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Abstract. — We combine the strategy described in a paper of the first, third and fourth authors

with a recent result of the second author to obtain a new proof of Maurin’s Theorem to the e¤ect
that the points satisfying two independent multiplicative relations on a fixed algebraic curve form a

finite set when there is no natural obstacle.

Key words: Diophantine geometry, multiplicative dependence, Zilber conjecture.

AMS 2000 Mathematics Subject Classification: 11G30, 11G35, 11G50, 14H25, 14J20.

1. Introduction

This paper concerns conjectures on ‘‘unlikely intersections’’ due independently to
Zilber [Z] in 2002 and Pink [P] in 2005. We treat the special but significant case of
a curve defined over the field of algebraic numbers and lying in a multiplicative
group Gn

m. In this case the conjecture was stated, also independently, by the first,
third and fourth authors [BMZ3] in 2006 after they had raised the question
[BMZ1] in 1999. It was proved by Maurin [M] in 2008.

Theorem (Maurin). For nb 2 let C be an irreducible curve in Gn
m defined

over the algebraic numbers such there is no non-zero ðc1; . . . ; cnÞ in Zn with
xc1
1 . . . xcn

n ¼ 1 identically on C. Then there are at most finitely many points
P ¼ ðx1; . . . ; xnÞ on C for which there exist ða1; . . . ; anÞ, ðb1; . . . ; bnÞ in Zn, linearly
independent over the rationals, with

xa1
1 . . . xan

n ¼ xb1
1 . . . xbn

n ¼ 1:

The object of the present note is to show that the theorem is a fairly quick con-
sequence of a very recent result of the second author [H]. We hope that this will
lead to a fully e¤ective version. It is not so clear to us that Maurin’s proof can
lead to such a version, due to the use of a Vojta-type inequality which in its orig-
inal form was applied to prove the Mordell Conjecture. This latter is still not fully
e¤ective; one can bound the cardinalities of the finite sets involved but one cannot
find the sets themselves.

To explain our proof we must go back into history. The first, third and fourth
authors [BMZ1] proved a weaker form of the above theorem when no non-trivial
xc1
1 . . . xcn

n is identically constant on C; Maurin’s theorem is the statement that the
result holds as long as only the constant 1 is avoided.



The problem of extending the theorem in this way proved to be an intriguing
question. Partial progress was made in [BMZ3], where the authors proved the
above theorem for n ¼ 2; 3; 4; 5 and mentioned that the key to the full theorem
is almost certainly the study of surfaces. They began this study in [BMZ4] with
a Structure Theorem for anomalous subvarieties of a variety of arbitrary dimen-
sion in Gn

m, and they also stated a Bounded Height Conjecture with the idea that
this conjecture for surfaces would lead to the full theorem. In [BMZ5] they
proved the conjecture for planes; unfortunately this had no implications back to
curves. In the meantime Maurin proved his theorem by a slightly di¤erent route.

It was the second author [H] who turned the Bounded Height Conjecture into
a Bounded Height Theorem. This result supplies for every variety V in Gn

m de-
fined over the algebraic numbers an upper bound BðVÞ—see Section 2 below
for more details. And here we confirm that the strategy of [BMZ3] does succeed;
in fact for each C as above we can e¤ectively construct finitely many surfaces S
such that all the points P above can be found e¤ectively in terms of C and the
BðSÞ. It remains only to make these quantities BðSÞ e¤ective and we see no
reason why this cannot be done.

Of course the original conjectures of [Z] and [P] made sense for varieties de-
fined over a general field of zero characteristic, and in [BMZ2] the first, third
and fourth authors proved that their 1999 curves result is valid in this generality.
More recently in [BMZ6] they established a specialization principle that does the
same for Maurin’s Theorem.

The third author heartily thanks Aurélien Galateau for discussions leading to
Lemma 6(b).

2. Varieties

Here we describe the main Structure Theorem of [BMZ4] (p. 4) and the Bounded
Height Theorem of [H] (p. 862).

Of course the condition on C in Maurin’s Theorem means that C lies in no
algebraic subgroup of dimension n� 1 in the algebraic group Gn

m. In general
an algebraic subgroup H is either Gn

m or has dimension s < n and is defined by
n� s equations of the form xc ¼ xc1

1 . . . xcn
n ¼ 1, where the n� s exponent vectors

c ¼ ðc1; . . . ; cnÞ in Zn are linearly independent over the rationals Q. See for exam-
ple [BG] (pp. 82–88). Denote by Hs the union of all algebraic subgroups of
dimension s, with of course Hn ¼ Gn

m. We define a coset QH to be a translate
of an algebraic subgroup H by a point Q. It will be called proper if HAGn

m.
Later on it will be called torsion if Q has finite order.

