cfr. [CLM76] and [CT93]): it is the associative graded algebra with
generators fAi; j : 1a i; ja ng (with iA j; for convenience of notation we allow
i ¼ j and then Ai; i ¼ 0) of degree d � 1 and relations

Ai; j ¼ ð�1ÞdAj; i;ð3Þ
Ai; jAh;k ¼ ð�1Þd�1

Ah;kAi; j;ð4Þ
Ai; jAi;k ¼ Ak; jðAi;k � Ai; jÞ for 1a ia n and ja k:ð5Þ

Again these results generalize to the complement of a subspace arrangement (cfr.
[FZ00], [dLS01] and [DGM00]).

The action of Sn on H �ðCnðdÞ;CÞ for arbitrary d was studied by Cohen and
Taylor in [CT93] and by Lehrer in [Leh00]. Lehrer provided formulas for the gen-
eralized Poincaré polynomials associated to the representations H �ðCnðdÞ;CÞ. It
turns out that there is a qualitative di¤erence between the case when d is even and
the case when d is odd. The argument for the case d ¼ 2 translates literally to the
case when d is even (cfr. [Leh00]) and formula (2) still holds. Also the construction
of the extended action can be translated to the case when d is even. For the case
when d is odd both Cohen and Taylor in [CT93] and Lehrer in [Leh00] proved,
with di¤erent arguments, that H �ðCnðdÞ;CÞ is the regular representation CSn.

We will describe (section 2) in an elementary way an Snþ1 action on
H �ðCnðdÞ;CÞ for the case when d is odd (the same action was pointed out with
a di¤erent method in [Mat96]) and use it in section 3 to prove quickly some results
of [CT93] and [Leh00]. In addition we will show how the extended action can be
used, both in the case when d is even and in the case when d is odd, to locate the
copies of the standard, sign and standard tensor sign representations of Sn on
the homogeneous components Hkðd�1ÞðCnðdÞ;CÞ (section 4) and to prove explicit
formulas for the decomposition of the degrees d � 1 and 2ðd � 1Þ (section 5).

2. The extended Snþ1 action

We now discuss the definition of an extended action on H �ðCnðdÞ;CÞ. We dis-
tinguish the case when d is odd and the case when d is even. In the former
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case we see from relations (3)–(5) that there is an isomorphism of graded Sn-
modules

H �ðCnðdÞ;CÞ ! H �ðCnð2Þ;CÞn 1ð6Þ

where 1 is the graded Sn-module whose only non-zero component is the trivial
representation at degree d � 1. There are (at least) three di¤erent ways to ex-
tend the action of Sn on H �ðCnð2Þ;CÞ to an Snþ1-action (see [Gai96], [Mat96]
and [RW96]); the isomorphism (6) allows us to carry this extended action to
H �ðCnðdÞ;CÞ.

In the case when db 3 is odd we can rewrite the relations (3)–(5) as follows:

Ai; j ¼ �Aj; i;

Ai; jAh;k ¼ Ah;kAi; j ;

Ai; jAi;k � Ai; jAj;k þ Ai;kAj;k ¼ 0

We first look at the degree d � 1; let V ¼ Cn be the permutation representa-
tion, we have an equivariant isomorphism of Sn modules

52
V ! Hd�1ðCnðdÞ;CÞ
eibej 7! Ai; j:

The action of Sn on V can be extended to an Snþ1-action; from Pieri’s rule we
see that any extended action must be isomorphic to the standard representation
of Snþ1, that is Vðn;1Þ ¼ kerðx0 þ � � � þ xnÞJCnþ1. We choose a basis for Vðn;1Þ
of elements fv1; . . . ; vng where vi ¼ ei � e0; identifying Sn ¼ fs a Snþ1 : sð0Þ ¼ 0g
we have an Sn-equivariant isomorphism

ResSnþ1

Sn
Vðn;1Þ ! V

vj 7! ej
ð7Þ

and we can define the Snþ1 action on V as the unique action that makes (7) into
an equivariant isomorphism Vðn;1Þ ! V .

The Snþ1 action on V induces an Snþ1 action on 52
V GHd�1ðCnðdÞ;CÞ. We

can describe this action as follows: if s a Sn then sAi; j ¼ Asi;sj and

ð0; 1ÞAi; j ¼ Ai; j � A1; j þ A1; i if 1 < i < jð8Þ
ð0; 1ÞA1; j ¼ �A1; j:ð9Þ

These formulas are obtained easily from the observations that ð0; 1ÞðvibvjÞ ¼
ðvi � v1Þbðvj � v1Þ when 1 < i < j and ð0; 1Þðv1bvjÞ ¼ �v1bðvj � v1Þ.

