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Abstract. — Many operator ideals I can be naturally associated to polynomial ideals Q. In this

paper we initiate a research program whose aim is to relate those holomorphic mappings f that
admit factorizations f ¼ u � g, where u a I and g is holomorphic, with those f whose derivative

belongs to the associated composition polynomial ideal Q ¼ I �P.
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Introduction

The basic motivation for this work arises from the following example (see, e.g.,
[4]). Let f : E ! F be a holomorphic (complex analytic) mapping between com-
plex Banach spaces E and F . Then f is locally compact if and only if for every n,
the n-homogeneous Taylor polynomial d̂d nf ð0Þ : E ! F takes the unit ball of E to
a relatively compact subset of F . The cogent fact here is that the non-linear be-
havior of f is reflected by the behavior of its associated set of Taylor ‘‘coe‰-
cients,’’ and conversely. It is this type of situation that will be the focus of this
article.

The study of holomorphic mappings associated to special classes of homoge-
neous polynomials goes back to Nachbin [24]. (See Section 1 for precise defini-
tions of the term ‘‘associated’’ and related concepts.) The notion of ideals of
homogeneous polynomials originated with Pietsch [28]. In recent years, several
ideals of polynomials have proved to be suitable environments for the study of
associated holomorphic mappings (see [6, 19, 20, 25, 26]), so a systematic investi-
gation of holomorphic mappings associated to ideals of polynomials is in order.

All mappings considered will be between Banach spaces. We let I denote an
operator ideal and P the class of continuous homogeneous polynomials. In this
paper, we initiate the study of holomorphic mappings associated to the composi-
tion polynomial ideal I �P (see Definitions 1.2 and 1.3). The main question is
whether or not a holomorphic function f is associated to I �P if and only if it
admits a factorization f ¼ u � g where g is holomorphic and u belongs to I. The
aim is to provide a number of results showing that advances in this direction are
possible. We study the general problem, focusing first on entire mappings since
this seems to be more accessible. We finish the paper doing some incursions for
holomorphic (non necessarily entire) mappings.



In Proposition 2.1 we see that classical results of the first author and Schotten-
loher [4] and Ryan [29, 30] can be viewed as positive solutions to the above ques-
tion for entire mappings and the ideals of compact and weakly compact opera-
tors. With these in mind, we get a positive answer for any closed surjective ideal
I. Concerning non-surjective closed ideals, some slight advances are also shown.

We also consider this question in the context of bounded holomorphic
mappings. According to Mujica [22], every bounded holomorphic mapping
f : U JE ! F admits a factorization f ¼ u � g where g : E ! GlðUÞ is a
bounded holomorphic mapping, GlðUÞ is a Banach space depending only on
the open set U , and u : GlðUÞ ! F is a continuous linear operator. The question
of whether or not a bounded holomorphic mapping f is associated to I �P if
and only if it admits a factorization f ¼ u � g with g bounded and u a I arises
naturally. By using the linearization of bounded holomorphic mappings we get
a negative answer. That is, one cannot assure in general that the function g
through which f factors is also bounded.

The paper is organized as follows. In Section 2 we show that if either f is a
polynomial or I is a closed surjective ideal, then an entire mapping f is factoriz-
able if and only if it is locally factorizable, if and only if it is associated to I �P.
We also examine some of the most important non-surjective closed ideals. Specif-
ically, we obtain conditions that allow us to reduce the case of spaces of entire
mappings associated to the ideals of approximable, completely continuous, or
strictly singular operators to the compact case. Section 3 deals with bounded
holomorphic mappings. We prove that a bounded holomorphic mapping f fac-
tors as f ¼ u � g with g bounded and holomorphic and u a I if and only if its
linearization belongs to I. By using this result we get an example in the setting
of compact operators that solves the aforementioned bounded problem in the
negative. Section 4 is devoted to the study of the factorization of holomorphic,
non necessarily entire, mappings associated to I �P, where I is the ideal of
compact operators. We get that in this particular case any holomorphic mapping
defined on a separable Banach space or an absolutely convex open set of an arbi-
trary Banach space, is factorizable. If we remove the above conditions and con-
sider general domains (that is, arbitrary open sets in arbitrary Banach spaces)
then we get that any holomorphic mapping of bounded type associated to I �P,
where I is the ideal of compact or weakly compact operators, is factorizable.