Let V be an irreducible variety in Gn
m. As in [BMZ4] (p. 3) we define the

subset V oa as what remains after removing from V all irreducible subvarieties
W lying in some coset of some dimension n� h and satisfying

dimW > maxf0; dimV � hg:

This simply means that the dimension of W is larger than the lower bound given
by the intersection theory of varieties in projective space.
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Such W are called anomalous in V , and such a W is called maximal if it is not
contained in another strictly larger anomalous subvariety of V .

We can now state the Structure Theorem for anomalous subvarieties.

Theorem (Bombieri–Masser–Zannier). Let V be an irreducible variety in Gn
m

of positive dimension defined over C.
(a) For any torus H with

1a h ¼ n� dimHa dimVð1Þ

the union ZH of all subvarieties W of V contained in any coset of H with

dimW ¼ dimV � hþ 1ð2Þ

is a closed subset of V, and the product HZH is not dense in Gn
m.

(b) There is a finite collection F ¼ FV of such tori H such that every maximal
anomalous subvariety W of V is a component of V B gH for some H in F satisfy-
ing (1) and (2) and some g in ZH; and V oa is obtained from V by removing the ZH

for all H in F. In particular V oa is open in V .

In the sequel we shall refer to this as ST.
Denote by hðxÞ the absolute logarithmic height of x in the field Q of all alge-

braic numbers, and for P ¼ ðx1; . . . ; xnÞ in VðQÞ define

hðPÞ ¼ hðx1Þ þ � � � þ hðxnÞ:

We can now state the Bounded Height Theorem.

Theorem (Habegger). For 1ama n let V be an irreducible variety in Gn
m of

dimension m defined over Q. Then there is BðVÞ such that hðPÞaBðVÞ for all P
in V oaðQÞBHn�m.

In the sequel we shall refer to this as BHT.

3. Surfaces

In order to construct a surface from a curve we use as in [BMZ3] the quotient
map

j : G2n
m ! Gn

m

given by (use the natural isomorphism G2n
m UGn

m �Gn
mÞ:

jðx1; . . . ; xn; y1; . . . ; ynÞ ¼
x1

y1
; . . . ;

xn

yn

� �
:

Lemma 1. For nb 2 let C be an irreducible curve in Gn
m defined over Q and not

lying in any proper coset. Then
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(a) the closure S in Gn
m of jðC � CÞ is an irreducible surface,

(b) there is an e¤ectively computable set Y ¼ Y ðCÞ of at most finitely many
anomalous curves such that S ¼ Soa AY,

(c) there is an e¤ectively computable finite set Z ¼ ZðCÞ in SðQÞ and an e¤ec-
tive positive constant k1 such that hðPÞ þ hðQÞa khðjðP;QÞÞ þ k1 for any P, Q
in CðQÞ with jðP;QÞ not in Z.

Proof. It was shown in Lemma 2(a) (p. 2250) of [BMZ3] (actually the neces-
sary condition nb 2 was there omitted) that S is a surface, clearly irreduc-
ible, as required in (a) above. It is itself not anomalous, for otherwise some
xa=ya ðaA 0) would be constant on C � C, and then specializing ðy1; . . . ; ynÞ
we would find that xa is constant on C.

Thus every anomalous subvariety is a curve, automatically maximal. Now the
only obstacle to their finiteness is in fact the algebraic dependence on S of some
pair xa, xb for independent a, b. We can see this from ST with V ¼ S and h ¼ 2
as follows. From ST(b) we see that the anomalous curve lies in a translate of one
of finitely many algebraic subgroups H of dimension n� 2. Each of these can be
e¤ectively computed; see equation (3.4) of [BMZ4] (p. 19). Consider ZH in ST(a),
a subvariety of S. If ZH AS then ZH would be a finite union of anomalous
curves which is also e¤ectively computable; see for example the remarks in
[BMZ4] (pp. 5, 20) on an e¤ective Fibre Dimension Theorem. If this were to
happen for each of the finitely many H, then the number of anomalous curves
would be finite and (b) above would follow.