In particular we are able to decompose Hd�1ðCnðdÞ;CÞ for every n and d odd
ðdb 3Þ:

Proposition 1. There is an isomorphism of Snþ1-modules

Hd�1ðCnðdÞ;CÞG 5
2

Vðn;1Þ GVðn�1;1;1Þ:
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Remark 1. Using Pieri’s rules we obtain the following isomorphism of Sn-
modules

Hd�1ðCnðdÞ;CÞ ¼ Vðn�1;1Þ aVðn�2;1;1Þ:

From relations (3)–(5) we see that there is an equivariant isomorphism

H �ðCnðdÞ;CÞGSðHd�1ðCnðdÞ;CÞÞ=In;d

where SðHd�1ðCnðdÞ;CÞÞ is the symmetric algebra on Hd�1ðCnðdÞ;CÞ and In;d is
the ideal of relations:

In;d ¼ 3Ai; jAi;k � Ak; jðAi;k � Ai; jÞ: for 1a ia n and ja k4:

In particular, in order to extend the Sn action on H �ðCnðdÞ;CÞ we only need
to prove that the ideal In;d is invariant under the action of Snþ1 on
SðHd�1ðCnðdÞ;CÞÞ. This is indeed the case and is proved with a short explicit
computation. One has to check the equalities (in H �ðCnðdÞ;CÞ)

ð0; 1ÞAi; jAi;k ¼ ð0; 1ÞAk; jðAi;k � Ai; jÞ:

We notice that, since the expression above is symmetric in j and k, it su‰ces to
distinguish three cases: the case when i ¼ 1, the case when j ¼ 1 and the case
when i; j; kA 1.

3. The character of the Sn action on H �ðCnðdÞ;CÞ

In this section we will recall some results and proofs from [Gai96], [Mat96] and
[RW96] and use them to show a quick proof of formula H �ðCnðdÞ;CÞGCSn for
d odd.

When d is even isomorphism (6) provides us an analogous of [Gai96, Theorem
4.1] (see also [Mat96] and [RW96]), i.e.

Hkðd�1ÞðCnðdÞ;CÞGHkðd�1ÞðCn�1ðdÞ;CÞa ðHðk�1Þðd�1ÞðCn�1ðdÞ;CÞnVðn�1;1ÞÞ

which connects the canonical Sn-action (on the left) with the extended Sn-action
on H �ðCn�1ðdÞ;CÞ (on the right).

Consider now the case when d is odd; let h : H �ðCn�1ðdÞ;CÞ ! H �ðCnðdÞ;CÞ
be the map Ai; j 7! Ai; j (i.e. the map induced by the projection on the first n� 1
factors CnðdÞ ! Cn�1ðdÞ). If we call sj ¼ ð j; j þ 1Þ a Snþ1 we have from formulas
(8) and (9) that the map h is 3s0; . . . ; sn�24-equivariant. Recall the following well
known result (see [CT93]):

Proposition 2. The algebra H �ðCnðdÞ;CÞ has a basis given by the elements

Ai1; j1Ai2; j2 . . .Aik ; jk

with ih < jh and 1 < j1 < j2 < � � � < jk a n.

238 g. d’antonio and g. gaiffi



Such elements are usually called admissible monomials. We will write wðn; kÞ
for the character of the action of Sn on HkðCnðdÞ;CÞ and ~wwðn; kÞ for the character
of the extended action of Snþ1 on HkðCnðdÞ;CÞ.

With these ingredients we can translate almost verbatim the proof of [Gai96,
Theorem 4.1] to obtain the following result, which we state for arbitrary db 2
(see also [Mat96, Theorem 4.4]).

Theorem 3. For any n, k (and for any db 2) it holds:

wðn; kÞ ¼ ~wwðn� 1; kÞ þ pn~wwðn� 1; k � 1Þ;

where pn is the character of the standard representation of Sn.

Proof. We discuss only the case when d is odd. Consider the 3s0; . . . ; sn�24-
submodule Wn�1;k ¼ hðHkðCn�1ðdÞ;CÞÞJHkðCnðdÞ;CÞ. We can write

HkðCnðdÞ;CÞ ¼ Wn�1;k aN �Wn�1;k�1ð10Þ

where N ¼ 0n�1

j¼1
CAj;n is certainly 3s1; . . . ; sn�24-invariant but, in general, is not

an 3s0; . . . ; sn�24-submodule.
Now consider the case k ¼ 1, we have

H 1ðCnðdÞ;CÞ ¼ Wn�1;1 aN ¼ Wn�1;1 aT

where T is an 3s0; . . . ; sn�24-invariant complement of Wn�1;1 (in particular its re-
striction to 3s1; . . . ; sn�24 is isomorphic to N). But Sn�1 ¼ 3s1; . . . ; sn�24 permutes
the elements A1;n; . . . ;An�1;n and therefore

ResSn

Sn�1
T GNGVðn�1Þ aVðn�2;1Þ

where Vðn�1Þ is the trivial representation and Vðn�2;1Þ is the standard representa-
tion. By Pieri’s rule we have T GVðn�1;1Þ as Sn-module.