1. Background and notation

Throughout this paper E, F , G will stand for complex Banach spaces and n will
be a positive integer. By PðnE;F Þ we denote the Banach spaces of all continuous
n-homogeneous polynomials from E to F with the usual sup norm, and by
HðU ;FÞ the linear space of all holomorphic mappings from an open subset U
of E to F . For technical reasons we define Pð0E;F Þ ¼ F . If F ¼ C we simply
write PðnEÞ and HðUÞ. By �PP we mean the unique continuous symmetric n-linear
mapping associated to the continuous n-homogeneous polynomial P. A mapping
P : E ! F is a polynomial if P ¼ P0 þ P1 þ � � � þ Pn where each Pk a PðkE;FÞ.
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For f a HðU ;F Þ, a a U and k a N, d̂d kf ðaÞ is the k-th di¤erential polynomial
of f at a. For the general theory of homogeneous polynomials and holomorphic
mappings we refer to S. Dineen [11] and J. Mujica [21].

By n̂nn; s
p E we mean the n-fold completed projective symmetric tensor product

of E and by sn the canonical n-homogeneous polynomial from E to n̂nn; s
p E

(snðxÞ ¼ nnx). Given P a PðnE;FÞ, PL denotes the linearization of P, that is
PL : n̂nn; s

p E ! F is the bounded linear operator satisfying P ¼ PL � sn.

Definition 1.1 (Polynomial ideals). An ideal of homogeneous polynomials (or
polynomial ideal ) Q is a subclass of the class of all continuous homogeneous poly-
nomials between Banach spaces such that for all n a N and Banach spaces E
and F , the components QðnE;F Þ ¼ PðnE;FÞBQ satisfy the following two condi-
tions:

(i) QðnE;F Þ is a linear subspace of PðnE;F Þ which contains the n-homogeneous
polynomials of finite type.

(ii) (The ideal property): If u a LðG;EÞ, P a QðnE;FÞ and t a LðF ;HÞ, then the
composition t � P � u is in QðnG;HÞ.

Suppose that jj � jjQ : Q ! Rþ satisfies the following three properties:

(i 0) ðQðnE;F Þ; jj � jjQÞ is a normed (Banach) space for all Banach spaces E and F
and all n,

(ii 0) jjPnjjQ ¼ 1, where Pn : K ! K is given by PnðxÞ ¼ xn for all n,
(iii 0) If u a LðG;EÞ, P a QðnE;F Þ and t a LðF ;HÞ, then jjt � P � ujjQ a

jjtjj jjPjjQjjujj
n.

Then ðQ; jj � jjQÞ is called a normed (Banach) polynomial ideal.
It is understood that Qð0E;F Þ ¼ F .

The case n ¼ 1 recovers the classical theory of operator ideals, for which the
reader is referred to [10]. An operator ideal I is surjective if for every surjective
operator u a LðG;EÞ the following holds: if v a LðE;FÞ and v � u a IðG;F Þ,
then v a IðE;F Þ. Besides compact and weakly compact operators, the most
usual examples of surjective closed operator ideals are those formed by operators
T : X ! Y that are Rosenthal (any sequence in TðBX Þ has a weakly Cauchy sub-
sequence), Banach-Saks (every bounded sequence in X has a subsequence ðxnÞn
such that the sequence ðTðx1 þ � � � þ xnÞ=nÞn converges), separable (TðX Þ is sep-
arable), strictly cosingular ([27, 1.10.2]), limited (for each weak�-null sequence
ðx�

n Þ in Y �, one has limn supa ATðBX Þ jx�
n ðaÞj ¼ 0), Grothendieck (T �ðy�

n ÞÞn HX �

is weak null whenever ðy�
n Þn is a weak� null sequence) or Asplund (T factors

through an Asplund space). Lists of surjective operator ideals with references
can be found in [10] and [16]. Some abstract procedures to generate polynomial
ideals from operator ideals have been developed. Next we describe one of these
procedures, which is a particular case of the technique known as composition
ideals (see [14, 7.3]) and was investigated in [7]:
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Definition 1.2 (Composition polynomial ideals). Given a Banach operator
ideal I, the composition ideal of polynomials I �P consists of all homogeneous
polynomials P between Banach spaces that can be factored as P ¼ u �Q where Q
is an homogeneous polynomial and u is linear operator belonging to I. I �P
becomes a Banach polynomial ideal (see [7]) with the usual composition norm
jj � jjI�P given by

jjPjjI�P :¼ inffjjujjIjjQjj : P ¼ u �Q;Q a PðnE;GÞ; u a IðG;FÞg:

Definition 1.3 (Associated holomorphic mappings). A holomorphic mapping
f from an open subset U of a Banach space E to a Banach space F is said to be
associated to I �P, written f a HI�PðU ;F Þ, if its derivatives d̂d kf ðaÞ belong to
I �P for all k a N and all a a U , and for every a a U there are C; cb 0 such
that 1

k! d̂d
kf ðaÞ

��� ������ ���
I�P

aC � ck for all k a N.

Remark 1.4. The above definition rests heavily on the concept of holomorphy
type of Nachbin [24], as generalized in [6].

2. Factorization theorems

By K and W we mean the ideals of compact and weakly compact linear opera-
tors, respectively. The following particular case of our forthcoming main theorem
shows that classical results of [4, 29, 30] can be rewritten as factorizations of
functions in HK�PðE;FÞ and HW�PðE;FÞ. Recall that a mapping f : U ! F ,
U JE, is compact (weakly compact) if every a a U admits a neighborhood Va

such that f ðVaÞ is relatively compact (relatively weakly compact) in F .

Proposition 2.1. Let f a HðE;F Þ.

(a) f a HK�PðE;FÞ if and only if f ¼ u � g, where G is a Banach space,
g a HðE;GÞ and u a KðG;FÞ.

(b) f a HW�PðE;F Þ if and only if f ¼ u � g, where G is a Banach space,
g a HðE;GÞ and u a WðG;F Þ.

Proof. f a HK�PðE;F Þ

,
ð1Þ

d̂d nf ðaÞ a K �PðnE;F Þ for any a a E and n ¼ 0; 1; 2; . . .

,
ð2Þ

d̂d nf ðaÞ is compact for any a a E and n ¼ 0; 1; 2; . . .

,
ð3Þ

f is compact

,
ð4Þ

f ¼ u � g, where G is a Banach space, g a HðE;GÞ and u a KðG;F Þ.

These equivalences are explained by the following facts:

(1) Since K is a closed operator ideal, jj � jjK�P coincides with the usual sup norm
(see [7, Corollary 2.8]).

(2) [29, Lemma 4.1] (see also [5, Proposition 37(b)] and [22, Proposition 3.4(a)]).
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(3) [4, Proposition 3.4].
(4) [4, Proposition 3.5].

The proof for the weakly compact case is analogous using [30, Theorems 3.2
and 3.7]. r

We are concerned with possible extensions of the above Proposition to arbi-
trary operator ideals as well as with the relationship between global and local
factorizations.

Theorem 2.2. Let I be a closed and surjective Banach operator ideal and
f a HðE;F Þ. Then the following conditions are equivalent:

(a) f ¼ u � g, where G is a Banach space, g a HðE;GÞ and u a IðG;F Þ.
(b) Every a a E admits an open neighborhood Va such that f jVa

¼ ua � ga, where
Ga is a Banach space, ga a HðVa;GaÞ and ua a IðGa;F Þ.

(c) There is an open neighborhood V of 0 such that f jV ¼ u � g, where G is a
Banach space, g a HðV ;GÞ and u a IðG;F Þ.

(d) f a HI�PðE;F Þ.

Proof. (a) ) (b) is obvious. Let us prove (b) ) (d): Given a a E, let Va be an
open neighborhood of a such that f jVa

¼ ua � ga, where Ga is a Banach space,
ga a HðVa;GaÞ and ua a IðGa;F Þ. Since f and ga are holomorphic, there is
r > 0 such that

f ðxÞ ¼
Xl
n¼0

1

n!
d̂d nf ðaÞðx� aÞ and gaðxÞ ¼

Xl
n¼0

1

n!
d̂d ngaðaÞðx� aÞ

uniformly on Bða; rÞJVa. Since ua is linear and continuous,

Xl
n¼0

1

n!
d̂d nf ðaÞðx� aÞ ¼ f ðxÞ ¼ uaðgaðxÞÞ ¼

Xl
n¼0

1

n!
ðua � d̂d ngaðaÞÞðx� aÞ

uniformly on Bða; rÞ. By [24, Proposition 4.2] it follows that d̂d nf ðaÞ ¼
ua � d̂d ngaðaÞ for every n. So, d̂d nf ðaÞ a I �PðnE;F Þ for every n. Let C, c be such