So we can assume that ZH ¼ S for some H. After an automorphism we
can suppose as in the subsequent discussion in [BMZ4] that H is defined by
x1 ¼ x2 ¼ 1. Now the sets HZH and S have the same image UH under the pro-
jection p from Gn

m to G2
m ¼ G2

m � f1gn�2 in Gn
m. As HZH ¼ UH �Gn�2

m is not
dense in Gn

m by ST(a), it follows that UH is not dense in G2
m. So x1, x2 must be

algebraically dependent on S.
We deduce that pðSÞ ¼ UH is a curve, and so pðjðC � CÞÞ too. However

this latter is jðpðCÞ � pðCÞÞ, and so it would follow again from Lemma 2(a) of
[BMZ3] that the curve pðCÞ is contained in a proper coset. But then C would be
too. This contradiction establishes (b) above.

Finally (c) above is Lemma 2(b) of [BMZ3], and because the proof there is
fully e¤ective this completes the proof of the present lemma. r

Remark 2. In fact it can be shown with a bit more e¤ort that ZðCÞ is the sta-
bilizer of C, as suspected by Sinnou David, and therefore consists only of torsion
points. Using this fact would slightly simplify the proof in Section 5.

4. Curves

We prove here two results of the same type as Maurin’s Theorem on the set
CBHn�2, but each with an extra restriction on the points P. We note that even
CBHn�1 lies in CðQÞ, so these P are certainly defined over Q. In the first result
the height hðPÞ is assumed to be bounded above.
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Lemma 3. For nb 2 let C be an irreducible curve in Gn
m defined over Q and

not lying in Hn�1. Then for any B > 0 there are at most finitely many points P in
CBHn�2 with hðPÞaB and these can be e¤ectively found.

Proof. If nb 3 then apart from the e¤ectivity this is Lemma 1 (p. 2249) of
[BMZ3]. But the results in [AD] and [AZ] referred to are e¤ective in nature, and
the version of Liardet’s Theorem referred to is that just for torsion points, which
is well known to be fully e¤ective; see also the remarks at the end of the proof of
Lemma 8.1 (p. 73) in [BMZ5]. This also covers the case n ¼ 2. r

In the second result, some fixed power of P is assumed to be defined over a
fixed number field.

Lemma 4. For nb 2 let C be an irreducible curve in Gn
m defined over Q and not

lying in Hn�1. Then for any positive integer e and any number field K there are at
most finitely many points P in CBHn�2 with Pe in Gn

mðKÞ, and these can be e¤ec-
tively found.

Proof. Replacing C by its eth power Ce in Gn
m, we may assume that e ¼ 1.

Now we use induction on n. The case n ¼ 2 follows at once from Lemma 3, since
then hðPÞ ¼ 0.

For nb 3 we can suppose, after applying an automorphism of Gn
m, that C is

parametrized by ðx1; . . . ; xk; gkþ1; . . . ; gnÞ, where x1; . . . ; xk are multiplicatively
independent modulo constants and the constants gkþ1; . . . ; gn are multiplicatively
independent. We can also suppose that kb 2 else CBHn�2 is empty.

For the induction step suppose that P ¼ ðx1; . . . ; xk; gkþ1; . . . ; gnÞ is a point of
CðKÞ in Gn

m; we can assume that our curve C is defined over K . As in [BMZ3]
(p. 2253) select non-zero polynomials fij ð1a i < ja kÞ over K vanishing on
the projections of C to the various pairs of coordinates from x1; . . . ; xk. Let V
be the set of non-archimedean valuations on K which are trivial on the non-zero
coe‰cients of the fij and on the group generated by gkþ1; . . . ; gn. The comple-
mentary set W of all other valuations on K is finite.

Let v be in V and consider the equation f12ðx1; x2Þ ¼ 0. Since v is non-
archimedean there must appear two monomials with the same value, and since v
is trivial on the coe‰cients of f12 we get an additive relation b1vðx1Þ þ b2vðx2Þ ¼ 0,
where ðb1; b2Þ in Z2 is non-zero taken from a finite set independent of P or v. The
same argument applies to any pair vðxiÞ, vðxjÞ ð1a i < ja kÞ.

Therefore the point vðPÞ ¼ ðvðx1Þ; . . . ; vðxkÞÞ lies in a finite set of Q-vector
spaces of dimension at most 1, also independent of P or v.