We can still write

HkðCnðdÞ;CÞ ¼ Wn�1;k aT �Wn�1;k�1;

indeed we have Ai;n a H 1ðCnðdÞ;CÞ ) Ai;n ¼ g
ð1Þ
i þ g

ð2Þ
i with g

ð1Þ
i a Wn�1;1 and

g
ð2Þ
i a T . Now let z ¼ z0 þ

Pn
j¼1 Aj;nzj a HkðCnðdÞ;CÞ with z0 a Wn�1;k and for

j > 0, zj a Wn�1;k�1; then we have

z ¼ z0 þ
Xn

j¼1

g
ð1Þ
j zj

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
aWn�1; k

þ
Xn

j¼1

g
ð2Þ
j zj

|fflfflfflfflffl{zfflfflfflfflffl}
aT �Wn�1; k�1

:

Therefore HkðCnðdÞ;CÞ ¼ Wn�1;k þ T �Wn�1;k�1 and the sum is direct by a di-
mension argument. In particular we have dimT �Wn�1;k�1 ¼ dimðT nWn�1;k�1Þ
and therefore there is an equivariant isomorphism T �Wn�1;k�1 GT nWn�1;k�1.
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We have proved a decomposition of 3s0; . . . ; sn�24-modules

HkðCnðdÞ;CÞGHkðCn�1ðdÞ;CÞa ðPn nHk�1ðCn�1ðdÞ;CÞÞ:

Now consider the subgroupsH1 ¼ 3s0; . . . ; sn�24 andH2 ¼ 3s1; . . . ; sn�14 of Snþ1;
these are conjugate subgroups and therefore

ResSnþ1

H1
HkðCnðdÞ;CÞGResSnþ1

H2
HkðCnðdÞ;CÞ

and the term on the right is the natural Sn action on HkðCnðdÞ;CÞ. r

As a consequence we immediately have the following.

Corollary 4. For any n > 2 and any db 2 the following equality of Sn-
modules holds:

H �ðCnðdÞ;CÞ ¼ IndSn

Sn�1
H �ðCn�1ðdÞ;CÞ:

Proof. Call wn ¼
Pn�1

k¼0 wðn; kÞ the character of the action of Sn onH �ðCnðdÞ;CÞ
and ~wwn ¼

Pn�1
k¼0 ~wwðn; kÞ the character of the extended action. Then from theorem 3

and from the fact that ~wwð�1; n� 1Þ ¼ ~wwðn� 1; n� 1Þ ¼ 0 we have

wn ¼
Xn�1

k¼0

wðn; kÞ ¼
Xn�1

k¼0

ð~wwðn� 1; kÞ þ pn~wwðn� 1; k � 1ÞÞ ¼ ð1þ pnÞ~wwn�1:

Recall that if HJG is a subgroup and M is a G-module we have
IndG

H ResGH M ¼ Mn IndG
Hð1Þ. In our case we have

IndSn

Sn�1
wn�1 ¼ IndSn

Sn�1
ResSn

Sn�1
~wwn�1 ¼ ðIndSn

Sn�1
1Þ~wwn�1 ¼ ð1þ pnÞ~wwn�1 ¼ wn r

As remarked in [Gai96, Theorem 4.4], corollary 4 provides a quick proof
of Lehrer and Solomon result for d even: H �ðCnðdÞ;CÞ ¼ 2 IndSn

S2
1, since

H �ðC2ðdÞ;CÞ consists of two copies of the trivial representation of S2. Analo-
gously, when d is odd we can now prove the following result of [CT93] and
[Leh00]:

Theorem 5. When d is odd we have:

H �ðCnðdÞ;CÞGCSn:

Proof. When d ¼ 1 the connected components of Cnð1Þ are in bijection with
the Weyl chambers and the action of Sn on H 0ðCnð1Þ;CÞ is naturally identified
with the regular representation CSn. When db 3 we proceed by induction on n;
it is easy to check that H �ðC2ðdÞ;CÞGCS2 (we have H 0ðC2ðdÞ;CÞG and
Hd�1ðC2ðdÞ;CÞG ). Now, using the inductive hypothesis and corollary 4 we
have

H �ðCnðdÞ;CÞ ¼ IndSn

Sn�1
H �ðCn�1ðdÞ;CÞG IndSn

Sn�1
CSn�1 GCSn: r
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For low n, the recursive relation of Theorem 3 allows us to compute the
graded character of the Sn action, as is shown in tables 2 and 3.