that 1
n! d̂d

ngaðaÞ
��� ������ ���aCcn for every n. Thus,

1

n!
d̂d nf ðaÞ

����
����

����
����
I�P

a jjuajjI
1

n!
d̂d ngaðaÞ

����
����

����
����a jjuajjICcn

for every n.
(d) ) (a) Let I be a closed surjective operator ideal. Let f a HI�PðE;FÞ and

n a N. By definition, d̂d nf ð0Þ a I �PðnE;F Þ. Of course we can write d̂d nf ð0Þ ¼
un �Qn with Qn a PðnE;GnÞ, un a IðGn;FÞ and jjQnjj ¼ 1. So d̂d nf ð0ÞðBEÞ ¼
unðQnðBEÞÞJ unðBGn

Þ. By [16, Proposition 5], to each x a E corresponds a neigh-
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borhood Vx such that f ðVxÞ a fAJE : AJ uðBZÞ for some Banach space Z
and some operator u a IðZ;EÞg. Now (a) follows from [16, Theorem 6].

(b) ) (c) is clear. (c) ) (a) Assume that there is an open neighborhood V of 0
such that f jV ¼ u � g, where G is a Banach space, g a HðV ;GÞ and u a IðG;FÞ.
Then, by the uniqueness of the Taylor polynomials and the Identity Theorem

d̂d nf ð0Þ ¼ u � d̂d ngð0Þ:

We can assume that jjd̂d ngð0Þjj ¼ 1. Then d̂d nf ð0ÞðBEÞ ¼ u � d̂d ngð0ÞðBEÞH uðBGÞ
and the conclusion follows as in (d) ) (a). r

Remark 2.3. The condition of I being closed and surjective is only needed in
the proof of (d) ) (a) and (c) ) (a). Therefore (a) ) (b) ) (d) are true for any
arbitrary Banach operator ideal I.

Theorem 2.4. Let I be a Banach operator ideal and P : E ! F a continuous
polynomial. Then the following conditions are equivalent:

(a) P ¼ u �Q, where G is a Banach space, Q : E ! G is a continuous polynomial
and u a IðG;FÞ.

(b) P a HI�PðE;FÞ.

Proof. Only (b) ) (a) requires proof. Let P ¼ P0 þ P1 þ � � � þ Pn,
Pj a Pð jE;FÞ, j ¼ 0; 1; . . . ; n. Since we are assuming that P a HI�PðE;FÞ,
Pk ¼ 1

k! d̂d
kPð0Þ a I �PðkE;F Þ for k ¼ 0; 1; . . . ; n. So, there are Banach spaces

G0;G1; . . . ;Gn, homogeneous polynomials Qk a PðkE;GkÞ and operators uk a
IðGk;FÞ such that Pk ¼ uk �Qk for k ¼ 0; 1; . . . ; n. Define G ¼ G0 � � � � � Gn,
Q : E ! G and u : G ! F by

QðxÞ ¼ ðQ0ðxÞ; . . . ;QnðxÞÞ; uðy0; . . . ; ynÞ ¼ u0ðy0Þ þ � � � þ unðynÞ:

It is immediate that P ¼ u �Q. In order to see that u belongs to I, use
that each uk belongs to I and observe that u ¼ u0 � p0 þ � � � þ un � pn, where
pkðy0; . . . ; ynÞ ¼ yk. For k ¼ 0; 1; . . . ; n, define Rk a PðkE;GÞ by RkðxÞ ¼
ð0; . . . ; 0;QkðxÞ; 0; . . . ; 0Þ. It follows that Q ¼ R0 þ R1 þ � � � þ Rn, so Q is a poly-
nomial. r

We do not know if the conditions of Theorem 2.2 are equivalent for arbitrary
Banach operator ideals. Let us examine holomorphic mappings associated to the
compositions ideals of polynomials generated by three of the most usual closed
non-surjective ideals.