Suppose first that vðPÞ ¼ 0 for every v in V. Then each xi belongs to the
finitely generated group of W-units of K . So we can apply the more general
form of Liardet’s Theorem to the projection C 0 on Gk

m (which lies in no proper
coset) to finish the proof of the present lemma in this case. Note that this form
of Liardet’s Theorem was originally proved using Siegel’s Theorem on integral
points, which remains ine¤ective today, but see Theorem 5.4.5 of [BG] (p. 147)
for an e¤ective proof, also using valuations.
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Suppose then instead that there is v in V with vðPÞA 0, so that vðPÞ lies in our
finite set of Q-vector spaces of dimension 1. We have equations

xa1
1 . . . xak

k g
akþ1

kþ1 . . . g
an
n ¼ 1

for all a ¼ ða1; . . . ; anÞ in some subgroup A of Zn of rank 2. Applying v leads to
a1vðx1Þ þ � � � þ akvðxkÞ ¼ 0, which says that the ða1; . . . ; akÞ lie in a finite set of
proper subgroups of Zk. After an automorphism of Gk

m we can suppose a1 ¼ 0,
and then we just project to ðx2; . . . ; xk; gkþ1; . . . ; gnÞ. By induction we get at most
finitely many ðx2; . . . ; xkÞ, so also ðx1; . . . ; xkÞ; for example f12 above must in-
volve x1 and we can take it irreducible. r

Remark 5. In fact Bérczes, Evertse, Győry and Pontreau have recently given
an e¤ective version of Liardet’s Theorem for division groups (and more) as
Theorem 2.2 (p. 73) of [BEGP]. Using this might also slightly simplify the proof
in Section 5.

Actually, the arguments below su‰ce to deduce (without BHT) such an e¤ec-
tive version from the version for finitely generated groups G. (Start with a curve
in G2

m and in (4) take k ¼ 2 and g3; . . . ; gn as generators of G.)

Finally we record a remark about Galois conjugates.

Lemma 6. For a number field K there is an e¤ectively computable positive integer
d with the following properties. For nb 1 let P be in Gn

mðKÞ. Then
(a) Suppose for some s in GalðK=KÞ that jðPs;PÞ lies in a coset QH with Q in

Gn
mðKÞ. Then there is ~QQ with ~QQd ¼ ð1; . . . ; 1Þ and QH ¼ ~QQH; so QH is a torsion

coset.
(b) Suppose for all s in GalðK=KÞ that jðPs;PÞ lies in Gn

mðKÞ. Then Pd lies in
Gn

mðKÞ.

Proof. We take d as a positive integer such that zd ¼ 1 for all roots of unity
z in K . If dimH ¼ n in (a) then there is nothing to do. Otherwise after an
automorphism we can suppose that H is defined by xj ¼ 1 ð j ¼ k þ 1; . . . ; nÞ for
some k < n. Thus QH is defined by xj ¼ aj for aj in K, and we get xs

j x
�1
j ¼ aj

for P ¼ ðx1; . . . ; xnÞ. Now the monic minimal polynomial of xj over K , of de-
gree say dj, has a zero also at xs

j ¼ ajxj. So it gets multiplied by a
dj
j when we

multiply the variable by aj; and inspection of the non-zero constant term
shows that this a

dj
j ¼ 1. Thus ad

j ¼ 1 ð j ¼ k þ 1; . . . ; nÞ, and we can take ~QQ ¼
ð1; . . . ; 1; akþ1; . . . ; anÞ.

To prove (b) we apply this for each s to H ¼ f1gn with Q ¼ jðPs;PÞ. We find
that Q ¼ ~QQ so Pds ¼ Pd , and because this holds for all s the result follows. r

5. Proof of theorem

The general idea is to take the bounded cosets implicit in Lemma 1(b), and inter-
sect them with the unbounded torsion coset implicit in Hn�2. A similar idea was
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used in [BMZ4] (p. 23) and [BMZ6] (p. 317), but this time the bounded cosets are
also torsion cosets, thanks to Lemma 6(a). We argue again by induction on n; the
e¤ectivity will be clear from the preceding discussions.