4. Locating some irreducible representations

Using the recursive formula of theorem 3 it is possible to locate some irreducible
representations of Sn in the homogeneous components Hkðd�1ÞðCnðdÞ;CÞ; namely
we will locate the copies of the standard, the sign and the standard tensor sign
representations. As before we need to distinguish the case when d is even and
the case when d is odd.

4.1. The case d even

Using isomorphism (6) we reduce ourselves to study the action of Sn on
H �ðMðBnÞ;CÞ; more precisely we study the action of Sn on the cohomology of
the complement of the essential braid arrangement An�1 (i.e. the arrangement
in Cn=3ð1; 1; . . . ; 1Þ4 induced by Bn or equivalently the Coxeter arrangement of
type An�1).

Recall the deconing construction from the theory of arrangements; i.e. the de-
coning of the essential braid arrangement is the arrangement dAn�1 on the vector
space Cn�2 such that MðdAn�1ÞGMðAn�1Þ=C�. There is an Snþ1-equivariant
isomorphism of graded algebras ([Gai96, Proposition 2.2])

H �ðMðAn�1Þ;CÞGH �ðMðdAn�1Þ;CÞnC½e�=e2ð11Þ

where e has degree 1 and Snþ1 acts trivially on C½e�=e2. Futhermore theorem 3
and corollary 4 still hold for the Sn-module H �ðMðdAn�1Þ;CÞ. There is an anal-
ogous of (2) for H �ðMðdAn�1Þ;CÞ, namely:

H �ðMðdAn�1Þ;CÞ ¼ IndSn

S2
1:ð12Þ

Moreover isomorphism (11) allows us to know the location of an irreducible rep-
resentation in H �ðMðAn�1Þ;CÞ once we know its location in H �ðMðdAn�1Þ;CÞ.

Table 1. Decomposition of H �ðMðdAn�1Þ;CÞ.
degrees 0 1 2 3

n ¼ 2 can.
ext.

n ¼ 3 can.
ext.

n ¼ 4 can. a a

ext.

n ¼ 5 can. a 2 a a a a a a a
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Remark 2. We recall that a formula for the generalized Poincarè series associ-
ated to the Snþ1 action on H �ðMðdAn�1Þ;CÞ has been shown in [Get95], given
that MðdAn�1Þ is homeomorphic to the moduli space M0;nþ1 of genus zero
nþ 1-pointed curves (and its minimal De Concini-Procesi wonderful model—
see [DCP95]—is isomorphic to the Deligne-Mumford compatification ofM0;nþ1).

As before theorem 3 su‰ces to compute the graded character of the Sn action
on H �ðMðdAn�1Þ;CÞ for low n, as is shown in table 1. As a first observation
we see that formula (12) and Fröbenius reciprocity allow us to know the number
of copies of each irreducible representation in the whole H �ðMðdAn�1Þ;CÞ; in
particular

(i) there is only one copy of the trivial representation in H �ðMðdAn�1Þ;CÞ (and
must be at the degree 0),

(ii) there are n� 2 copies of the standard representation in H �ðMðdAn�1Þ;CÞ,
(iii) there are no copies of the sign representation in H �ðMðdAn�1Þ;CÞ,
(iv) there is one copy of the standard tensor sign representation in

H �ðMðdAn�1Þ;CÞ.

We will use the notation w�ðn; kÞ for the character of the action of Sn on
HkðMðdAn�1Þ;CÞ and ~ww�ðn; kÞ for the character of the extended action of Snþ1

on HkðMðdAn�1Þ;CÞ.

Proposition 6. For nb 3 there is exactly one copy of the standard representa-
tion Vðn�1;1Þ in HkðMðdAn�1Þ;CÞ for each 0 < k < n� 1.

Proof. By induction on n, for n ¼ 3; 4; 5 it follows from an explicit computa-
tion (see table 1). Let n > 5; we have

3w�ðn; kÞ; pn4 ¼ 3~ww�ðn� 1; kÞ; pn4þ 3pn~ww
�ðn� 1; k � 1Þ; pn4:

If k ¼ 1 we know from theorem 3 thatH 1ðMðdAn�1Þ;CÞGH 1ðMðdAn�2Þ;CÞa
Vðn�1;1Þ and there is (at least) one copy of the standard representation at the de-
gree 1. Consider the case k > 1. By inductive hypothesis ResSn

Sn�1
~ww�ðn� 1; k � 1Þ ¼

w�ðn� 1; k � 1Þ contains exactly one copy of the standard representation there-
fore ~ww�ðn� 1; k � 1Þ must contain an irreducible representation which restricts
to the standard representation of Sn�1; Vðn�1;1Þ is not suitable because there is no
copy of the trivial representation in w�ðn� 1; k � 1Þ, so ~ww�ðn� 1; k � 1Þ must
contain exactly one of the following

Vðn�2;2Þ; Vðn�2;1;1Þ:

Using Pieri’s rule we see that both Vðn�2;1;1Þ nVðn�1;1Þ and Vðn�2;2Þ nVðn�1;1Þ
contain exactly one copy of the standard representation.