By A we mean the ideal of approximable operators (sup-norm limits of finite
rank operators), by CC the ideal of completely continuous operators (weakly
convergent sequences are sent to norm convergent sequences) and by SS the
ideal of strictly singular operators (restrictions to infinite-dimensional subspaces
are never isomorphisms). We let to denote the Nachbin ported topology on
HðEÞ [24]. A Banach space E is polynomially reflexive if PðnEÞ is reflexive for
every n a N.
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Proposition 2.5. Let E and F be Banach spaces.

(1) If either ðHðEÞ; toÞ or F has the approximation property, then HA�PðE;F Þ ¼
HK�PðE;F Þ.

(2) If E is polynomially reflexive, then HCC�PðE;FÞ ¼ HK�PðE;FÞ for every
Banach space F .

(3) HSS�Pðl1; l1Þ ¼ HK�Pðl1; l1Þ.

Proof. (1) Let f a HK�PðE;FÞ, n a N and a a E be given. By definition,
d̂d nf ðaÞ a K �PðnE;F Þ, so d̂d nf ðaÞ ¼ un �Qn where Qn a PðnE;GnÞ and un a
KðGn;FÞ. Assume that F has the approximation property. Since every compact
F -valued operator is approximable, we have un a AðGn;FÞ. We get d̂d nf ðaÞ a
A �PðnE;FÞ. Suppose now that ðHðEÞ; toÞ has the approximation property.
By virtue of [4, Proposition 4.2] we find that ðn̂nn; s

p EÞ0 ¼ PðnEÞ has the approxi-
mation property. The linear operator ðd̂d nf ðaÞÞL is compact by [7, Proposition
2.2(b)], so it is approximable. The factorization d̂d nf ðaÞ ¼ ðd̂d nf ðaÞÞL � sn gives
d̂d nf ðaÞ a A �PðnE;F Þ in this case as well. The conclusion f a HA�PðE;F Þ fol-
lows because A is closed, so HK�PðE;F ÞJHA�PðE;F Þ. The converse inclusion
is obvious as AJK.

(2) The proof here is similar to that of part (1). For any n, n̂nn; s
p E is reflexive

as ðn̂nn; s
p EÞ0 ¼ PðnEÞ is reflexive by assumption. Let f a HCC�PðE;F Þ, n a N

and a a E be given. By definition, d̂d nf ðaÞ a CC �PðnE;F Þ, so [7, Proposition
2.2(b)] and [17, Proposition 17.1.10] give that ðd̂d nf ðaÞÞL is a completely con-

tinuous, hence compact, operator on the reflexive space n̂nn; s
p E. The factorization

d̂d nf ðaÞ ¼ ðd̂d nf ðaÞÞL � sn implies that d̂d nf ðaÞ a K �PðnE;F Þ. The conclusion
f a HK�PðE;F Þ follows because K is closed, so HCC�PðE;F ÞJHK�PðE;F Þ.
The converse inclusion is obvious as KJCC.

(3) Repeat the same reasoning using KJSS [27, Proposition 1.11.9],
n̂nn; s

p l1 ¼ l1 and Kðl1; l1Þ ¼ SSðl1; l1Þ [18, p. 62]. r

One example of a polynomially reflexive space is Tsirelson’s original space
T � [2]. The reader is referred to [2, 3, 5, 13] for further information about poly-
nomially reflexive spaces. The approximation property on spaces of holomor-
phic functions has been widely studied (see, e.g., [4, 8, 9, 12]). For instance,
ðHðl1Þ; toÞ [4, Proposition 5.1], ðHðc0Þ; toÞ ([4, Proposition 4.2] and [29, Corol-
lary 5.1]) and ðHðT �Þ; toÞ ([4, Proposition 4.2] and [1, Theorem 8]) have the
approximation property, while ðHðl2Þ; toÞ does not have the approximation
property (otherwise its complemented subspace Pð2l2Þ ¼ Lðl2; l2Þ would have
the approximation property [11, p. 467], [31]).

Corollary 2.6. Let E and F be Banach spaces and f a HðE;FÞ.

(1) If F has the approximation property, then the conditions of Theorem 2.2 are
equivalent for the ideal A.

(2) If E is polynomially reflexive, then the conditions (a), (b) and (d) of Theorem
2.2 are equivalent for the ideal CC.
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(3) If E ¼ F ¼ l1, then the conditions (a), (b) and (d) of Theorem 2.2 are equiva-
lent for the ideal SS.