We can suppose that C is parametrized by ðx1; . . . ; xk; gkþ1; . . . ; gnÞ, where
x1; . . . ; xk are multiplicatively independent modulo constants and the coordi-
nates gkþ1; . . . ; gn are multiplicatively independent; and further kb 2. Write
C ¼ C 0 � P0 with C 0 in Gk

m and P0 ¼ ðgkþ1; . . . ; gnÞ.
During the proof various fixed curves C 00 will turn up. These C 00, which in-

clude C 0, will come from applying finitely many automorphisms of Gk
m to C 0

and then projecting down to various G l
m. None of these C 00 lies in a proper coset.

The corresponding closures S 00 of jðC 00 � C00Þ satisfy Lemma 1, so that S 00 is the
union of S 00oa with finitely many curves contained in cosets Q0H0 of codimension
2, with various Q0 ¼ Q0ðC 00Þ. We choose once and for all a number field K con-
taining fields of definition for the C 00, the points of ZðC 00Þ, and the Q0ðC 00Þ.

Next, during the proof a finite collection of positive integers b related to the
Q0H0 will turn up. We choose once and for all a positive integer c divisible by
all these.

To begin the proof proper take now an arbitrary P ¼ ðP 0;P0Þ in CBHn�2

with P 0 ¼ ðx1; . . . ; xkÞ in C 0. We claim that we can assume that there exists
s ¼ sðPÞ in GalðK=K) such that

jðPcs;PcÞ B Gn
mðKÞ:ð3Þ

Namely, if this fails, then Lemma 6(b) gives a positive integer d, depending only
on K , with Pcd in Gn

mðKÞ. But then Lemma 4 leads to the finiteness of the P.
There is a subgroup A of Zn of rank 2 with

xa1
1 . . . xak

k g
akþ1

kþ1 . . . g
an
n ¼ 1ð4Þ

for all a ¼ ða1; . . . ; ak; akþ1; . . . ; anÞ in A. Define Q ¼ jðP 0s;P 0Þ ¼ ðh1; . . . ; hkÞ.
This Q lies on jðC 0 � C0Þ in Gk

m with closure say S. In fact Q lies in SBHk�2,
because two independent a in (4) project down to two independent ða1; . . . ; akÞ,
else there would be a non-trivial relation (4) with a1 ¼ � � � ¼ ak ¼ 0, which is
ruled out by the independence of gkþ1; . . . ; gn. There are now two main cases (I)
and (II).

Case I: the point Q lies in Soa
. Then by BHT we know that hðQÞaBðSÞ.

Now by (3) the point ðQ; 1; . . . ; 1Þ ¼ jðPs;PÞ does not lie in Gn
mðKÞ and so Q

does not lie in Gk
mðKÞ. Therefore Q avoids the exceptional set ZðC 0Þ by our

choice of K . Hence hðP 0Þ is also bounded above by Lemma 1(c). Thus hðPÞ is
bounded too. Now the required finiteness follows from Lemma 3.

Case II: the point Q does not lie in Soa
. Now Lemma 1(b) shows that Q

lies in one of a finite number of anomalous curves of S, each one lying in a fixed
ðk � 2Þ-dimensional coset Q0H0. Recall that the number field K contains a field
of definition for all the Q0. As Q ¼ jðP 0s;P 0Þ we see from Lemma 6(a) that each

257maurin’s theorem



Q0H0 is a torsion coset. Corresponding to this there is a fixed subgroup B0 of Z
k

of rank at least 2 such that

hb1
1 . . . hbk

k ¼ 1ð5Þ

for all ðb1; . . . bkÞ in B0.
We will now attempt to prove that (5) holds even on a fixed subgroup of rank

k. If k ¼ 2 then there is nothing to do; so we suppose kb 3, and we proceed
inductively from a fixed subgroup, also for convenience denoted by B0, of rank
k � l þ 1 to a fixed subgroup of rank k � l þ 2 ðl ¼ k � 1; . . . ; 2Þ. We do this
by considering the sum B0 þ pðAÞ, where now p is the projection from Zn to
Zk ¼ Zk � f0gn�k in Zn. If this sum is not much larger than B0, we get informa-
tion on pðAÞ. Otherwise we get additional relations on Q for free.

We start by noting from (5) that Q lies in a fixed torsion coset ~QQ0
~HH0, with ~HH0

now of dimension l � 1 in Gk
m; in particular Q lies in SBHl�1, not just SBHk�2.