In particular HkðMðdAn�1Þ;CÞ contains exactly one copy of the standard
representation for every 1 < k < n� 1 and since there are n� 2 copies of the
standard representation in H �ðMðdAn�1Þ;CÞ also H 1ðMðdAn�1Þ;CÞ contains
exactly one copy of the standard representation. r
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Remark 3. Proposition 6 can be used for instance to compute the cohomology
of the quotient space MðAn�1Þ=Sn�1. Indeed, using the theorem on transfer we
know that there is an isomorphism of graded algebras H �ðMðAn�1Þ=Sn�1;CÞG
H �ðMðAn�1Þ;CÞSn�1 . So, in order to compute the C-vector space structure of
H �ðMðAn�1Þ=Sn�1;CÞ we need to look at those representations of Sn whose
restriction to Sn�1 contain a copy of the trivial representation, i.e. the trivial rep-
resentation and the standard representation. Therefore, when k ¼ 0 or k ¼ n� 1
HkðMðAn�1Þ=Sn�1;CÞ is one dimensional, while HkðMðAn�1Þ=Sn�1;CÞ is two
dimensional when 0 < k < n� 1.

Proposition 7. For nb 3 the copy of the standard tensor sign representation
Vð2;1; ...;1Þ appears in the top cohomology Hn�2ðMðdAn�1Þ;CÞ.

Proof. By induction on n; as in proposition 6 for n ¼ 3; 4; 5 it follows from an
explicit computation. Let n > 5, from theorem 3 we have

Hn�2ðMðdAn�1Þ;CÞGVðn�1;1Þ nHn�3ðMðdAn�2Þ;CÞ:

Again there must be exactly one irreducible representation of Sn in
Hn�3ðMðdAn�2Þ;CÞ whose restriction to Sn�1 contains a copy of Vð2;1; ...;1Þ. This
can’t be Vð2;1; ...;1Þ because there is no copy of the alternating representation of

Sn�1 in Hn�3ðMðdAn�2Þ;CÞ. Therefore Hn�3ðMðdAn�2Þ;CÞ must contain one of
the following representations of Sn:

Vð2;2;1; ...;1Þ; Vð3;1; ...;1Þ:

But Vð2;2;1; ...;1Þ nVðn�1;1Þ and Vð3;1; ...;1Þ nVðn�1;1Þ contain exactly one copy of

Vð2;1; ...;1Þ; therefore Hn�2ðMðdAn�1Þ;CÞ contains exactly one copy of Vð2;1; ...;1Þ.
r

4.2. The case d odd

From theorem 5 we know that H �ðCnðdÞ;CÞ is the regular representation, in
particular it contains dimVðn�1;1Þ ¼ n� 1 copies of the standard representation,
dimVð2;1; ...;1Þ ¼ n� 1 copies of the standard tensor sign representation, one copy
of the trivial and one copy of the sign representations.

With the same argument as in proposition 6 we can prove the following:

Proposition 8. For nb 3 and d odd ðdb 3Þ there is exactly one copy of the
standard representation in the degree kðd � 1Þ for each 1a ka n� 1.

Remark 4. As in remark 3, proposition 8 can be used to compute the
cohomology algebra of the quotient space H �ðCnðdÞ=Sn�1;CÞ. In particular
Hkðd�1ÞðCnðdÞ=Sn�1;CÞ is one dimensional for every 0a ka n� 1.

Next we look at the sign representation; this was located by Lehrer in [Leh00]
using a formula for the generalized Poincarè polynomial. Our proof is di¤erent:
we show an explicit generator.
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Proposition 9. Let n ¼ 2k or n ¼ 2k þ 1 and d odd ðdb 3Þ, then the copy of
the sign representation appears in the component Hkðd�1ÞðCnðdÞ;CÞ.

Proof. Consider the case n ¼ 2k and the following antisymmetrizer

x ¼
X
s ASn

ð�1ÞsAsð1Þ;sð2ÞAsð3Þ;sð4Þ . . .Asðn�1Þ;sðnÞ a Hkðd�1ÞðCnðdÞ;CÞ:

Of course Sn acts on Cx as tx ¼ ð�1Þtx, the non trivial part of the argument con-
sists in proving that xA 0. Consider the action of Sn on the set of 2-partitions
of f1; . . . ; ng (that is partitions in which every block has cardinality 2); let L be
a 2-partition and consider the following ordering on L

L ¼ fL1; . . . ;Lkg; Lh ¼ fih; jhg with ih < jh and j1 < � � � < jk:

In particular we can associate to every L a permutation sL a Sn such that
sLff1; 2g; f3; 4g; . . . ; fn� 1; ngg ¼ L as follows

sLð2sÞ ¼ js; sLð2sþ 1Þ ¼ isþ1:

Note that from this definition we have that sLðA1;2A3;4 . . .An�1;nÞ is an element
of the basis of admissible monomials (proposition 2).