Proof. (1) By Theorem 2.2 we know that the four conditions are equivalent
for K. Since F has the approximation property, KðG;F Þ can be replaced by
AðG;F Þ and HK�PðE;F Þ by HA�PðE;F Þ [Proposition 2.5(1)].

(2) Suppose f a HCC�PðE;F Þ. By Proposition 2.5(2), f a HK�PðE;F Þ, so
applying Theorem 2.2 for K we obtain f ¼ u � g with g a HðE;GÞ and
u a KðG;FÞ. The proof is complete as KJCC.

(3) Repeat the reasoning of (2) using Proposition 2.5(3) and KJSS. r

Open problem. We conjecture that the conditions of Theorem 2.2 are not
equivalent for arbitrary Banach operator ideals.

3. Bounded holomorphic mappings

Holomorphic mappings f a HðU ;FÞ have canonical linearizations (through a
space depending only on U ) of the form f ¼ u � g, where g is holomorphic and
u is a continuous linear operator. However this universal space is not a Banach
space. More precisely, let GðUÞ be the inductive predual of HðUÞ endowed
with the usual td topology and dU a HðU ;GðUÞÞ be the evaluation map (see
[11, p. 183, 184]). According to [11, Proposition 3.27], to every f a HðU ;F Þ cor-
responds a unique operator Tf a LðGðUÞ;FÞ such that f ¼ Tf � dU . Unfortu-
nately GðUÞ is not a Banach space, but only a complete locally convex space.
Thanks to the following result due to J. Mujica, bounded holomorphic mappings
factor canonically through Banach spaces. Let HlðU ;FÞ denote the space of
bounded holomorphic mappings from U to F .

Theorem 3.1 [22, Theorem 2.1]. Let U be an open subset of E. There exists a
Banach space GlðUÞ and a bounded holomorphic mapping dU a HlðU ;GlðUÞÞ
with the following property: to every f a HlðU ;F Þ corresponds a unique linear
operator Tf a LðGlðUÞ;FÞ such that f ¼ Tf � dU .

Once we know that bounded holomorphic mappings f admit a canonical fac-
torization through a Banach space, of the form f ¼ u � g with u continuous and
linear and g bounded and holomorphic, it is natural to wonder if a ‘‘bounded ver-
sion’’ of Theorem 2.2 holds. More precisely: given f a HlðU ;F Þ and an opera-
tor ideal I, consider the conditions (a 0) f ¼ u � g, where G is a Banach space,
g a HlðU ;GÞ and u a IðG;FÞ, (d) f a HI�PðU ;FÞ.

Does (a 0) ) (d) for every I? Does (d) ) (a 0) whenever I is closed and surjec-
tive?

It is easy to check that (a) ) (b) ) (d) of Theorem 2.2 holds for holomorphic
mappings on open subsets of a Banach space. So, (a 0) ) (d) for every I. To
answer the second question we need the following characterization of condition
(a 0).
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Theorem 3.2. Let f a HlðU ;FÞ and let I be an operator ideal. Then
f ¼ u � g, where G is a Banach space, g a HlðU ;GÞ and u a IðG;F Þ if and
only if Tf a IðGlðUÞ;FÞ.

Proof. Assume that f ¼ u � g, where G is a Banach space, g a HlðU ;GÞ and
u a IðG;FÞ. Considering the linearizations Tf and Tg from Theorem 3.1,

Tf ðdUðxÞÞ ¼ f ðxÞ ¼ uðgðxÞÞ ¼ uðTgðdUðxÞÞÞ ¼ u � TgðdUðxÞÞ;

for every x a U . Since Tf , Tg and u are linear and continuous and the set
fdUðxÞ : x a Ug generates a dense subspace of GlðUÞ [22, p. 870], it follows
that Tf ¼ u � Tg. Hence Tf a IðGlðUÞ;F Þ. The converse is obvious. r

The next example shows that there is no ‘‘bounded version’’ of Theorem 2.2.

Example 3.3. Let D denote the open unit disk in C and consider

f : D ! c0 : f ðlÞ ¼ ðlnÞln¼1:

It is plain that f a HlðD; c0Þ is compact and that it fails to have a relatively com-
pact range. As in the proof of Proposition 2.1 it follows that f a HK�PðD; c0Þ. On
the other hand, Tf fails to be compact by [22, Proposition 3.4]. So by Proposi-
tion 3.2 f does not admit a factorization f ¼ u � g, where G is a Banach space,
g a HlðD;GÞ and u a KðG; c0Þ.