After an automorphism ofGk
m we can suppose that ~HH0 ¼ G l�1

m ¼ G l�1
m � f1gk�lþ1

in Gk
m. This has the e¤ect of allowing B0 ¼ bZk�lþ1 ¼ f0g l�1 � bZk�lþ1 in Zk for

some bounded positive integer b.
Next we apply s to (4) to see that (5) already holds for all ðb1; . . . ; bkÞ in

pðAÞ. Now there are two cases depending on the rank r of B0 þ pðAÞ; of course
rb k � l þ 1.

Case II1: we have r ¼ k � l þ 1. This means that pðAÞ lies in Zk�lþ1. Then
(4) becomes

xal
l . . . xak

k g
akþ1

kþ1 . . . g
an
n ¼ 1ð6Þ

for any a in A. We have two independent a and correspondingly two independent
pðaÞ; so also two independent ðal ; . . . ; akÞ in (6). The resulting pair of equations
represents a point on C 000BHn�l�1, where the curve C 000 in Gn�lþ1

m is parame-
trized by ðxl ; . . . ; xk; gkþ1; . . . ; gnÞ. This C 000 is not in a proper torsion coset, and
so we can appeal to induction as in the proof of Lemma 4 because n� l þ 1 < n.

Case II2: we have r > k � l þ 1. Now Q lies in SBHl�2, not just SBHl�1.
We use the projection l from Gk

m to G l
m ¼ G l

m � f1gk�l in Gk
m. Thus lðQÞ lies in

lðSÞ in G l
m, and even in lðSÞBHl�2, because we had k � l þ 2 relations on Q

and we lost k � l coordinates in the projection, so there remain at least two rela-
tions on lðQÞ. We now imitate Cases I and II above, writing S 00 for the closure

of lðSÞ in G l
m.

Subcase ðl; IÞ: the point lðQÞ lies in S 00oa
. We argue as in Case I above.

By BHT we get hðlðQÞÞaBðS 00Þ. Now we show that lðQÞ avoids the exceptional
set ZðC 00Þ in G l

m, where C 00 is the closure of lðC 0Þ parametrized by ðx1; . . . ; xlÞ.
Namely suppose lðQÞ ¼ jðlðP 0Þs; lðP 0ÞÞ lies in ZðC 00Þ. We have chosen K so
large that ZðC 00Þ lies in G l

mðKÞ. So the hi ði ¼ 1; . . . ; lÞ lie in K. But (5) on

B0 ¼ bZk�lþ1 ¼ f0g l�1 � bZk�lþ1 shows that the other hb
i ¼ 1 ði ¼ l þ 1; . . . ; kÞ.

Thus jðPbs;PbÞ lies in Gn
mðKÞ. Choosing the integer c of (3) to be divisible by b,
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we get a contradiction with (3). Thus indeed lðQÞ avoids the exceptional set
ZðC 00Þ.

So by Lemma 1(c) we see that hðlðP 0ÞÞ is also bounded above. Thus hðP 0Þ
as well, for example by using the f1i ði ¼ l þ 1; . . . ; kÞ in the proof of Lemma 4.
Thus hðPÞ too, and now the required finiteness follows from Lemma 3.

Subcase ðl; IIÞ: the point lðQÞ does not lie in S 00oa
. We argue as in Case

II above. Now Lemma 1(b) shows that lðQÞ lies in one of a finite number of
anomalous curves of S 00, each one lying in a fixed ðl � 2Þ-dimensional coset
Q0H0. As above, we have chosen the number field K to include the field of defi-
nition of all the Q0. As lðQÞ ¼ jðlðP 0Þs; lðP 0ÞÞ we see from Lemma 6(a) that
each Q0H0 is a torsion coset. Corresponding to this there is a fixed subgroup C0

of Z l ¼ Z l � f0gk�l in Zk of rank 2 such that hc1
1 . . . hcl

l ¼ 1 for all ðc1; . . . clÞ in
C0.

Now the subgroup bZk�l ¼ f0g � bZk�l of bZk�lþ1 ¼ B0 in (5), which is also
f0g l � bZk�l HZk, generates together with C0 a fixed group of rank k � l þ 2 on
which (5) holds. This is exactly the required inductive step.

We therefore deduce (5) for a fixed group of rank k in Zk. So Qb ¼ ð1; . . . ; 1Þ
for some bounded positive b; and the same for Qc. But then jðPcs;PcÞ ¼
ð1; . . . ; 1Þ, contradicting (3) quite badly. r
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