Using the fact that H �ðCnðdÞ;CÞ is commutative and relation Ai; j ¼ �Aj; i it
can be easily seen that if t a Sn and tff1; 2g; f3; 4g; . . . ; fn� 1; ngg ¼ L then

ð�1ÞtAtð1Þ; tð2Þ . . .Atðn�1Þ; tðnÞ ¼ ð�1ÞsLsLðA1;2A3;4 . . .An�1;nÞ:

In particular the expression of x with respect to the basis of admissible mono-
mials appears as follows

x ¼ m
X
L

ð�1ÞsLsLðA1;2A3;4 . . .An�1;nÞð13Þ

where L runs over the 2-partitions of f1; . . . ; ng and m ¼ k!2k is the number of
permutations of Sn that fix the partition ff1; 2g; . . . ; fn� 1; ngg, from which we
conclude xA 0.

Now consider the case n ¼ 2k þ 1 and the element

x ¼
X
s ASn

ð�1ÞsAs1;s2As3;s4 . . .Asn�2;sn�1 a Hkðd�1ÞðCnðdÞ;CÞ:

With a similar argument as before we see that an analogous of (13) applies and
therefore xA 0. r

Next we look at the standard tensor sign representation Vð2;1; ...;1Þ.
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Proposition 10. Consider db 3 odd and kb 2; if n ¼ 2k there is one copy

of Vð2;1; ...;1Þ in Hðk�1Þðd�1ÞðCnðdÞ;CÞ, one copy in Hkðd�1ÞðCnðdÞ;CÞ, one copy in

Hðn�1Þðd�1ÞðCnðdÞ;CÞ and 2 copies in each H jðd�1ÞðCnðdÞ;CÞ for each k < j <

n� 1. If n ¼ 2k þ 1 there is one copy of Vð2;1; ...;1Þ in Hkðd�1ÞðCnðdÞ;CÞ, one
copy in Hðn�1Þðd�1ÞðCnðdÞ;CÞ and 2 copies in each H jðd�1ÞðCnðdÞ;CÞ for each
k < j < n� 1.

Proof. By induction on k; the case k ¼ 2 is trivial (see table 3). When k > 2, we
use the recursive formula of theorem 3:

H jðd�1ÞðCnðdÞ;CÞGH jðd�1ÞðCn�1ðdÞ;CÞa ðHð j�1Þðd�1ÞðCn�1ðdÞ;CÞnVðn�1;nÞÞ:

Consider the case n ¼ 2k.

(i) If j ¼ ðk � 1Þ then, by proposition 9 we know that the extended action on
H jðd�1ÞðCn�1ðdÞ;CÞ must contain a copy of Vð2;1; ...;1Þ.

(ii) If j ¼ k then by inductive hypothesis the extended action of Sn on
Hðk�1Þðd�1ÞðCn�1ðdÞ;CÞ must contain an Sn-irreducible representation that
restricts to Vð2;1; ...;1Þ and as in proposition 6 we know that Hkðd�1ÞðCnðdÞ;CÞ
must contain a copy of Vð2;1; ...;1Þ.

(iii) If j ¼ ðn� 1Þ then Hðn�1Þðd�1ÞðCnðdÞ;CÞGHðn�2Þðd�1ÞðCnðdÞ;CÞnVðn�1;1Þ
and as before Hðn�1Þðd�1ÞðCnðdÞ;CÞ must contain a copy of Vð2;1; ...;1Þ.

(iv) if k < j < n� 1 then k � 1 < j � 1 < n� 2 and by inductive hypothesis the
extended action on H jðd�1ÞðCn�1ðdÞ;CÞ must contain two irreducible repre-
sentations whose restrictions contain a copy of Vð2;1; ...;1Þ; as before we con-
clude that H jðd�1ÞðCnðdÞ;CÞ contains at least two copies of Vð2;1; ...;1Þ.

Observing that H �ðCnðdÞ;CÞGCSn contains n� 1 copies of Vð2;1; ...;1Þ we obtain
the thesis. Now consider the case n ¼ 2k þ 1.

(i) If j ¼ k then by inductive hypothesis we know that the Sn�1-action
on Hðk�1Þðd�1ÞðCn�1ðdÞ;CÞ contains a copy of Vð2;1; ...;1Þ and as before
Hkðd�1ÞðCn�1ðdÞ;CÞ contains a copy of Vð2;1; ...;1Þ.