4. Holomorphic mappings on open sets

An obvious question concerns the extension of the previous results to holomor-
phic mappings on open subsets of a Banach space. In this section we obtain fac-
torization theorems for mappings f a HI�PðU ;FÞ where I ¼ K and I ¼ W.
The results we obtain generalize Proposition 2.1 to some classes of non-entire
holomorphic mappings. A bounded subset A of an open set U JE is said to
be U-bounded if the distance from A to the boundary of U is strictly positive
(E-bounded sets are just the ordinary bounded subsets of E). By HbðU ;FÞ we
mean the space of holomorphic mappings of bounded type from U to F , that is
holomorphic mappings that are bounded on U-bounded sets.

Proposition 4.1. Let U be an open subset of E and f a HbðU ;F Þ. Then the
conditions (a), (b) and (d) of Theorem 2.2 are equivalent for the ideals K and W.

Proof. The proof of (a) ) (b) ) (d) in Theorem 2.2 works for holomor-
phic mappings on open sets, so we just have to prove (c) ) (a). Suppose that
f a HK�PðU ;F Þ. Reasoning as in the proof of Proposition 2.1 and using that
[4, Proposition 3.4 (b) ) (a)] holds for holomorphic mappings on open sets, we
find that f is compact. Since f is of bounded type, according to [23, Proposition
7.2] there are a complete locally convex space GbðUÞ, a holomorphic mapping
dU a HbðU ;GbðUÞÞ and a (unique) linear operator Tf a LðGbðUÞ;F Þ such that
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f ¼ Tf � dU . By [15, Theorem 5.2] we conclude that Tf is compact. Calling on
the Factorization Lemma [11, Lemma 1.13], we know that there is a continuous
seminorm a on GbðUÞ and a bounded linear operator ~TTf : GbðUÞa :¼ ðGbðUÞ; aÞ=
a�1ð0Þ ! F such that ~TTf � pa ¼ Tf , where pa : GbðUÞ ! ðGbðUÞ; aÞ=a�1ð0Þ is the
quotient map.

U ���!f F

dU

???y
x??? ~TTf

GbðUÞ ���!pa GbðUÞa
����

���!Tf

Since Tf is compact, pa is surjective and Tf ¼ ~TTf � pa, it follows that ~TTf is com-
pact. Still calling ~TTf its extension to the completion of the normed space GbðUÞa,
the factorization f ¼ ~TTf � ðpa � dUÞ gives (a).

The proof for f a HW�PðU ;F Þ is analogous, using [30, Theorem 3.2
(iii) ) (i)]. r

We are able to extend the above proposition to all holomorphic mappings
from U to F , but only with an additional restriction on either the set U or the
space E.

Proposition 4.2. Let U be an open subset of E and f a HðU ;FÞ. If either E is
separable or U is absolutely convex, then the conditions (a), (b) and (d) of Theorem
2.2 are equivalent for the ideal K.

Proof. As before, we just have to prove (d) ) (a). The one and only thing
that prevents our argument following the lines of the proof of Proposition 2.1
is the fact that we do not know if for every compact holomorphic mapping
f : U ! F there is a compact, convex, balanced set LHF with f ðUÞHFL,
where FL ¼ ðspanL; jj:jjLÞ, and f : U ! FL holomorphic (see [4, Proposition 3.5
(a) ) (b)]). So it su‰ces to show that [4, Proposition 3.5 (a) ) (b)] holds for
holomorphic mappings on either an arbitrary open subset of a separable Banach
space or an absolutely convex open subset of an arbitrary Banach space. To ac-
complish this, suppose that f a HðU ;FÞ is a compact holomorphic mapping on
U , where either (i) U is an absolutely convex open set in an arbitrary Banach
space, or (ii) U is an arbitrary open subset of a separable Banach space E.

(i) U is an absolutely convex open set. Let us see that the proof of [4, Propo-
sition 3.5 (a) ) (b)] can be refined to cover this case. For m; k a N and x a U ,
define

Am;kðxÞ ¼ ly : y a B
�
x;

1

m

�
; l a C; jlja 1þ 1

k

� �
:

Consider the set

Um;k ¼
[

B
�
x;

1

m

�
: jjxjjam;Am;kðxÞJU ; jj f jjAm; kðxÞ am

� �
:

270 r. aron et al.