(ii) If j ¼ k þ 1, we know that the Sn�1 action on Hkðd�1ÞðCn�1ðdÞ;CÞ contains
a copy of the alternating representation and a copy of Vð2;1; ...;1Þ. Anyway
the extended action of Sn on Hkðd�1ÞðCn�1ðdÞ;CÞ cannot contain a copy of
Vð2;1; ...;1Þ because Vð2;1; ...;1Þ nVðn�1;1Þ contains a copy of the alternating rep-
resentation (contradicting proposition 9). Therefore the extended action on
Hkðd�1ÞðCn�1ðdÞ;CÞ must contain a copy of the alternating representation
of Sn and an irreducible representation of Sn whose restriction contains a
copy of Vð2;1; ...;1Þ. The copy of the alternating gives, after tensoring with
Vðn�1;nÞ, one copy of Vð2;1; ...;1Þ and the other irreducible representation gives
another one.

(iii) If k þ 1 < j < n� 1 then k < j � 1 < n and as before we have that
H jðd�1ÞðCnðdÞ;CÞ contains 2 copies of Vð2;1; ...;1Þ.
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(iv) If j ¼ n� 1 we have Hðn�1Þðd�1ÞðCnðdÞ;CÞGHðn�2Þðd�1ÞðCn�2ðdÞ;CÞn
Vðn�1;1Þ, which contains a copy of Vð2;1; ...;1Þ.

Again we conclude using the fact that H �ðCnðdÞ;CÞGCSn contains n� 1 copies
of Vð2;1; ...;1Þ. r

5. The degrees d � 1 and 2ðd � 1Þ

It is interesting to notice that the recurrence formula of Theorem 3 su‰ces to de-
termine, for every nb 3 and db 2, an explicit decomposition of Hd�1ðCnðdÞ;CÞ
and H 2ðd�1ÞðCnðdÞ;CÞ, both as Sn and as Snþ1-modules.

5.1. The case d even

As in section 4.1 it su‰ces to study the cohomology algebra of the deconed braid
arrangement H �ðMðdAn�1Þ;CÞ; the isomorphism (11) allows to infere formulas
for the decomposition of H 1ðMðAn�1Þ;CÞ and H 2ðMðAn�1Þ;CÞ from the analo-
gous formulas for MðdAn�1Þ.

Proposition 11. For every nb 3 the following equality of Snþ1 modules holds:

H 1ðMðdAn�1Þ;CÞGVðn�1;2Þ:

In particular we have the following decomposition of Sn-modules:

H 1ðMðdAn�1Þ;CÞGVðn�1;1Þ aVðn�2;2Þ:

Proof. By induction on n; we have already discussed the case n ¼ 3 (see table
1). Let n > 3, from theorem 3 and the inductive hypothesis we have

H 1ðMðdAn�1Þ;CÞGH 1ðMðdAn�1Þ;CÞaVðn�1;1Þ GVðn�2;2Þ aVðn�1;1Þ

and it is easily seen, using Pieri’s rule, that Vðn�1;2Þ is the only representation of
Snþ1 that restricts to Vðn�2;2Þ aVðn�1;1Þ. r

Next we look at H 2ðMðdAn�1Þ;CÞ; its decomposition can be recursively com-
puted for na 6 using theorem 3 and observing that for every m < 6 there exists a
unique action of Smþ1 that restricts to H 2ðMðdAm�1Þ;CÞ (see table 1). This way
we obtain the following decomposition of S6 modules:

H 2ðMðdA5Þ;CÞG 2 a 2 a a a :

Again there is only one S7-action that restricts to H 2ðMðdA5Þ;CÞ, namely

H 2ðMðdA5Þ;CÞG a a :

Theorem 12. For nb 6 the following equality of Snþ1-modules holds:

H 2ðMðdAn�1Þ;CÞGVðn�1;1;1Þ aVðn�3;3;1Þ aVðn�2;2;1Þ:
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Proof. By induction on n; for n ¼ 6 the result follows from our previous discus-
sion. Let n > 6, from theorem 3 and the inductive hypothesis we have

H 2ðMðdAn�1Þ;CÞGVðn�2;1;1Þ aVðn�4;3;1Þ aVðn�3;2;1Þ a ðVðn�2;2Þ nVðn�1;1ÞÞ

Next we notice that

Vðn�2;2Þ nVðn�1;1Þ GVðn�3;2;1Þ aVðn�3;3Þ aVðn�2;1;1Þ aVðn�2;2Þ aVðn�1;1Þ:

and therefore

H 2ðMðdAn�1Þ;CÞG 2Vðn�3;2;1Þ aVðn�3;3Þ a 2Vðn�2;1;1Þ

aVðn�2;2Þ aVðn�1;1Þ aVðn�4;3;1Þ:

Using Pieri’s rule we see that the only irreducible representations of Snþ1

whose restriction contains Vðn�3;2;1Þ that can appear in the decomposition of
the extended action on H 2ðMðdAn�1Þ;CÞ are Vðn�3;3;1Þ and Vðn�2;2;1Þ and they
must both appear with multiplicity one. This forces the extended action of Snþ1

on H 2ðMðdAn�1Þ;CÞ to be

Vðn�1;1;1Þ aVðn�3;3;1Þ aVðn�2;2;1Þ: r

Remark 5. In particular for nb 7 we have the following decomposition of Sn-
modules:

H 2ðMðdAn�1Þ;CÞGVðn�1;1Þ a 2Vðn�2;1;1Þ aVðn�3;3Þ

a 2Vðn�3;2;1Þ aVðn�4;3;1Þ aVðn�2;2Þ

5.2. The case d odd

We have already discussed the decomposition of Hd�1ðCnðdÞ;CÞ (proposition 1),
so we only have to treat the degree 2ðd � 1Þ.

As before with an explicit computation it can be seen that

H 2ðd�1ÞðC5ðdÞ;CÞG a a a 2 a 2 a :

So, at first sight, there are two possible actions of S6 that restrict to
H 2ðd�1ÞðC5ðdÞ;CÞ, namely:

a 2 a a 2 and a a a :

Anyway if the first case holds we would have

H 2ðd�1ÞðC6ðdÞ;CÞG a 2 a 2 a 2 a a a a

which is not the restriction of an S7 action; therefore the second case must hold.
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Theorem 13. For nb 5 and d odd ðdb 3Þ there is an isomorphism of Snþ1-
modules

H 2ðd�1ÞðCnðdÞ;CÞGVðn�3;1;1;1;1Þ aVðn�2;2;1Þ aVðn�3;2;2Þ aVðn�1;2Þ:

Proof. First we observe that for every n it holds:

Vðn�2;1;1Þ nVðn�1;1Þ GVðn�2;1;1Þ aVðn�3;2;1Þ aVðn�3;1;1;1Þ aVðn�1;1Þ aVðn�2;2Þ:

We prove the thesis by induction on n; we have already discussed the case n ¼ 5.
Let n > 5, from theorem 3 and the inductive hypothesis we have

H 2ðd�1ÞðCnðdÞ;CÞGH 2ðd�1ÞðCn�1ðdÞ;CÞa ðVðn�1;1Þ nHd�1ðCn�1ðdÞ;CÞÞ
GVðn�4;1;1;1;1Þ a 2Vðn�3;2;1Þ aVðn�4;2;2Þ a 2Vðn�2;2Þ

aVðn�2;1;1Þ aVðn�3;1;1;1Þ aVðn�1;1Þ:

The copy of Vðn�4;2;2Þ can not appear as a component of the restriction of
Vðn�4;2;2;1Þ or Vðn�4;3;2Þ (the latter makes sense only for nb 7) because there
are no copies of Vðn�4;2;1;1Þ and Vðn�4;3;1Þ in H 2ðd�1ÞðCnðdÞ;CÞ. Therefore the
extended action must contain a copy of Vðn�3;2;2Þ and his restriction gives a
copy of Vðn�4;2;2Þ and a copy of Vðn�3;2;1Þ. The other copy of Vðn�3;2;1Þ must
appear as a component of the restriction of Vðn�2;2;1Þ because there is only
one copy of Vðn�4;2;2Þ and there are no copies of Vðn�4;2;1;1Þ and Vðn�4;3;1Þ in
H 2ðd�1ÞðCnðdÞ;CÞ. The restriction of Vðn�2;2;1Þ contains a copy of Vðn�2;2Þ, a
copy of Vðn�2;1;1Þ and a copy of Vðn�3;2;1Þ. Analogously the other copy of
Vðn�2;2Þ must appear as a component of the restriction of Vðn�1;2Þ; this gives a
copy of Vðn�2;2Þ and a copy of Vðn�1;1Þ. At this point the copies of Vðn�4;1;1;1;1Þ
and Vðn�3;1;1;1Þ must come from the restriction of Vðn�3;1;1;1;1Þ.

Summarizing, there is only an action of Snþ1 that restricts to the action
Sn h H 2ðd�1ÞðCnðdÞ;CÞ, namely:

Vðn�3;1;1;1;1Þ aVðn�2;2;1Þ aVðn�3;2;2Þ aVðn�1;2Þ: r

Remark 6. In particular, for nb 6 and db 3 odd the following decomposition
of Sn-modules holds:

H 2ðd�1ÞðCnðdÞ;CÞGVðn�4;1;1;1;1Þ aVðn�3;1;1;1Þ a 2Vðn�3;2;1Þ aVðn�2;1;1Þ

a 2Vðn�2;2Þ aVðn�4;2;2Þ aVðn�1;1Þ:
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