Let us prove that U ¼
S

m;k Um;k. Given x0 a U , the subset Ck
x0

¼ flx0 : jlja
1þ 1=kg of E is contained in U for all su‰ciently large k. Since f is a compact
mapping and Ck

x0
is a compact set, f is bounded in some neighborhood of Ck

x0
.

It follows that there is m so that x0 a Um;k. Thus, U J
S

m;k Um;k and the other
inclusion follows as each Um;k is contained in U . Since jj f jjUm; k

am < þl, we
can define

K ¼ f0gA
[

m;kaN

f ðUm;kÞ
mkjj f jjUm; k

:

Since f is compact, by [4, Proposition 3.4] each d̂d nf ð0Þ is a compact n-
homogeneous polynomial. From this it follows that each f ðUm;kÞ is relatively
compact in F , and therefore K is compact. It is easy to see that f ðUÞJ spanK .
Let L be the closed absolutely convex hull of K and set FL :¼ spanL, normed by
the Minkowski functional of L. Then L is compact and absolutely convex. All
that is left to prove is that f : U ! FL is holomorphic. For x a U , define

Cx ¼ fa a E : xþ la a U for jlja 1g

and take m, k so that x a Um;k. We have that Bðx; 1=mÞJU and Bð0; 1=mÞJCx.
The argument in [4, Proposition 3.4 (a) ) (b)] yields that fd̂d nf ðxÞðaÞ : jjajj <
1=mgJ coð f ðBðx; 1=mÞÞÞ for every n. So, for jjajj < 1=m, we have

d̂d nf ðxÞðaÞ a coð f ðBðx; 1=mÞÞÞJ coð f ðUm;kÞÞJmkjj f jjUm; k
co
� f ðUm;kÞ
mkjj f jjUm; k

�
:

Putting Mm;k ¼ mkjj f jjUm; k
we find that fd̂d nf ðxÞðaÞ : jjajj < 1=mgJMm;kL.

For jjajj < 1=m, f ðxþ aÞ ¼
Pl

n¼0 d̂d
nf ðxÞðaÞ converges in F . In particular, for

jjajj < 1=2m and j a N we have

f ðxþ aÞ �
Xj

n¼0

d̂d nf ðxÞðaÞ ¼
Xl
n¼jþ1

d̂d nf ðxÞðaÞ ¼ 2�j
Xl
n¼jþ1

2 j�nd̂d nf ðxÞð2aÞ;

so f ðxþ aÞ �
P j

n¼0 d̂d
nf ðxÞðaÞ a 2�jMm;kL since L is absolutely convex and com-

pact. Denoting by jj � jjL the norm on FL given by the Minkowski functional of L
we get

f ðxþ aÞ �
Xj

n¼0

d̂d nf ðxÞðaÞ
�����

�����
�����

�����
L

a 2�jMm;k ��!j!l
0

uniformly for a a Bð0; 1=2mÞ, proving that f : U ! FL is holomorphic.
(ii) U is an open subset of a separable Banach space E. U has a countable base

of open sets B ¼ fVn : n a Ng. For each x a U there is a neighborhood Ux of x
such that f ðUxÞ is relatively compact in F . Pick Nx a N so that x a VNx

JUx.
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Therefore each f ðVNx
Þ is relatively compact in F . For each subset A of U we

define jj f jjA :¼ supfjj f ðyÞjj : y a Ag. Let

K ¼ f0gA
[
x AU

f ðVNx
Þ

nxjj f jjVnx

:

It is clear that this is a countable union, so it follows that K is compact. The
argument proceeds as above. r

Open problem. We conjecture that Proposition 4.2 is not valid for holomor-
phic mappings on arbitrary open subsets of arbitrary Banach spaces.

Open problem. Is Proposition 4.2 valid when considering the ideal of weakly
compact operators? And for any closed and surjective ideal of operators?
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Universidad de Valencia

46.100 Burjasot—Valencia, Spain

pilar.rueda@uv.es

274 r. aron et al.


	mk1
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk20
	mk21
	mk22
	mk23
	mk24
	mk25
	mk26
	mk27
	mk28
	mk29
	mk30
	mk31
	mk9
	mkEnd-page

